On the number of generic models
by

Vincent Lee and Mark Nadel (Pasadena, Cal)

Absteact, Let 7' bo a complete theory in a countable fragment £p. Suppose A4 is:
a countablo admissible seb with T'e.A. Then either (i) for each countable fragment
£pD L4 thore is w unique L£p-generiec model of T’ up to isomorphism, or (i) for each
countable fragment £52 €4, there ave continuum many £, -generic models of T' up to
isomaorphism.

Suppose M 14 a countable model of ZF and P e M is a partial ordering.
Tt s well known, and easy to see, that there will be a subset of P in M
generic over M, just in case there is o condition p e P such that all condi-
tions greator than p are compatible. If there is no subset in I generic
over M, then there will be continuam many different generic sets. We will
show that a similar phenomenon occurs in model theoretic forcing. The
obvious diffionlty in going from. the result about generic sets to generie
models s that distinet generie sets will give rise to isomorphic generie
models.

Tt is assumed that the reader is already familiar with the basic concepts
involved in infinitary model theory, admissible sets, and forcing. Our
treatment of these facts is almost self-contained with respect to foreing,
is fairly suggestive in rvegard to the relevant notions of infinitary model
theory, and is non-existent in the area of admissible sets and in particular
the Tidvy hierarchy, Any necessary background in these matters may be
oblained through [1] or [4].

Onr notation is quite standard, and i in keeping with [3]. We generally
denote & structure by 9% and its universe by M. The seb of hereditarily
countable sets, i.0. those sets whose transitive clogure is countable, is:
denoted by 11, The seb of all gety of rank less than some ordinal § is de-
noted by R(f). Definitions of such notions as “fragment” can be found
in [3].

Finally, we assumo the reader iy aware of how certain. of what we do
informally can be done formally within set theory, e.g. coding of formulas
a8 sols, ete. sinee yueh an ability is implicit in the proof of our main result,
Theorem 2.


Artur


106 V. Leo and M. Nadel

§ L. The coneept of foreing was fivst utilized by Cohen to settle inmpor-
bant questions of set theory. Subsequently, it was secn by Bavwise | (1]
that this technique of “sef-theoretic” forcing could be used in o weaker
setting to construct new admissible sets from old ones. Tatter, A. Robin-
son [5] considered applications of foreing in the model theory of finitary
languages. This subject was pursued in [2] and elsowhere, Subsequently
Barwise (unpublished) congidered foreing in infinitary logic. Latter Ktill,

Keisler [3] employed foreing to re-examine some central questions in the
model theory of the inifinitary language £, ,. In this paper we cmploy
the “bagic result on set-theoretic foreing on admissible sols” to obtain
information on more model theoretic madtitors,

Much of what we do below was initially motivated by [3]. Wae restate
some of the essential definitions and rosults of that paper, hut for simplicity
we consider a special case from the heginning.

We fix a countable alphabet £ and o countable fragument Ly of £, .
In addition, we introduee a countable set ¢ of new congtant symbols, and
consider a new fragment K, whose formulas may he obtained from for-
mulas of Ly by replacing finitely many free variables by constant symbols
in 0. K, is obtained from £, in & similar way.

Now, given a eonsistent theory 1" in £, wo define the set of forcing
conditions, P to be the set of all finite sety § of wontences of K, such that
T'v 8 is consistent.

For any condition p ¢ P, and sentence ¢ e R, wo dofine the forcing
relation

p g,
by induction on the formation of ¢:
p ke iff @ ep for ¢ atomic,
P Tlg iff there is no g <P such that ¢ Dp and ¢ Ik,
PN p k@ for some ¢ e ®,
P (@)oo () I p IFp(e) for some ¢ e (.
As shorthand, we will always use p, ¢, » to denote clements of P.

Then we can state some of the hagie facts about for ‘eing familinr from seh
theory as

(i) if p ke and ¢Dp, then ¢ I 0,

(i) p F AD iff for cach g e @ and ¢ 2y there i some 1D ¢ sueh that
g,

(iii) P Ik (V'm)(p(.’lf) iff for cach ¢ e ¢ and q '2 P here is smne # 70 q aueh
that r ¢ (e). v 4

The notion of weak forcing, p R s defined by

P ML op g,
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Consequently,
(iv) p @ il for cach ¢ Dp there is some 2 ¢ such that » I, i.e.
iff the set of conditions foreing ¢ is dense above 7,
(v) il p o, then p 2q,
(vi) p F® 1 36 p - T,
(vil) p e A@ it for all ge®, p g,
(viil) p Ik (Va)p () iff for cach ce 0, p 12 p(e),

(ix) p ko \/P it for each q2p there is some r D¢ and some p e ®
such that » -9 ¢,

(x) p b (L) () UL for ench g D there iy some » D¢ and ¢ e ¢ such
thati » 11 g (e). -

The reader will have noticed that in o certain sense \/ and ® trade
roles with A and 'V upon switching from foreing to weak foreing. In par-
tieular, i for o fragment L, wo define 2% to be the set of all sentences
of £y weakly foreed by 0, then for /\(ﬁe Lo,

NPely, it @eTh, for every ge®.

