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Concerning unicoherence of continua
by

Ivan Guintchev (Rousse)

Abstract. In this paper we investigate the unicoherence of a continuvn 3, knowing
that the elements of a certain decomposition § of M are unicoherent. We confine our-
selves to considering only upper semi-continuous monotone decompositions. In this
case, if the decomposition space M/S is a dendroid and for each subcontinuum K of M
each element G of § the intersection K n @ is a continuum, then A is unicoherent.

If M is a hereditarily decomposable continuum which is irreducible about a finite
set and G is an admissible decomposition of 3, the suppositions may reduce to the single
one that the elements of G are unicoherent.

‘We obtain analogous assertions concerning the hereditary unicoherence of continua
if the elements of § are such.

In this paper a continuum means a compact connected metric space.

Let M be a continuum. A family § of closed disjoint subsets of M co-
vering I is said to be a decomposition of M.

The decomposition § of M is said to be monotone if its elements are
continua. )

The decomposition § of M is said to be upper semi-continuous if for
each open subset U of M containing some element & of § there exists an
open subset ¥ of M such that ¢ CV C U and V is the union of the elements
of G intersecting it. For equivalent definitions of this concept see [3],
pp. 183-183, or [8], p. 122.

Let I be a continuum irreducible from ¢ to b. Suppose that one can
define a mnon-trivial upper semi-continuous rmonotone decomposition §
of I such that each element of § not containing & and b separates I. It is
shown in [7] that in this case there exists a unique decomposition which
is minimal with respect to the above properties. Its elements are called
layers of I.

The upper semi-continuous monotone decomposition § of the con-
tinuum M is said to be admissible if, for each irreducible continunm I C I
and for each layer T of I, there exists an element & of § containing T
(compare [2], p. 115).

A dendroid means an arcwise connected and hereditarily unicoherent
continuum.
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A A-dendroid means a hereditarily decomposable and hereditarily
unicoherent continuum.

Let M be a hereditarily decomposable continuum, which is irreducible
about a finite set W and let we W. It is shown in [6] that the
set B = {we M: M i3 irveducible about {#} v (WN\{w})} is a continuum,
We call B an end-continuum of M. This result of [6] generalizes an anal-
ogous result for irreducible continua obtained in [5]. In this paper we
purpose to show that a continuum. M is unicoherent or hereditarily uni-
coherent if the elements of a certain decomposition of M possess the same
property. In particular, we consider the case where I is hereditarily de-
composable and irreducible about the finite sct.

TuEorREM 1. If an upper semi-continuous monotone decomposition § of
the continuum M is such that

1° the elements of § are unicoherent,
2° the decomposition space M|S s a dendroid,

3° for each subcontinuwum IC of M and éach element G of § the intersection
K ~ @ is a continwum,

then I is unicoherent.

Proof. Denote the decomposition space M/§ by T and the quotient
map of M onto T by f. Thus f: M -M/G =T iy monotone.

Let M = K v L, where' K and L are proper subcontinua of I{. The
set K « L is closed. We shall prove that it is strongly connected.

Let o and b be arbitrary points of K ~ L and put o’ = f(a) and
b’ = f(b). By 2° the space T is a dendroid, so there exists a unique arc
(a'yb") T having o’ and b’ as its end-points. Let § = f~*((a’, b")). Since f is
monotone, § is a continuum.

Let Ky = K ~ 8 and L, = L ~ 8. We shall prove that K, and L, are
continua.

Let K™ denote a subcontinuum of K which is jrreducible from a to b.
Pub f, = flg.. I tefi(K*), then fi*#) = K"~ f(t). The set f~(t) is an
element of § and from 3° we see that f;(2) is a continuwm. Thus the map f, is
monotone. Since K* is irreducible from a to b, and since f; is monotone,
FE*) = f(K*) is irreducible from a' = fy(a) = f(a) to b’ = f,(b) == f(b)
(see [4], § 48, Theorem 3, p. 192). Thus f(K*) C T is irreducible from a’ to b,
and since 7' is a dendroid, there exists a unique subcontinuum, of 7' irvedu-
cible from o’ to b’, namely the are (o', b’). Thus f(K*)= (a’,)’) and therctore
H*C ff(K*) = (@', b)) = 8.

