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Results and problems concerning
compactifications, compact subtopologies, and mappings
. by
Sam B. Nadler, Jr., J. Quinn* and Harold Reiter (Charlotte, N. C.)

Abstract.  Some relationships between compactifications and compact sub-
topologies are investigated.

1. Introduction. All spaces (compactifications, subtopologies, ete.)
in this paper are assumed to be Hausdorff unless otherwise stated. Though
some of our results are stated in this general setting, all of them are new
for the setting of metric spaces.

A compact subtopology for a space (X, T) is a compact topology 8
for X sueh that § C 7. It is well-known that a space (X, T') has a com-
pact: subtopology if and only if there exists a one-to-one continuous
funetion f from (X, T) onto a compact space Z (if such an f exists, then
§ = {v: (V) is an open subset of Z} is easily seen to be a compact sub-
topology for (X, T); in fact, (X, 8) is homeomorphic to Z). Recently,
there has been considerable interest in spaces with compact subtopologies
(for example, see [4], [71, [9], [10], [11] and [13]). The question of which
metric spaces have (metrizable) compact subtopologies was originally
posed by Banach [1]. In 1949 M. Katetov [5] solved this problem in the
case of countable spaces by showing that a countable regular space has
a eompact subtopology if and only if ib is scattered (a space X is scattered
[5] provided cvery nonempty subset has an isolated point (in the relative
topology); for countable metric spaces this is equivalent to X not contain-
ing a topological copy of the rational numbers).

In this paper we investigate mapping relationships between com-

_pactifications and compact subtopologies. ‘We obtain some results about

countable metric spaces which show that there is a very strong relationship
between their compactitications and compact subtopologies., Since these
results about countable spaces, together with Example 1 below, form
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the motivation for the paper, we broadly describe them in the next few
sentences. Assume (X, T) is a countable metric space which has a com-
pact subtopology. It is known, then, that (X, T) has a countable com-
pactification [4]. We show that each countable compactification of
(X, T') is homeomorphic to a compact subtopology of (X, T') (see section 2)
and that each compact subtopology of (X, T) is a continuous image of
a countable compactification of (X, T') (Corollary 1 of section 3),

Exampre 1. Let X be the subset 4 w B of the plane R?, where
A={reR: 1<|¢|<2} and B= {z¢R* [¢v—4|< 1}. The space X has
the dise D = {z ¢ B": |¢| < 2} a8 a one-to-one continuous image. However,
X has no connected compactification, so D i not homeomorphic with
any compactification. Note that X is locally compact, and that the com-
pact subtopology. D is an open continuous image of a compactification
of X, namely the one-point compactification.

It is well-known that the Stone-Cech compactification of a com-
pletely regular space (X, T') can be continuously mapped onto any com-
Pact space which is a continuous image of (X, 7). Hence, every compact
subtopology of a completely regular space (X, T) is a continuous image
of a compactification of (X, T). In view of this, the results mentioned
above, and Example 1, we consider (A) is every compact subtopology
of a space (X, T) an open continuous image of some compactification,
of (X, T')7 In section 4 we show in a strong way that the answer to (A)
i8 no; more specifically, we show that no ‘compact subtopology for the
half-line [0, +-oo) is an open continuous image of a compactification of
[0, -+ c0). Further, we show that for the line (— oo, - o) there are com-
pact subtopologies which are homeomorphic to compactifications of
(—o0, +o0). On the other hand, some compact subtopologies for
(—o0, 4-00) are not open continuous images of any compactification.
of (—oo, 4-o0). Using [10], we determine exactly which ones are; in
fact, we show that an open continuous function from a compactification
of (—oo, +co) onto a compact subtopology of (—co, 4-o0) is a homeo-
morphism. Preceeding section 4, we give in section 3 a special process
(Theorem 2) for mapping certain compactifications of a space onto com-
pact subtopologies. We refer the reader to the beginning of section 3 for
further: exposition about this. .