Given o fragment £, we say that a structure I for € is A -generic
itf there is some mapping ¢—m, of ¢ onto M such that for each sentence
@ e By (O, my)gee o iff for some finite set p C thB((i)Jt My)eec)s P I .

Alternatively, o sot ¢t CP is said to be A-generie iff

(Ly if ped and qCop, “then qed,

(2) it 9, q e, then pwgel,

(3) Lor cach sentence ¢efy,
there iy some p e ¢ such that either p k¢ or p I Tg.

Given an A-generie seti @, one may “cffectively” construct, in the
manuer of Ilenkin’s proof of the completeness theorem, an A-generic
strueture My, such that for the obvious canonical expansion My of My to
a strueture for §,, we have, for all p e &,

My, kg it p kg for some ped.
Conversely, every A -generie structure is.0e for some A4-generic set @,
viz. “lfh‘ ((wty 'm')m:t,/ll)' X

Trinally, using the faeh that it £, 38 countable, every p is contained
in an A-genervie sef, one can show

() for every countable feagment £, pe K, and p e P, p +2¢ UL ¢

holds in Y, for every A-geverie G with p e G

W wish to generalize the notion of generie set, and through it, the
notion of generie struchure, Tn doing so, we must be sure to retain the
essentind property expressed in (+). Wemalke our generalization as conerete
a8 possible,

DEFINIION L. By & nolion of genericity we mean a funcbion *, with
domuin the set of all countable fragments £5,, such that
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(I) For each coun{mblu fragment £;,, *(£,,) is a net of D-generie sty
. (IT) For each countable fragment; £p, and p e P, theroe iy gomo ¢f e *(!:,,)x
with p ¢ G. B
(IIT) For each pair of countable fragment £, £,,, such that

£I)’ .D t‘m *<£‘l)’) C*(ﬁn) .

( p | / *rp oo s o 1] . . ‘

We C(L!l gots Ge' (&J,), D-* generic, and structures isomorphice to the
corresponding Mg, D-* generic structures. Th again follows that M g
itf p ko for some p e G. Then, just as before, one can establish

® " N . i | Y e : .

(") for any (JmImL&bw l‘mgm‘(mg L, aS{m and p e Py p g it g

holds in M, for every .D-* generic G with P el

§2. If we rostrict our attention to sentences 7 € Ry, then sinee omr
forcing conditions p are also bhuilt up from Ky, the relation p - © ¢ is ousily
determined. '

LeMMA.- 1. (i). For p <P, p F*Ap.

(il) 0 o for ¢ € T, whence for any notion of genericity *, every B-* ge-
neric structure is o model of 1,

(i) p ko iff Twp g, for PeRy.

Proof. (i) This is proved in [3].

(ii) Let @ e T' and p P, Then, P < {p} e Py and by (i), p w {p} I g
Thus there existy ¢ 2 p such that ¢ F* ¢, and henee some r q.0 p», 7 g
Therefore 0 |- ¢. -

(iii) First suppose ' v p k. Tet & be any I3 -generie sot with p e (.
Then, by (i) and (ii), My E T Op, whenee My k. Therefore, ;()“ I g,

Q011ve1*sely, suppose p k. If not I'w p kg, then 7w P {;""] @} is
consistent, and 50 p v { ¢} e P since @ € K. Then, however, by the above,
v {9} 2 g, contradicting the faet that A | '

From now on, we assume that 7' is a complete theory in &,, i.e. for
each sentence ¢ of L, either 7' k por T'F T, and T iy consistent, Tn
addition, we assume that 4 is admigsible, and that 7' e A. Our goal is o
determine the number of non-isomorphic 4.-generic stractures. As a first
,f;tep we show that there is a unique A - generic structure wp Lo isomorphism
HE there is a unique D- generie strueture up to isomorphisn, for some
countable fragment £, L. To do thiy we introduce the familise notion
of a prime model, and restate the busie facty concerning these modols.

