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by

Jerzy Dydak (Warszawa)

Abstract. The notion of the generalized cohomotopy group has been introduced
by K. Borsuk in [4]. This paper gives another generalization of cohomotopy groups
sueh that to evoery topological space one assigns a generalized cohomotopy group. It is
shown that this generalization coincides in some special cases with Borsuk’s, conceptss

Introduction. In [4] K. Borsuk introduced the notion of the general-
ized cohomotopy group af(X) for some elass of spaces and k<< 2n—1.
‘Wo show in § 7 that there exist two ANR-sets X and § having the same
homotopy type and such that the groups m3(X) and 2%(8) are not isomorphic.
Thus from the point of view of the homotopy theory the groups =4 X) are
not satisfactory. The main purpose of this paper is to give a new general-
- lzation of cohomotopy groups. First we show that for k- 2n—1 there
exists w contravariant functor =k OW — @, where W is a full subeategory
of the homotopy category H and the objects of 01V are all W complexes,
and @ is a category of Abelian groups, such that a3(W) is the Borsuk gen-
eralized cohomotopy group of each W complex . If one considers 01" as
a full subeategory of the eategory of inverse systems in ¢W, which we de-
“note by Inv (W, then = CW—@ i3 extendable in a natural way over
Inv (1. Next we consider the functors 7 S~Inv W, where § is the shape
",z,mte,r;;'-('mw' (sce [L1]) such that the inverse system, F'(X) is associated with
& topologieal space X (sce [12]). Taking the composition =} f, we obtain
the eontravariant funetor from S to & The group «F(X) will be refered
o as a generalized cohomotopy group. The main properties of groups
defined in. this way are the following: i Sh == ShY, then sl (A7) and
M (Y) are isomorphie, and i SAX o7 b« 2n-- 1, then af# (X)) and 7"(X)
are isomorphic,

1. Shape category and the category of inverse systems. Tor any cate-
gory €, let us denote by Ob ¢ the class of all objects of by fe O(X, Xy
wo mean that f is a morphism from X to I in (.

Lot W be the full subeategory of H whose objects are all topologieal
spaces having the homotopy type of a W complex.
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§. Mardefié¢ introduced in [11] the shape category 8 as follows. The.
objects of S are topological spaces. The morphisms of § arve called shapiugs.
Let X zmd Y be LO])O]O‘_*'JGM wp L((‘h A ,shmpmg/ Xw-»Y iy d; clasy of lmw lmns
77 € IT(Y Q )clvlld. ,u, € W((l), Q' )thv oqtmhty EER HH])|](“§ ,u/(’(a/) ------ / (’l )
If X, ¥, Z are topological spaces and [+ X—Y, g: ¥— 7 are shapings, then
the composn,o g-f: X—Z% is defined by (g "”()Q for @ « Ob W, The iden-
fical shaping 1yt X —X is defined by 1%(n) = niory e (X,Q) with @ ¢ Ob w.

The shape functor 8: H—8 is dofined as follows: S(X) = X for every
spaco X, and Jf fl)eIT(X Y, Hm h}wpmg H(fl)) Xw-»',)’ s defined by

Le‘u ¢ be an (wlntrlr (:;m,o;,my 'IT]w inverse Hyﬂi(un in (78 a systemn
(X, ¢, A}, where (4, =) is a divected set, X, e Ob(l fov cach wed,
e e 0(X,, X,) for every a, o ¢ A with « « o, pis the identity of X, in ¢,
= pZp% for every a,d,a’ed with a-"o =o', Let {X,,p¢, A}
and {Y, ¢f , B} be two inverse systems in (. A map f==(f,f,) from
(X, 9%, A to {Y 1 qﬁ', B} consists of a fanction f: B—d and of morphisms
fpe C(Xyp, Yp) such that if < 8" in B, then qﬁ'j’ﬂ,]),(,, = fybfsm for some
aed with f(B), f(f) < a Two maps (f, fp) and (¢, ¢p) ave said to Im
homotopic if for each ﬁeB‘thmo exists an ae.d such that j(/i) g(p) =
omd foPipy = 9ePip-  Teb X = {X,, 0y, A}, ¥ == {¥;, qf , B} ,md.

{Z’,,’l‘};, C} be inverse w%elm in C.TE f = (f,/p) is a map from X

to Y and g=(¢,¢,) is & map from Y to Z, then the composition. 7 == gf -

(h h,) of map& f and g is defined as Ioll()WH ho=fg: C—A and for
h € C(Xyyys Z,) we take the composition ¢, fy.). The identity map Ly: X—AX
is given by 1(a) = a and 1, == 1x, is the identity of X, in (. Wvidently the
inverse systems in ¢ as objects and homotopy. classes of maps of systems.
as morphisms form a category, which we shall denote by Inv(.