Throughout this paper we let (— o0, +co) and [0, +oo) denote the
real line and the nonnegative reals respectively, each with the usual
topology (unless otherwise specified); B* denotes usual Euclidean 7~ di-
mensional space, n=1,2, ...

2. A result about countable spaces. In this section we prove the follow-
ing result.

THEOREM 1. Let (X, T) be a countable space. If (X, T) has a countable
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compactification ¥, then it has a compact sublopology 8 such that (X, 8)
is homeomorphic to Y.

Proof. Let ¥ be a countable compactification of X and let d denote
a maetric for ¥ (that ¥ is metrizable is well-known; even more information
ig in [8]). Since it will be clear from what we will do how to handle the
case when ¥ — X ig finite, we assume for the purpose of proof that ¥— X
is infinite. Liet 4, 45, ... be a (one-to-one) complete enumeration of ¥— X.
For each n=1,2, ..., choose a sequence {oh}om_, such that

(1) foreachn=1,2,...and m=1,2, vry Xy, 38 is0lated in ¥ (equiva-
lently, isolated in X);

1
(2) d(wﬁl,yn)<m for each n=1,2,.. and m=1,2, ..

(3) a7} # a} whenever ¢ # j;
(4) {af,a%, .} ~ {af, 2f,..} = O whenever n k. Let f: XY be
defined by

Yn if

z=qy,
fl@y=1ah, # z=a and m>32,
z, otherwise .

Clearly f is one-to-one and sends X onto Y. Now we show fis continuous.
Let {z:};2, be a sequence of distinct points of X such that {#:}32, con-
verges to a point z e X. Then, by (1), ze[X— U {ah,: n=1,2, .. and
m=1,2,..1] If some subseguence {7372, of {#}2, has each of its
terms in X— J{zh: n=1,2,..and m=1,2,..}, then, since f is the
identity on X— | {af: n=1,2,... and m = 1,2, ...}, {f{24)}52, con-
verges to f(z). Hence, it suffices to assume ;e (J {a?: n =1 »2,.. and
m==1,2,..} for all i=1,2,.. Bince ze¢X, &%y, for all n— 1,2,.
Thus, we may assume (by using a subsequence of {2;}2, if necessary)
that, for each i=1,2,.. &= 2}{) where n(i--1) > n(i). Now, by (2)
above, the diameter of f({z}: m=1,2,..}) = {&¥": m—1,2,..}w
W {Ynw} 18 loss than or equal to 2/n(i). Hence, a(f (1), 2) < 2/n(i). Tt
follows easily from this that {f(e)}, converges to . Therefore, since
#e[X— U {ah: n=1,2,.. and m=1,2,..}], this proves {f(z)}>,
converges to f(z). This completes our proof of the continuity of f.

3. Continuous functions from compactifications to compact subtopologies.
In [13] Smirnov gives an extringic characterization of when a completely
regular T-gpace has a compact subtopology. The characterization is in,
terms of the existence of a certain type of funetion from a compactifi-
cation of (X, T') onto (X, 7). In one direction, he notes that each compact
subtopology of (X, T is a continuous image of the Stone-Cech compactifi-
cation of (X, T); his certain type of function is produced from thig.
8%
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Furthermore, he notes that a compactification of (X, Z') can be chosen
with the same weight and dimension as (X, I') to do the job. In the next
theorem we establish a process. It enables us to choose compactifications
which can be continuously mapped onto compact subtopologies and which
are closely related to the original space. This relationship enables us to
obtain more information in specific instances than is obtainable via the
softer approach in [13] (cf. our Corollary 1, ete.).

TraroreM 2. Let (X, T') be a topological space, not necessarily Haus-
dorff, with a possibly non-Hausdorff compact sublopology 8. If H™ is any
(possibly non-Hausdorff) compactification of (X, T'), then there ewists a possibly
non-Hausdorff compactification X* C[X~ x (X, 8)], where X denotes
cartesian product, and a continuous function ¢ from X* onto (X, §).