A model M F 1'is said to ho a prime model for 1" it I ean he Ly-ole-
mentary embedded in every model of 7. A formula OQrgy vy tg) v said
to be complete for £, with respect 1o 11 ff 0 iy consistont with 7 and for
every fqrmu_la rp(:’a?,, <oy ®g) of £, either 7k O or 1"+ 0 "1, A model
m F T 18 prime iff M is countable and every k-tuple of olements of M
;ﬁi;?sfihis a,tc?mple.te lformyﬂ)a f.(')r ‘SL‘Byw‘jth J»m;\.ﬁpc'c‘t to T ]j‘]?()ll]]. this it :lfollnw.s,

1y two prime models for 7' must be somorphic. A theory 7' will
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have a prime model just in case for each formula ¢ e £, consistent with 7,
there is a complete formula 0 such that Tk f—g.

TurorsM 1. Let * be o notion of genericity, T a complete theory in Ly,
and A an adwmissible set with T e A. Then the SJollowing are equivaleni:

(1) T has a prime model.

(2) AUl A-* generie struciures arve isomorphic.

(3) There s some cowptable fragment £, D L, such that all D-* generie
structures are isomorplic, '

Proof. The proof that (1) implies (2) follows easily from the obvious
generalization of Theorem 2.1 (General form) of [3]. In fact, the unique
A-#generie strueture is a prime model. We only need to observe that since 4
is admissible, it can be shown [ef. 4] that for each k, the sentence
(Var) oo (Vi) \ {0 (g, ooy g): @ i o complete formula for £ with respect
to I ds dn i, In view of (TIX), (3) trivially follows from (2), and again,
of course, the unique structure up to isomorphism is prime. This leaves
the implication from (3) to (1), which can be proved in a manner similiar
tio w proofl in [3]. We use the condition for the existence of a prime model
stated above.

Let 9 be the unique D-* generic structure np to isomorphism. Let
@y ey g) be consistont with 7. Since I' is complete,

Tl (W) oo (M) p vy, oony 08)

Now since RE T, for some k-tuple (mq, .., mi> of elements of M,
I E@lmg, ..., me). Let @ be the set of all formulas y(ay, ..., 2x) of L sueh
that M Eplmy, ..., mg]. Consider the sentence v = (Hu) ... (Tax)\P.
Choose some countable fragment £, D, such that v efL;. Then, since
by (III) every D'-* generic structure is D-* generie, 9 is the unigue
D'-generic gtructure up to isomorphism. Now, since vefy,, and ME 7,
there is some p e P such that p k. Then, for some ¢, ..., cx e C,

P EN@ler, ) ped),
whenge,
Py, vy ) Tor cach ped,
Jonseguently, by Lemma 1,
Topkple, . ya); o TEADP-p(e, . )

for cach e ®.
“Now, suppose the congtants appearing in p other than ¢, ..., ¢x are
dyy vy dy. Then, it I8 clear that

Tk () ... (Q[f’/ﬂ)/\p'“"‘l’ )
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where the formulas of p’ are obtained by systematically replacing d; by Ui
a distinet variable not occuring in @, for each 4 - #y and ey by u;, :i’mi
R

We have thus sueceeded in finding a complete formula 0, vig,
(Tayy) o (Byu) A p', such that 7'k O—q, and so 1" has a prime model, @

Our definition of notion of g(meri(‘.i{;y iy clearly stronger than we
require to obtain the resulty to follow. Tor oxample, we eould manage
with * defined only on some got S of conntable feagments sueh that l':n'
any ¢ef,,, there iy some L,eS with pet,,. Himilarly, wo eodd
weaken (IIT) to the eondition that for any ¢el, . andl Ly e N, there ig
some Ly D5 O {p} suell that 0-* genericity impliey - mer)mrixnitzy, In
this ease, part (3) of Theorer, 1 would have o Do altered fo: ‘

(3") For cach qel, ., there is some & o (I R) sueh that ¢ e Ly and ofl
D'-* generic structures are isomorphic.

§3. We need to note a few facts about 1. The fivst holds oven if 7' iy
not complete. |

Let g be a permutation of ¢, Xor a sentence 9 of Ry, denote by o2 the
S(.antence obtained from ¢ by replacing each ocenrrence of ¢ in P ]E)y o{e)
Similarly, for p € P, define p° to be the set of all #° such that g e p. (‘.lmn'-.
l}f p° will again be in P. One can casily verity by induetion on the f(‘;un:ml-
tion of ¢, that for any p e P and sentence pof & ’

X0 )
P ke it

In particular, if g€y, then

P Ikgl .