Suppose K, = K n § = A ~ B, where 4 and B are closed disjoint sets
and 4 # @ # B. Leta ¢ A. The continuum K* is contained in both S and K
and therefore K* is contained in K ~ 8. Since K* is connected and I
contains both o and b, we have K C A and b e 4.

icm

Concerning unicoherence of continua 25

Let ¢ € B and let G¢ be the element of § which contains ¢, i.e., ce Ge € 8.
Since G, ~ 8 contains ¢, we have ¢, C S, whence X ~ G. C K ~ §. By 3° the
set I ~ @, is connected and since ¢ belongs to both B and K ~ &, we
have K ~ G C B. The points ¢ and b on the one hand and ¢ on the other
hand belong to different components.of K; therefore a # ¢ # b. Moreover,.
since for each & ¢ G the set & ~ @ is connected by 3° K~ G and K~ Gy
on the one hand and K ~ @, on the other are contained in different com-
ponents of Ky, and therefore @y % G 5= Gy (here G4 and Gy denote the
elements of § containing a and b, respectively).

Observe that the set S\G; is not connected by the comstruction,
and that points @ and b are in different componentg of S\G.. Since both «
and b belong to K, we see that I ~ (S\G¢) is not connected and it con-
taing « and b in different components of it, Since K*C A4, E~ G, CB
and 4 ~B=0, we have K"~ (K n @) =@, and we conclude from
K*CH ~ 8 that K*C K ~ S\(K n G,) = K ~ (§\G,). Therefore a and b, as.
points of the continuum K, belong to the same component of K ~ (S\G):
a contradiction. This proves that K; (and similarly L,) is econnected. Since-
they are closed by definition, we have just proved that K, and I, are
continua.

Let us consider sets of the type ¢ ~ K, ~ L, where G is an element
of 8. For each ¢ ¢ § such that ¢ C § the following properties hold.

1° The intersections G ~ K, and G ~ L, are both non-empty.

In fact, suppose that G ~ K, = @ for some G Thus

) E=ENGAE,=KE~nS\GAEnS=En(SG.

Since a, b e Il;, we see by the assumption that ¢ and b are not in G;
therefore they are in different components of the set S\@, and thus of the
intersection K ~ (8\G); a contradiction of (1).

2° The intersection @ ~ Ky ~ Ly is non-empty.
In fact, by property 1° we have G ~nK; @ and ¢ ~n L, = @.
(2) (FrnE)v(@nl)=GnE vl)=@n(E~nSuLlnSl)
=Gn(Sn(EVvL)=6Gn8nM=6.
Thus & is represented as the union of two non-empty closed sets,
namely G ~ I, and & ~ L. Since @ is connected, we have
(GNE)n(GnL)#0, ie GnK, nL #0.
3° The set G~ Ky ~L, is a continuum.

In fact, by 3° we infer that G ~ K; and ¢ ~ I, are continua, since K
and L, are. Formula (2) shows that (G ~ K,) v (@ n L)) = G. Since G is.
unicoherent by 1°, we conclude that (G~ K) N (G L)=GnE L,
is a continuum.
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‘We shall prove that Q = K, ~ L, i3 a continuum. To prove this it is
sufficient to show that ¢ possesses only one component. Liet us recall that
‘the intersection of all open and closed (relatively to @) subscts of @ which
-contain a point p e @ is called a quasi-component of @ containing p. If the
set @ is compact, the concept of a component of @ and of a quasi-compo-
nent of ¢ coincide (see [4], § 47, Theorem 2, p. 169). Further, if @ is sepa-
rable, there exists a continuous map h: @ »C (here C is the well-known
‘Cantor discontinuum) sueh that point inverses under i are quasi-compon-
ents of @ (see [4], § 46, Theorem 3, p. 148). Let us consider the map
for @ —(a’, b") defined as the restriction of f on . Let ¢ be an arbitrary
point of (a’, b") and let &, = f~(t) ¢ §. It follows by property 2° that & ~
NI ALy # B, de., ;@ £G. The latter implies that fy(G, Q)=
= f(@) = {t}. Thus f, maps @ onto («’, b’). Observe further that according
to properties 2° and 3° fy'(t) = f~t) n Q = G, ~» K, ~ L; is a non-empty
continuum. Thus f;(t) is contained in-only one oomponent of @ and since
the seb f;7(t) is non-empty; therefore putting ¢(t) = h(f2 ) we see that ¢:

~{a’, ') >C is a well-defined map of (a’ b') into C. The map ¢ is defined in
such a way that the following diagram commutes:

The map f, is continuous as a restriction of a continuous map. Let ¥ be
an arbitrary closed subset of C. Since % is continuous, h~(F) is closed in @),
and since ¢ is compact, fz(hfl(F)) is closed. Thus the map ¢ is continuous.
Therefore, (a’, b') being connected, its image g((a.', b)) is a connected subseb
of C, and since C is totally disconnected, we conclude that g((a’, b)) is
2 set containing only one point. Further, 1(Q)= ¢(fu(Q)) = g((a’, b"));
therefore @ = K, ~ I, has only one component. Thus the set K; ~ I, is
connected. Since it is obviously closed, it is a continuum.