Proof. Let ¢: (X, T)—~(X, 8) denote the identity map. Let G (i)
= {(#,i(@)): @ eX| denote the natural embedding of the graph of ¢ in

"X~ % (X, 8). Bince 4 is continuous, @(i) is homeomorphic with (X, T).
Hence, cl[G ()] can be viewed as a (possibly non-Hausdorff) compactifi-
cation of (X, T), where cl denotes closure. Let X* = cl[G(i)] and let g de-

note the restriction to X* of the projection of X~ x (X, 8) onto (X, 8).

Clearly, X* and ¢ satisfy the desired conclusion.

COROLLARY 1. Let (X, T) be a countable metric space. If (X, T) has

a compact sublopology 8, then (X, T) has a countable compactification X*
" such that (X, 8) is a continuous image of X*.

Proof. Since (X, T') i3 countable and has a compact subtopology,
we have from [5] that (X, T is scattered. Hence, (X, T) has a countable
compactification [4, Theorem 8]. The result now follows by letting this
countable compactification play the role of X~ in the statement of
Theorem 2. * .

Remark 1. It would be tempting to conjecture, in view of Theorem 1
and Corollary 1, that if a countable metric space (X, T) has a compach
subtopology S, then (X, T) has a countable compactification which ig
homeomorphic to (X, ). However, this is falge. In fact, letting

X ={0,1/2,13, .., 1n, .} U {~1, =2, ..., —n, ...}

with the relative topology T from the line, we see that (X , ') hag a com-
pact subtopology 8 homeomorphic with {0,1/2,1/3, wey Un, L} and yot
that no compactification of (X, T) is even a continuous image of (X , 8)
(because any compactification of (X, T) has at least two limit points).

Exiamere 2. It may appear that Corollary 1 would remain true
without the hypothesis of “metric.” However, this is not true as is easily
seen by letting (X, T) be the subspace of the Stone-Cech compactification
of the integers consisting of the integers together with one point of the
remainder. The space (X, T) is not metric; this is a simple consequence
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of the fact that a sequence of integers converges in the Stone-Cech com-
pactification if and only if it is eventually constant (to see this, use the
well-known fact about extendability of bounded real-valued eontinuous
functions). Clearly then, (X, T) does not have a countable compactifi-
cation. However, (X, 7') is a countable completely regular scattered space.

COROLLARY 2. Let (X, T) be a separable metric-space. If (X, T) has
@ compact subtopology 8, then (X, T) has a métric compactification X* such
that (X, 8) is a continuous image of X*. Furthermore, if (X, T) and (X, S)
are each zero-dimensional, then the compactification X* can be chosen so as
to be zero-dimensional as well as metric.

Proof. We prove both parts of the corollary simultaneously. Under
the assumption that (X, T') is separable metric (vespectively, in addition,
zero-dimensional), we have that (X, T) can be embedded in the Hilbert
cube (respectively, the Cantor middle-thirds set). Hence, (X, 7) has
a metric (respectively, zero-dimensional and metric) compactification X,
Now, let us note that (X, §) is a metric space (see the beginning of the
proof of Theorem 4.1 in [11, p. 246]; the author of [11] acknowledges
that this fact and its proof in [11] were communicated to him by
H. H. Oorson). The result now follows by letting X~ be as in Theorem 2
and then applying Theorem 2.

PropremM 1. (a) If (X,7) has a zero-dimensional compact sub-
topology, then must (X, T) be zero-dimensional (clearly such an (X, T)
must be totally disconnected)? (b) Does every zero-dimensional space
with a compact subtopology have a zero-dimensional compact subto-
pology?

Remark 2. Let (X, T) be a locally compact space which is not
compact. Since (X, T) is locally compact, (X, T) has a compact sub-
topology (X, 8) (to see this, simply take the one-point compactification
and identify the “point at infinity” with some given point of X). Let X*
be a compactification of (X, T) constructed specifically by the procedure
in the proof of Theorem 2. Let ¢ be the mapping obtained in the proof
of Theorem 2. We now show that ¢ can not be an open mapping. Lot j de-
note the (continnous) injection of (X, T') into X™*. Since (X, T) is locally
compact, j takes open subsets of (X, T) to open subsets of X*. Hence,
if o were open, the composition ¢ » j would be an open mapping, a eontra-
diction becanse g oj = 4, which implies § = T.