Let X = {X_, 9%, A} be an inverse system, in the category ﬂ or W.
We shall say that X is associated with a topological space X if there are
continuous maps p,; X—X, for a e 4 such that the following conditions
are satisfied:

(L1) [P 1p] = [p,] for o=

(1. ”) For any continuous nmp f X—@ with ¢ ¢ ObW there exixti
an aed and a continuous map f,: X,~¢ such that [f] == [ fall‘p 1

(1.3) For aed and for two continuous maps 1,”(]" X, wﬂh
Q e ObW such that [f,][p,]==[g,][p,] there oxists an o ¢ A w1|h -
such that [£1(p21= [5,][p].

This notion is due to Morita [12].

An open covering U of a topological space X is said to be a normal
open covering provided there exists a map f: X—M from X to the motriz-
able space M such that f~XV) is a refinement of U for gome open covering V'

©
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of M. We say that dim X < n if every finite open-covering U of X admits
a finite normal open covering of order < n-+1 as its refinement (see [14]).
If X is & normal space, dim X defined in this way coincides with the cov-
ering dimension of X in the usual sense. Morita has proved in [12] that
for any topological space X there exists an inverse system {I,, [p], 4}
in W associated with X such that {U},. 4 is the set of all locally finite
normal open. coverings of X such that « < o' means that U, is a refinement
of U, and K, is a nerve of U, (I, is considered as a simplicial complex
with the weak topology). Sinee the ('ondltmn dim X < » implies that cvery
locally finite normal open (,',ovemng" Ujof X is 1(s£1ne(1 by a locally finite
normal open covering U, of order = n--1 (ﬂoe [14] and [13], Theorem 1.2),.
we infer that the set B = {a e 4: (111)1]( s m} is cofinal with 4. Then it is.
cady o see that the inverse system fy]xu, [p¥], B} is associated with X.
Thus we obtain the following

TugoreM 1.4, For any tepological space X there exists an inverse system
{X,, 947, A} in W associated with X such that all X, are CW complenes
and 4f AimX < n, then dimX, < n for each a e A.

For compact Hausdorff spaces we have the following theorem due to
Mardesi¢ [11]:

TurorEM 1.5. Let {X,, %, A} be an inverse system of compact Haus~
dorff spaces with X as its limit. Then the inverse system {X,, [p%], 4} in H is
associated with X.

Let X = {X,, [p%], A} and Y = {¥;, [¢§], B} be two inverse systems
in W associated with the spaces X and Y respectively and let f = (f, f,)
be a map from X to Y. Then j induces the shaping F( f }: X—Y in the
following way: if #: ¥Y—@, @ <ObW i3 a continuous map, then
F (] = [np)fslP ], Where 55 ¥, ~+Q is' a continuous map such that
[4] = [mpllgs]- Oonditions (1.2) and (1 3) imply that F( f) ([7]) does mnot.
depend on the choice of 7, and that F(f) is actually a shaping. It is easy
to see that for two homotopic maps f, g: X—Y we have I'( _Jf )= F(g) and
it follows that we may consider F as the function from Inv W(X, ¥)
o S(X, X). Morcover, the following statement is true (see [12]):

Trworem L6, The function I': Inv W(&X, Y)—8(X, Y) gives a one-
to-one ((m('spondem(' b(f(w(’(*av a]mpmgs [ X—»Y (md homolopv/ (*lmsw of
u»r'msp«m(h to Ilm /»rnnotdpy class of the ul(’nfw map (IA, Xy ) and if
Z = (%, [0, O} s associaled with 7, Jelnv W(X, Y), g eInv W(Y, Z),
then lf‘((/j = I (g). If'(f)

Tet {2, [p¥], A} Do an inverse system in F such that for a topolo-
gical space X L])(am oxist continuous maps p,: X — X, satisfying Condi-
tion (1.1). Then for any topological space Z the functions p, induce the
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tunctions p: H(X,, Z)—IL(X, 7) given by the formulae pl([ 1]
for each a e A, where [f]e H(X,, Z). Since for a - # wae have p
it follows that the functions p#¥ induce a function

p: T {IL(X,, 4), pb, A}IL(X, 7),

= [fp]
Dl

which will be called the natural transformation.

Let us.observe that in the case where {X, [ P, AL i associated with X
and Z e Ob W, we have (X, Z) = S(X, %) (sec Theorerm 9.9 of [1L)y,
v W(X, ) = lim{I(X,, Z), pi*, A} where % - (%, Ly, {1}) is an in-
verse system. whose directed sol consists of only one point, and
p=F:Tnv W(X, Z)-8(X, %). Thus, the next statoment is an, immaediate
consequence of Theorem, 1.6,

CorOLLARY 1.7. If {X,, [p¥], A} is associated with Xy thew p is a one-
to-ome function for each Z e Ob w.