2 i A L Y
‘We now suppose that 7' iy complete.
BN ] Y AT o) 0y
Lr"M’]YIA 2. Assume T ds complete L. Then
) If p, <P and p and q have no constants ¢
pugeP,
(11) Jf P 18 @ sentence of Lo, and for some PePy p b, then 0 -9 p
(311) Lor any countable. fragment Ly XY, is complete in Lp.
(iv) If /D e 1%, then ¢ e T for some ¢ ed,
Proof. (i) Sinee pep, : T s ¢ letie, 7 |
R0 fO](‘”)T e b <P, wd 15 complete, 7'k (He,) ... (T Ap',
¢ the ; was ol p*are oblained. frow. thoye of » by substituting for
;?ns’t.:mts of O distinet variables not oceuring in sentences of p or g Similarly,
AN E]Q[Z;I) « (Hya) A\ g where ¢ is obtained in @ similar way and the ys
are distinet from the wys. Then, because of our choice of wmizml)les,' ’

of O in comamon, then

Lk () ... (Bap)(@y,) ... (HEy)Ap’ v g .

Congequently, p s ¢ is consisbent with T, whence p w qeP.

icm°
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(ii) Suppose p k@ for gome p e P and ¢ € Ly, Tiet ¢ be an arbitrary
condition in P. Let o permute ¢/ so that all constant of € in p are mapped
to congtants not oceuring in ¢. Then by our earlier observation, p¢ k.
Moreover, by (i) above, p® w ¢ e P. Since p? w ¢ IF¢, it follows that 0 - ¢.

(ifi) Let £y be any countable fragment, and ¢ w sentence of £4,. Sup-
pose ¢ ¢ T4, i.c. not 0 I p. Then, there is some p e P such that p F 7g.
Now, by (i) above, 0 I “1¢, L.e. g e 1Y%,. Clearly T, is consistent sinee
every - generie strueture is o model of 77, (Hven if £, is uncountable,
T, s syntactically consistent.)

(iv) Suppose \/® e 17, L.e. 0 -2 \/®. Then, there iy some p e P such
that p I \/®. For some ¢ ¢ @, we then have p - ¢ Now, by (ii) above,
0" ¢, low e,

LimMmA 3. Af 7 ds complele in Ly, and A is countable admissible with
e Ay then for any notion of genericity *, and fragment L3 D L, either there
is ewcetly one D-* generic model of T up to isomorphism, or there are un-
countably many.

Proof. For each structure it is possible to find a sentence of £,,,
ealled a Seott sentence, which characterizes the structure up to elementary
equivalence in £,,. In the case of a countable structure, a Scott sentence
characterizes it up o jsomorphism with respeet to countable structures.

Assume that up to isomorphism, there arc countably many D-* ge-
nerie struetures. Choose a Scott sentence o for each isomorphism type
of D-# generic model. Bach ¢ can be chosen in £, . Liet X be the set of
all such o. The sentence \/2 is in £, ,, and so we may choose a countable
fragment £, with \/X¥ in L£p. Since every .D’-* gencric strueture is
a D-* generie structure, we may conclude that \/Z e T4,. Then by (iv) of
the preceding lemma, for some o € X, o ¢ T, Hence all D’-* generic struc~
tures satisfy the Scott senterice ¢ and so are isomorphie. Finally, by The-
orem. 1, all D-* generic structures are isomorphic. &

§4. We now set about the tagk of trying to replace “uncountably
many” by “continuum many” in Lemma 3. We will consider a particular
notion of genericity.

A st 8 CP is said to bo dense itf for each p ¢ P there is some ¢ ¢ 8
gpuch that p C g Tor any sentence ¢ 0f Repy lob 8= {peP: plre or
P I @) Then since given any p e Py cither p - 71 or there is some ¢ 2 p
such that ¢ g, 8, is dense.

Now suppose that P e 4, an admissible set. This will be the case if’
T e A and we choose € e A. For p ¢ P and ¢ o sentence of &, the forcing:
relation “p I " iy defined recursively by a 4 relation. Therefore tho re-
lation “p I ¢” is itsclf A-definable on A, In particular then, for each sen-
tonce ¢ of Ry, §,¢A by A-separation. Thercefore, any set G C P which.
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satisfies the filter properties (1) and (2) of the definition of gonerie, and
which intersccts every dense subset of P in A4, will be 4.-generie.