In relation to Theorem 2, it is natural to ask the following question:
I (X, T) has a compact subtopology, does every compactification of
(X, I') have some compact subtopology of (X, T') as a continuous image?
Our next example shows that the answer to this question is no.

Bxamers 3. Let 4 = cl({z,sin[l/z]): 0<®<1}, let B be the
polygonal are (dotted in Figure 1 below) defined by B = {(z,y) < R%:
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=0 and —2<y<—Lu{@,y) el 0ol and y== ——-2.}\./
U {(®,y) e B* o=1 and —2 <y < sin[1]}, and le’q H be a ‘tO]j)Olf)gIGE?J]
copy of [0, 4 oo) beginning at (0, 4-1) and comp.actlfymg on B as in Fi-
gure 1 (H ~ A = {(0, +1)}). The space (X, T) is 4 v H.

(0,+1)
(1, sin (1))
H ‘,-,/( q
L Jd ]
))j
> J

X = the solid lines
Fig. 1 :

Now, by pushing H up, it is easy to see that X has a compact sub-
topology homeomorphic to the object in TFigure 2.

{1, sin {1y

Fig. 2

Results and problems concerning compactifications 39

Furthermore, let us observe that no compact subtopology for X can
be arcwise connected. A rigorous argument for this ean be obtained by
using Theorem 7.2 of [10] (note that, under any one-to-one continuous
function f from X onto a compact space Z, f{H—{(0, +1)}} = f(X)—f(4)
is an open subset of Z, hence locally compact). Thus, since 4 v B v H ig
an arcwise connected compactification of X, no compact subtopology
of X is a continuous image of 4 v Bu H.

Note that, in Example 3 we found a space which had a compact
subtopology and an arcwise connected compactification but no arcwise
connected compact subtopology. This gives rise to the following question
which we can not answer.

ProBrEM 2. Is there a space (X,T) which has a compact sub-
topology and a locally connected compactification but no locally con-
nected compact subtopology? We remark that if (X, T) is locally com-
pact, then the answer is no. To see this, assume Y is a locally connected
compactification of (X, T). Since (X, T') is locally compact, the one-point
compactification X v {oo} of (X, T') is a continuous image of ¥. Hence,
X U {co} is locally connected. Let p e X. Then, the decomposition space
obtained by identifying oo and p is a locally connected compact sub-
topology for (X, T).

4. Question (A). Before giving our answer to Question (A) stated in
the Introduction, we prove the next two theorems which separately
characterize all the open continuous images of [0, --oo) and of (— oo, -+ co).

TuroREM 3. If the space Z is an open continuous image of [0, -+ o),
then Z is one of the following three spaces:
(1) a single point,
(2) an arc, }
(3) @ half-line (homeomorphic to [0, + co)).
THEOREM 4. If the space Z is an open continuous image of (— oo, -} oo),
then Z is one of the following five spaces:
(1) a single point,
(2) an are,
(3) @ simple closed ourve (homeomorphic to {z € R*: |a| = 1}),
(4) o half-line, .
(8) a line (homeomorphic to (— oo, ~-co)). .
To aid in the proof of Theorems 3 and 4, we first prove the following
lemma. '

Lemma 1. Let X be a connected, locally compact, and locally connected

. separable metric space such that X does mot contain a simple triod. Then,

if X is mot compact, the one-point compactification X w {oc} = ¥ of X is
an arc or & simple closed curve.
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Proof. Assume X satisfies the given hypotheses. Since X is con-
nected, oo is a noncut point of ¥. Let a be another noncut point of ¥
(see 6.1-of [14, p. 54]) Now, assume Y is not an arc. Then, ¥ has a non-
cut point b with b ¢ {a, oo} (see 6.2 of [14, p. 54]). Let A C (¥ {b}) be
an are with noncut points & and oo, let B C (Y~ {co}) be an arc with
noncut points ¢ and b, and let € C (¥ — {a}) be an arc with noncut points b
and co (see 5.2 of [14, p..38]). It follows (use that X does not contain
a simple triod) that 4 v B is an are, with noneut points co and b, and
that [A v B] n 0 = {0, b}, Hence, A v Bu ( is a simple closed curve.
Now we show 4 v Bu 0= Y. Suppose there iy a point

y03€ [Y—(AvwBuO)].