The function ®: H(X, 7)—lim {H(X,, Z), p*¥, 4} inverse to o will
also be called the natural transformation.

2. The shape dimension. In [12] Morita introduced the shape dimen-
sion 84X of a topological space X as nuinber Min{dim ¥: 8h.X - Shy),

If W is a OW complex, then by W™ we denote the n-gkeleton of W,

Lmyva 2.0, If n: X—W is o continuous map  sueh thet SANX - g
and W is a OW complex, then there is o map s KW homotopic 1oy with
w(X)Cwe,

Proof. Let ¥ be a topological space such that din) Y - and hy = Ly
for some shapings g: X—=Y and h: Y—-X. By Theorem L4 there oxists
an inverse system {Y,, [p%], A} in W associated with ¥ and A N
for each aed. Let [5]= B7([n)). It follows by Condition (L.2) that
{7.2.] = [n] for some map n,: ¥, —W. By the cellular approximation theo-
Tem (see [10], p. 72) we can suppose that #,(Y,) C W™, i,¢., that there iy
& MAD py: Y~ such that iy ppu, = fa- it (7] = ¢""( e, ). Then
we getb a

= 0" Ui llaa]) = pnen " (o)) - [y 171

1.0, p=dymcpi satisties required conditions,

THROREM 2.2. Let X 021, A} be an infindle inverse system in (W
associated with « topological space X. I T SAX <3y then there is an inocrse
system {¥p, [4}1, B} in OW associated with X such that the cardinal k3 s
-equal to kA4 and each Y, g @5 an n-sheleton of some X,

Proof. By Lemma 2.1 there are maps g,: X— X" guch tha
= [p,] for each ae A. et o be an arbitrar

b I:‘):XZC.X',I QIITJ
y element of 4. By (1.2) there
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exist an o ¢ 4 and a map n: X, —X7 such that [][p,] = [¢,]. Let oy e 4.
o, ¢ 5 ap. Now,
lixne x NP [Pa] == Lixnc x, 1 [Pog] = lixncx 1[9.] = [p.] = [p2][P,,]
and by (1.3) we have o' € A, o = o' with
Lixncx MPas] [T’Z;] = [pg'] [PZ;] =[p3],
i.e., [iYnCYurrpz;] = (e TE wo seb 72 = gp%: X, —X7, then we get a map
“rase ' : e - /. N
such that [igneyrg ] == [95] and
[:7'2’17(;’:] = [7717:01%'] == [7”)(101 = [_q:z] .
Thus the following statement is true:
(1) Tor each ae¢ A there exist an o ¢ A and a map r¢: X, — X" such
that @ < o, [ixnexd] = [p2] and [Epe] = [.].

Tor (B, «;) we take the sel of all finite subsets g = {a,, ey az} of_ A or-
dered by inclusion, 8o that f' < f means p' C f. We shall define by indue-
tion on the cardinal of p an increasing fumction a: B—A such that
(2) ' a({a}) == a for each aec 4,

- nr -1
(3)  for every f,p eB with < (f<p means ff and f +p')
we have o map 8§: Xypy—Xyp such thab
; B = [pXB)
[@X’;(ﬂ)cxw)‘sﬂ] [pa(ﬂ)] ,
() (5 1P agn] = [2ue] »
o v pps e
() f<p <p’ implies [sf]=[sfixn a1
H - - 4
Tet ns suppose that e (B) and s] ave defined for each 8, f' < B with {S’<~ i
such that sard B, cardp’ ik (L=Ik) and let B ¢ B Dbe an clement with
card ' == -1, Sinee the set of all predecessors of § is finite, Toy (11) t}x}eu;
Xis A and : W for e ! " guch tha
exist a1l o ¢ 4 and maps regy ;u—>X2(ﬂ,) for f..mh i <[3 b o
a s a(f) tor eaeh ff< p7 and all meaps 1%, satisfy Condition (1). Now,
:i'l" gy e oand pez plen py then we have [1ge] [p,] == [q:,.(ﬂﬂ and
[ sty i 2 1 = [ Extne ol ] = [ 1[Pagn] = ). Sinco the
soeb (.;;?({:)1.‘11 li(.{nvir;s‘ (B, p') with g p’ << ' is finite, by (1.3) there exists an
o 2z oa sueh that

; fs SYLN e m@ for every 8, f'eB.
(6) gz ' <z B implies [ropph] = [s§ X X iy aypa] for every f,

. . o - - hen
Let us put a(f”) = o and s§ = 14+ Xp—Xjp,. The

. 10 " T . PRSP o :l‘ ﬂ(ﬁ:’)l
L"'-\'Z’ca')cxa(av”g’J = [l uerPa ] = [Pap Wal= [Pus] = [Puipy