Now, we further agsume that 4 is countable. We define o funetion §
on countable fragments as follows:

8(Lp) = {G CP: ¢ satisfics conditions (1) and (2) in the definition of
generic and @ intersects every dense set contained in every
admissible set containing £, w £, ay a subset).

Tt then follows from our observation above, that & i a notion of genericity,
The rather unacsthetio definition of & is caused by sets which are ecither
not admissible or do not contain P.
Our reason for considering & is oxpressed in the following result of [1],
LiMMA b Suppose A is countable adm
nerie. Then G is condained in an adm

ansible, I e Ay and G iy A5 ge-
ible set with the same ordinals as A.

Lemma 4 is very useful since we may “cffoctively” construct e
from @ and so Mg will also be in an admissible set with the same ordinaly
as A. Having placed Me in such an admissible sot A/, it follows [ef. 4]
that ess(Wie), the canonical Scollt sentence of Me has quantifier rank at
most 0(A") 4o, where o(A’) is the smallest ordinal noti in 4/, and “sot
theoretical” rank less than some fixed ovdinal of (A", the smallest ad-
missible set containing A/, (I('pvll(lmﬂ' upon. how one codes formulas as
set.

By using canonical Scotti senfences, we get only one Scolt sentenco
for each isomorphisn type, and so we may count these ingtead of the iso-
morphisim types of the structures themselves. We should like to make usoe
of the following generalization of w familiar result on, :mn‘lyin( sobs of reals,

Lumvra 5. For any countable ordinal B, every X-definable subset of
HC ~ R(B) has the cardinality of the continwum, or is cowntable,

We now state the main result and begin the final stages of the argu-
ment.

=

TuBowEM 2. Let T' be a complete theory in Ly, T e A, @ cornlable admissible
set. Then either

(i) there is a wnique D-genevic model of T wp o isemorphism. for each
countable fragiment L, DL, or

(1i) there are condinaem wmany non-tsomorphic 1) - deneric models of 1" for
each countable fragment L, D% .

Proof. Tn view of Theoveny L, it is wulficient (o “corroetly” compute
the number of non-isomorphic A-generie models,

By Lemma 3, if there are ouly countably many non-isomorphic
A-generic models of 7, there is u wnigue one.

Let us suppose, to the contrary, that there are uncountably many
A -generic models up to isomorphism. Then in view of Lomma 3 and
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Theorem 1, there will be uncountably many 4-* generlc models ap to
.somorph]xm.

Let I’ be the set of all canonical Scott sentences of A-° generic struc-
tures. We can easily have Pe 4, by choosing ¢ ¢ A, Hence we already
know that there is some countable ordinal 8 sueh that I'CHC ~ E(B).
In order to apply Lemina 5, we need to verity that I' is a‘c‘oually X-de-
finable. Choose > o(A4) so that I'e HC ~ R(f). The property of %eing
the canonical Scott sentence of a strueture iy easily seen to be Z, and Mg
iy X-definable from 6. All wo really need to check is that the property of
lwnw an. A-* generie sot iy X, This in turn follows easily since,

“Giw A-" generie it @ LP G satisties conditions (1) and (2) in the
definition of generie, and (VH e A) [Tt 8 CP and S dense, then & ~ § £ 077,
and this is only A, over HC ~ R(f).

" Now, by Lemma 5, I"has the cardinality of the continuum, i.e. there
are conbinuum many non-isomorphic 4-° generic structuores. Since every
A-* generie structure is also A -generie, we have obtained the desired re-
sult.

In addition, we easily obtain the following

CoROLLARY. Let T' be a complete theory in L, T € A, countable admissible.
Then either

(i) there is an A -generic model of T whose canonical Scoti senience has
quantifier rank less than o(4), or

(ii) there are continuwum many non-isomorphic A-generic models of T
with canonical Scolt sentences of quantifier rank at most o (A)+ w.

One may also observe that, in ease (ii) of Theorem 2, for each frag-
ment £, D £,, no D-generic model can have a Scott sentence 1 £5,. In
general then, there will be £ ;- generic models of T' which are not £;,-generic.

It is clear that Theorem 2 and its corollary can be immediately ex-
tended to certain other notions of genericity *.

The reader familiar with Martin’s Axiom will easily see that (keeping
£ countable) it would allow us to extend these results to all fragments £, of
sardinality less than the continuum. In this case, Theorem 2 could be
obtained immediately in Lemma 3.
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