Again using 5.2 of [14, p. 38], there is an arc D C X such that D has
noncut points y, and a. Clearly (since oo ¢ D), 4 v Bu ¢ w D containg
a simple friod which is entirely contained in X. This contradiction
establishes that 4w Bw ¢ = Y and completes the proof of the lemma.

Proof of Theorem 3 and Theorem 4. First note, from the openness
and continuity that Z is a connected, locally compact, locally connected
separable metrie space. Also, from (iii) of 7.3 of [14, p. 147], Z does not
contain a simple triod. We define a space X as follows: X = Z it Z is not
compact and X = Z—{p} if Z is compact, where p is a noncut point of Z
(see 6.1 of [14, p. B4]). Then, X satisfies all the conditions of Lemma 1
above (unless Z were a single point). Fence, the one-point compactifi-

cation of X is an arc or a simple closed curve. This completes the proof
of the theorems. o

Remark 3. Another proof of Theorems 3 and 4 can be done using

(iii) of 7.3 of [14, p. 147] and Theorem 1 of [2]. In particular, from the

fact that Z does not contain a simple triod and the proof of Theorem 1

of [2], it follows that Z is a one-to-one continuous image of a point,

. [0,1], [0, +o0), Or (— o0, + o0). The rest of this proof can he comialeted

using Theorem 7.1 of [10], the Structure Theorem in [9, p. 128], and
a result in [7].

The next theorem gives the answer to question (A) promised in the
Introduction.

. THEOREM 5. Let 8 be a compact sublopology for [0, + oo). Then, there

is no compactification of [0, +0), with the wusual topology, which has
([0, +o0), 8) as an open continuous image. '

Proof. Let Y be a compactification of [0, +o0). Suppose there is

an open continuous function f from Y onto ([0, +o0), 8). By the local

compactness of [0, -+ c0), [0, 4 o0) is embedded as an open subset G of Y.
Hence, the restriction of f to ¢ is an open continuous function. Thus,

icm

Results and problems concerning compactifications 41

by Theorem 3 above, it follows that f(G) is an are or is homeomorphic
to [0, + o0). Furthermore, since & is a dense subset of ¥, f(G) is a dense
subset of ([0, 4-o0), S) However, by the Structure Theorem in [9, p. 128],
no compact subtopology for [0, 4 co) containg an arc or a space home-
omorphie to [0, -+ co) as a dense open subset. This contradiction establishes
the theorem. )

Now we devote our attention to compactifications and compact
subtopologies of (— oo, 4 co). For the purpose of making the statements
of our results fairly concise and self-contained, we recall a few preliminary
notions from [10].

Following the terminology in [10, p. 2], & half-ray curve (respectively,
real curve) is a compact connected space which is a one-to-one continuous
image of [0, +-o0) (respectively, (— oo, 4 o00)). Clearly, then, a half-ray
curve ig just a compact subtopology of [0, 4 oco) and a real curve is just
a compact subtopology of (—co, 4-o0). In investigating real curves in
[10] we made use of two special sets called singular sets. Specifically,
let f denote a one-to-one continuous function from (— oo, 4 o0) onto
a real curve X. Then, the singular sets of X with respect to f [10, p. 6] are
the following two sets:

(i) K (X,f)= {x e« X: there exists a sequence {t,};o, in R' such
that tp—--c0 a8 n—>oco and {f(fx)}n., converges to «}.

(ily K_(X,f)= {w ¢« X: there exists a sequence {f,};., in R* such
that ty—+—co a8 n—>oco and {f(x)}ee, converges to x}.