The points a and b belong to both K, and I, and so they belong to
the intersection K;IL,. Since K, C K and I, CL, we have I, ~ I, C
CX ~ L. Thus the set I ~ L is strongly connected, which completes the
proof.

THEOREM 2 If an upper semi-continuous monotone decomposition § of
the continuum ]l[ has properties 2° and 3° of Theorem 1, and 1’ the elements
of 8 are hereditarily unicoherent, then M is hm*editm"il'r/ unicoherend.

Proof. Let P be an arbitrary subcontinuum of M. We consider a (10-
composition D of P defined as follows:

={DCP:D=Gn P for some (G},

icm
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The decomposition D is monotone by 3° It is upper semi-continuous,
since § is upper semi-continuous and P is a continuum (see [1], Lemma 1,
p. 117).

We shall prove that the decomposition D has properties 1°, 2° and 3° of
Theorem 1.

Since each element of § is a subcontinuum of an element of G, prop-
erty 1° follows by 1'.

To prove 2° let us consider the decomposition space P/D and let
f: M —>M|8 and g: P —P[D be the quotient maps. We shall define a map
h: P/D—M[S. Let ¢ e P/D be an arbitrary point and let &; ¢S be such
that ¢(G, ~ P)=t. The set &, is uniquely determined. We define 7 (f) =
= f(&;). The map » is defined in such a way that the following diagram
commutes:

P - M
al l j
D—

where 7 denotes the inclusion mapping.

The map & is injective. In fact, if ¢, &, &y ¢ P[D, then ¢, # G, and
therefore h(t,) 7= h(ty).

Let F be an arbitrary closed set of M/8. Since f is continuous, f~1(F) is
a closed set in M; thus P ~ f~Y¥) is closed in P and since P is a con-
tinuum and ¢ is continuous, the set g(P A fTYEF)} is closed in PfD. Thus
the map % is continuous, and since it is injective, & is an imbedding of the
continuum P/D into the dendroid 1/8. Therefore P/D is a dendroid.

To prove 3° let @ be an arbitrary subcontinuum of P and let D be
an element of D. The set QA" D=Q "GP =0Q ~ G is a continuum
by 3°, which is assumed for the decomposition § of M.

Thus we have just shown that the hypotheses of Theorem 1 are satisfied
for the decomposition D of P. Hence P is umcohel ent and consequently M is
hereditarily unicoherent.

THEOREM 3. Let § be an admissible decomposition of the hereditarily
decomposable continuwum M. Then M is a A-dendroid if and only if prop-
erties 1', 2° and 3° assumed for § are satisfied.

Proof. The sufficiency follows from Theorem 2. The necessity of prop-
erties 1’ and 3° follows at once by the hereditary unicoherence of the
A-dendroids. The necessity of 2° is established in [1], Theorem 5, p. 26.

LeMMA 1. Let M be a continuwum which is irreducible about o fim?tmt
containing n points and let § be an admissible decomposition of M. Then M|S
18 a dendroid with at most n ends.

Proof. Let M be irreducible about the set {a;, dq, ...,
be the quotient map and let a; = f(ax), 1

an}, let f: M —M(G
< k< n It is easy to verify
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that since f is monotone, the continuum M/§ jg irveducible about 1:11(‘:. sob
{al, ag, ..., @y} (the proof is exactly the same as in the case u = 2 given
in [4], § 48, Theorem 3, p. 192). -
In [2] (see [2], Theorem. 1, p. 116) it is shown that the decompomttqn
space of an admissible decomposition is arcwise connected (GVOI.l hered-
itarily arcwise connected). We denote by Iy, 1<k < n—1, a fixed arc
of M8 @uch that both ay, and a,, belong to ;. We define inductively con-
tinua Ly, 1< k< n—1. Lot Ly == 1, and let ay el ~ Ly bo such that if

(Brs a;c-]-l) G (g, “zlc-u) Cly,

then ¢ Ly. We define Ly, = Ly © (05, Gpq,), Where (ag, zq.) C’t,d,,,l.
For cach k, 1 < k=< n—1, the set Ly is a dendroid with at most k41
ends by construetion.