In [10, p. 9] we completely determine the topological tiypes of singular
sets that any real curve can have. There are uncountably many different
such types but they can be divided, as in [10, p. 9], into five convenient
types: (1) a point, (2) an are, (3) a chainable continuum with exactly
two arc components, (4) a half-ray triod, and (5) a half-ray ecurve. In
what follows, when we say X has a “singular set of type (5)” we will mean
that one of the singular sets is a half-ray curve. Finally, we recall from
[10, pp. 13-15], that the singular sets of a real curve do not, in any crucial
way, depend on the mapping f. Precisely, if g is another one-to-one
continuous function from (—oo, 4-o0) onto X, then

(1) K (X,f) = K (X,g) and K_(X, f) = K_(X,g) or

(2) K (X,f)=K_(X,¢) and E_(X,f)= K.(X,9).

TunorEM 6. Suppose that g is an open continuous function from a com-
pactification L~ of the real line L onto a real curve X. Then g is a homeo-
morphism.

Proof. Let X be a real curve, let L~ be a compactification of L

= (—o0, 4 o0), and let ¢ be an open continuous mapping of L~ onto X.
It follows from the openness of g and Theorem 4 that g(L) is either an
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open and dense in X topological copy of [0, 4-o0) or of [— oo, -} o0)
(note: no real curve can be a single point, an are, or a simple closed curve),
It can be readily verified by use of the Structure Theorem for Real Curves
in [10] that no real curve contains an open topological copy of [0, +-co),
Hence, g(L) must be an open, dense topological copy of (— oo, -} o0).
Note that the restriction of g to L must be a homeomorphism of I onto
g(L). Let ¢ = L~—L. The first thing we prove is that g(L) ~ g(0) = @.
Suppose not; then there exists an o ¢ 0 such that g(x) = ¢(¢) for some
t e L. But, then there exists a sequence {t,}o., such that ¢, ¢ L for all
n=1,2,.., [ta}=>+oco, and {g(t,)}n., converges to g(»)==g(¢). This
contradicts that the restriction of ¢ to L iz a homeomorphism. This
proves g(L) n g(C) = @. To see that g is a homeomorphism, all that re-
maing is to show that g is one-to-ome on C. To this end, suppose there
exigt distinet points #; and @, in 0 such that g(2,) = g(w,). Let U, and U,,
be disjoint open sets in L~ such that «, ¢ U, and w, e U,,. Let {2, be
a sequence in L ~ U, such that {t,};2., converges to a. Then {g(t,)}2.,
converges to g(®;) = ¢(%,). Since g(U,,) is an open subset of X, there
exists a natural number n, such that g(t,) < g¢(U,,). But, since we have
shown that g(0) ng(L)=9, g(t,,)=g(s) for some se (L~ UT,,). This
contradicts the one-to-oneness of g on L. This completes the proof of
the theorem. '

THEOREM 7. Let X be a real curve. Then, X is a compactification of
(— o0, +o0) if and only if X has a singular set of type (5).

Proof. First, a few preliminaries. Let f be a one-to-one continuous
function from (—oo, +-co) onto X and assume, by Lemma 2.5 of [10],
that K (X, f) = f([a, b]) where oo << a < b< + 0. Let

Q= {we(—co,a) f(w) e X_(X,[)}.

I Q=0,let c=a. If @ %0, let ¢ = glb.(Q). That ¢ is well defined is
established on page 10 of [10]. It is easy to see that f restricted to (— o0, ¢)
is & homeomorphism. Now with the preliminaries done, first assume X is
a compactification of (—oo, +o0). Then, by the local compactness of
(—oo, +o0), X must contain a dense open topological copy L of
(— 00, +-o0). By the definition of ¢, f((— oo, ¢)) is an open subset of X.
Hence, L ~ f((— o0, ¢)) 2 @. We now show L Cf((—o0,0). Since X is
not locally Euclidean at f(c), f(¢) ¢ L. If K_(X,f) is not a single point,
then X— {f(¢c)} fails to be arcwise connected. Under these circumstances,
since I ~ f((— o0, ¢)) # @ and f((— oo, ¢)) is an arc component of X—
—{f(e)}; LCf((— o0, ¢)). On the other hand assume K_(X,f) congists
only of a single point ¢. Since X can not be locally Euclidean at ¢, q¢L.
But X—{f(c), g} is not arcwise connected and a repetition of an argument
above gives that L C f({(— o0, ¢)). We have now shown that, in any case,
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LC f((—oo,c)) (we mention that it is now simple to show that
fl(—o0, ¢)) = L). From the denseness of L, we can now conclude that