Rinee I,,_, contains each point ay, 1 <5 & < n, and since M/§ is irvedu-
cible about the set {a;, a5, ..., @}, we see that L, , = M/S, which finishes.
the proof. .

LeMMA 2. Let M be a hereditarily decomposable continuum which is
irreducible about o finite set containing n points and let § be an upper sems-
continuous monotone decomposition of M such that the decomposition
space MG is a dendroid. If @ is an clement of G, then

(a) MNG = U, v Uyv ... w Ug, where k < n and where U, 1< 0 < k,
are open connected sets.

(b) For each i, L < i <k, the set U; is irreducible about a finite sel and
it has Ui~ G as ifs end-continuum.

Proof. (a) Among the components of M\@G we choose Uy, U,, ..., Ug,
where % << n, such that every end-contintwm of M which ig not contained
in & intersects some Uy 1<i <R

Tor each 4, 1 <4<k, ‘ohc union U;v @ is a continuum. Indeed,
either U, w G = M (in this case k = 1) or ¢ separates M into at least two
different components. In the second case the above statement is established
in [4], §47, a8 Theowm 3-on p. 168.

It follows that U Uy @ s a continuum and since it intersects all
pmsl

I
the end-continua of M, we have M= U U v G. Thereforo Jll NG = ) Uy
=1 el
where % is at most n. Obviously we have

= MNUA{TU O 6 f=1,2, e im1, 041, .., B} .

and since | J{Usw G: j=1,2,..,0—1,441,..,k} is a continuum;
therefore U; is an open set.
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(b) Let < denote a fixed natural number, 1 < ¢ < %, let Uy intersect s
end-continua of M: #,, &,, ..., By, let ajsEjm Ui, 1<j<s and let
@2el;n @

We denote by M’ a continuwm which is irreducible about the seb
{#, a1, ..., as} and which is contained in U;. Observe that M’ o (M\U;) = M y
sinee M’ v (MN\U;) i8 a continuum intersecting all the ends of J7. Thus
U; C MU', whence U;C M’, and consequently we have M’ = T;. There-
fore U; is irveducible about s+1. points and the set T; ~ G is contained
in one of the end-continua of U;.

We shall prove that if #; does not belong to U ~ @, there exists a prop-
er subcontinuum 4 of U; such that 4 contains z, and all the points ay,

= j < s. Since § is monotone, the quotient map f: M —M/S is monotone.
We put a; = fla), 1<j<<s. Leb o ¢ Us and let o] = f(,). Since U; is
«connected, f(U;) is connected, and since a; ¢ f(Ty) and M/Q is a dendroid,

we conclude that (a7, #;) C f(U;) and consequently A’ = U (af, @) C F(Ty).

The set 4" is a continuum as a finite union of ares which hzwe the point ] in
common. Since the map f is monotone, 4 = f~%(4') is a continuuwm con-
tained in U;and containing the set {#, a;, ..., as}. Therefore », does not
belong to the end-continuum of U, containing U; ~ @, which shows that
the set U; ~ ¢ is an end-continuum of M. The proof of Lemma 2 is finished.

Levwa 3. Let M be a hereditarily decomposable continuum which is
arreducible about a finite set and let § be an upper semi-continuous monotone
decomposition of M such that the decomposition space M|S is a dendroid.
If K is a subcontinuum of M, then for each element G of G the intersection
K~ @ is a continuwm.

Proof. Suppose that for some subcontinnum XK of I and for some
G €8 the intersection K ~ & is not a continuum, i.e., K ~ @ =X u T,
where X and Y are closed d1s_]0mt non-empty sets. By Lemmm we have
NG = U, v Uyv..v Up, K<n, where U;, 1 <i<k, are open sets
(here n is the cardinality of the minimal set T such that M is irreducible
about ). It is clear that K intersects some of the sets U;; otherwise
K C@ and K ~ G = K would be a continuwm.

We shall prove that if X ~ U; % @, then U; ~ G is contained in X.
Let @y e £ ~ U; and let 4, ¢ K ~ G We choose continua I, C K irreducible
from @y to @, and I, C Uy irreducible about a, and the end-continua of Jf
intersecting U;. The existence of the latter is established by Lemma 2.

The set I; v I, is a continuum which intersects MN\TU;. Therefore
I, v I, v (MN\T;) is a continuum intersecting all the end-continua of A,
which ensures that I, v I, u (M\U:)= U. Thus I,vI,D U There-
fore Uy ~ GC I, o I, and since I, ~ @ = I, we condude that Uy~ G C I,
ie., Uin GCK since I, © K-
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We consider all the sets U; such that Ui~ K 5 @. By the inehtsiqx
U;~GC X v Y and since Uy ~ G is a continuum by Lemma 2, we obtair
either Uy ~nGCX or U;nGCY. A

Let {Up,; s Unypy be all the sets among Ui, 1 <4<k, such that
K~ U, #9, 1<g<so, and U]nGCX

Let {Ugy» -y Ugy} De all the sets among U, 154k, such that
EnU, #0, 1\g\81,and mGCY
80
=K A j’l[-..—:Kr‘\(U Uiv @ =K ncqu(Jcm Upy) H(Km Uy)
il Il i

=IfmGu®(Kmﬁpjr\G) U(ICnU ~G) v

Je=1 F=1

UU ‘B-”‘UM

F=1

UE~T,),

since the sets U NG, 1<) <8, and U @G, 1<j< s, are contained
in K~ @. I‘ulther, gince U; C Uz v &, 1 < 1=k, we obtain:

E—EnGolJ(EnT,) o) E~T,

j=1 J=1

,—XuJKr\U uYuUKquj—AuB
F=1 §=1
where
0 _ . s _
A:XuDKmUp} and B=Yv| | JEnU,.
i=1 J=1

We see that 4 and B are closed. Further,

A:Xﬁ@l\fhﬁm= J]Lﬁ (U, mGuLw)——X

7‘=1 i=1 Je=1
s0 _ s
B=Yul KA 7, UK A (T, n 6o T, = iju.A AU,
j=1 j=1 B

Since XC @ and YC@, we have UinK =@ and U;n X = 0.
Observe that X ~ ¥ = 0, and U, ~ Uy, == @, where 4; # 4. In accordunce
to these remarks we see that A and B are disjoint non-empty sets, which
contradicts the assumption that K is a continuum.

Lemmas 1 and 3 show that hereditarily decomposable continua which
are irreducible about a finite set possess properties 2° and 3°; hence we
get the following theorems:

TurorEM 4. Let M be a hereditarily decomposable continuun which is
irreducible about o finite set and let S be an admissible decomposition of M.
If the elements of § are unicoherent, so 4s M.

S0
UK ATy,

icm°®
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THEOREM 5. Let M be a hereditarily decomposable continuum which is
irreducible about o finite set and let S be an admissible decomposition of M.
Then M is a A-dendroid if and only if the elements of S are hereditarily
wnicoherent.

Theorems 4 and 5 are direct consequences of Lemmas 1 and 3 and
Theorems 1 and 3. .

‘We now discuss if all properties 1’, 2° and 3° in Theorem 3 are essential
for proving that M is a 1-dendroid. In other words, we ask whether it is
possible to omit one of these properties and still prove that M is a A-den-
droid.

Exawrrg 1. If M, is a circle and if § is the point-decomposition, then
both 1’ and 3° hold, but 2° does not.

Exanvpre 2. If 3, is the union of a circle and a ray approximating
it and if § is an admissible decomposition of M,, then both 2° and 3° hold,
but 1° does not.

Agking if property 3° is essential, we come to an open question. Does

a hereditarily decomposable continuum M having properties 1’ and 2° have
also property 3°7

AN \

Fig. 1

Exavrrr 3 (this example is due to J.J. Charatonik), If M, is the
continuum shown in Fig. 1 and § is its minimal admissible decomposition,
then 2° is satisfied, but 3° is not. In fact, M is a continnum composed of
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two copies of the “accordion-like continmum” (see e. 8. [7], p. 12), of uncount-
ably many vertical straightline segments which join the corresponding layers
of the copies, and of countably many spiral lines winding in to the simple
closed curves contained in the continuum. To show the above proposition
we just observe the subcontinuum of M, which is the union of both the
“gecordionlike continua” and an arbitrary segment connecting them.

=

Fig. 2

BEXAMPLE 4. We take the continnum M, and we approximate each
simple closed curve which is an element of the minimal admissible decom-
position of M together with the spiral winding in to it by a ray, as is
shown in Fig. 2. We define the continuum I, as the union of M, and all
the approximating rays. If § is the minimal admissible decomposition of
M,, then 1° and 2° hold, but 3° does not.
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