- d|f{(—o0,¢)] = X. Thus, in particular, el[f((— oo, ¢))] D f(le, + o0)).

Hence, we must have K_(X,f)D f{le, —|—oo)) (note that, by the defini-
tion of ¢, this is actually an equality). Therefore, K_(X, f) is a singular
set of type (5). Conversely, assume X has & singular set of type (5). Then,
gince K (X, f) is an arc or a single point, K _(X ,f) is this singular set.
Thus, by definition of ¢, K_(X,f) = f(lc, + c0)). Henee, f((— oo, ¢)) is
a dense (in X) topological copy of (— oo, + o), This proves X is a com-
pactification of (— oo, 4 oco). :

COROLLARY 3. Let X be o real curve. Then:

(1) X is an open continuous image of a compactification of (— oo, 4 o0)
if and only if X is homeomorphic o a compactification of (— oo, - oco);

(2) X is an open continuous image of a compactification of (— oo, - o0)
if and only if X has a singular set of type (5).

‘We state the following problem which is related to material in
this paper. :

ProBrom 3. Is every compact subtopology of a countable space
(X, T') an open continuous image of a countable (or any) compactification
of\ (X, T

R. BE. Chandler has pointed out to the authors that the technique
uged in the proof of Theorem 2 is well known to those working in the
theory of compactifications.
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Infinite dimensional non-symmetric
Borsuk-Ulam theorem

by
Kapil D. Joshi (Providence, Rhode Island)

Abstract, Let E® be an infinite dimensional Banach space and R®-2 a closed
subspace of codimension one. If X C B, a mapping f: X —E™ is said to be a compact
wector field or a compact field if the associated displacement mapping F: X — R* defined
by F(x) = «— f(x) maps X into a compact subset of R, It is proved that if X is closed
and bounded and if the origin lies in a bounded component of the complement B°— X
then for any eompaet field f: X —R** there exist two points # and y in X, lying on
opposite rays from the origin (i.e. y = — v for some 4> 0), such that f(x) = f(y). This
i8 a generalization of a theorem of Granas which results by taking X to be the unit
gphere in R, The proof uses techniques analogous to those of Granas to reduce the
problem to the finite dimensional case which was proved earlier by the author.

1. Introduction. The classic Borsuk-Ulam theorem states that if
f: 8*=R" is a map of the n-sphere into the Ruclidean space R" then
there exists a pair of antipodal points {w, —x} on 8" such that f(z) = f(— ).
Beveral generalizations of this theorem, preceeding in various directions,
are known (see, for example, the references in [2]). In some of these
generalizations the sphere is replaced by a more general space on which
some suitable notaion of antipodality can be defined. In particular, the
author [2] has proved the following theorem conjectured by Borsuk,

TunoreM A. Let X be a compact subset of the Buclidean space B!
which disconmects it in such a way that the origin lies in a bounded com-
ponent of R X. Then for any map f: X—R" there ewist two points
and y in X, lying on opposite rays from the origin (that is, y = — Al for
some A > 0), such that f(x) = f(y).

On the other hand Granas [1] has extended the Borsuk-Ulam
theorem from Huelidean spaces to infinite dimensional Banach spaces.
Let B® denote a fixed iffinite dimensional Banach space and S the
unit sphere in B®. By BR®™ we mean a linear, closed subspace of B of
co-dimension one. Because the unit sphere § is not compact, the Borsuk -
Ulam theorem does not hold for an arbitrary map f: §°—R*~*. However
if the mapping f does not displace points of S too much (i.e. if the mapp-
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