 — Fundamenta Mathematicae XC
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and s satisfies (3),

[“”g'][ﬁ’a(p")] = [Pap PPl = [rasPal = [Qugy]
B
and s} satisfies (4); if p<< p'<< B, then Dy (6)
o " g ! _— "
[S,g 1= [rgpprel= [5,3 @X(',‘(ﬁ,)cxa(ﬁ,)] {r Z(p’)f’f:] = [6§ @xgm,)cxif(ﬁ,)ﬂ,’e' 1
and the maps 8§ satisfty Conditions (8). Thus, the construction of a: B—4
and of maps ] is finished.
 Tor every peB wo now put ¥, == X, and for B =< ﬂ" we putb
4§ = TxlpCx, ' o Y,in the cagse where g’ gand ¢f = iy, it p == p.
It g< f"< p”, then

B1ral ] = T8 1T 1 e (587 w1
(g5 10a5 1= [} ®XZ(5,)C¢?W,,'5g'] [l'_XZ(ﬁ//)CXa(ﬂu),l = [ 8 ".‘:g(p,,)cxu(ﬁu),l = [ ]
and ‘

[qﬂ'] (o] = [Sgix;'{(ﬂ,)cxu(ﬂr)] (Gl = [85’}'2?,1(,3')] = [Gum] -

show that ¥ i3 associated with X.
Let n: X—@ be a continuous map with @ ¢ Ob T
on aed and a map 5,;: X,—@ such that [5][p,] =

. By (1.2) there oxist
L)ﬂ Lot ﬂ v {a} e .

Then by (2) Y= Xy and if we pub 5, = nixnex: Y@, then we gt

[77,51 [(_Ia(ﬁ)] == [ﬂaiXZCXGQa] = [77«.1.?)(1] = Il)]] N
It follows that Condition (1.2) is satistied.

Now, let fy, g0 Yp—@Q, € ¢ ObW be two maps for which [fsfluip]
= [Jpla)- Since A is an infinite set, there is an ' > f and we havo the
map s§: Xyp—Xhs = ¥, which satisties Conditions (3), (4) and (%).
Hence

tf, ﬁSZ’][.pa(ﬂ')] = [fslup] = [0 ap] = [gpﬁ'ﬁ'] (2 aen]

and by (1.3) there exists an a > a(B’) such that [fas] pum] = 9,54V
Let p” = p" w {a}. Then a(f") = a({e}) == a and a (") 3= «(f’). Tt follows
by (3) that

£ Bapa el o T B ) -
[fasipaglpa 'ij,‘(ﬁu)cxu(ﬂu)] = [ff;-ﬂﬁpfﬁgr ))7’-‘\'3({1")6\7‘;((1“)]

and similarly
b’ H B = [0 1 0
(985 D [P LXD e x o) = 95 laf 1.

Sinee [fﬁsg.'p‘;w,)]: (9555 Diandy we have [f)][qh"] = [g,1[¢f ], i.e., Condi-
tion (1.3) is satisfied. We have kB = kA (4 is an infinite set) and this
completes the proof.

icm°
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CoroLLARY 2.3. If X ds « compact metrizable space and SAX = ke,
then there ewists a compact metrizable space Y such thet dimY = &k and
ShX =8hY.

Proof. Let {X,, p,', ¥} be an inverse sequence of polyhedra with X
as ity inverse limit. By Theorem 1.5 {X,,, [97], N} is associated with X and
by Theorem 2.2 there exists an inverse system {X,, [gg'], B} in W asso-
ciated with X7 sueh that B is an infinite countable set and every Ty is
a polyhedron of dimension = k. Hence there exists a sequence of elements
fu e B sueh that m < implies fp << fr and the set

A= {f eB: f= Py for some m}

is cofinal with B. It is easy to see that there is an inverse sequence
{Zp, 1y N} in the category of topological spaces such that Z, = Yg, and
st = ghms for each m ¢ N. It follows that [77"] = [¢4™] for each m, n ¢ N,
i > noand since 4 is cofinal with B, it is clear that {Z,, [+™], ¥} is asso-
ciated with X. On the other hand, {Z,,[*™], N} is associated with
Y = Tim{Z,, vy, N} and by Theorem 1.6 we infer ShX = ShY. Since
Ez dimY = 84Y =8dX =F we have dim¥Y = % and this completes
the proof. .

Let us recall that K. Borsuk introduced the fundamental dimension
FA(X) of a compact metric space X as the number

Min {dim¥: Sh(X) < Sh(Y)}

(by Sh(X) we mean the shape of X in the sense of Borsuk).
CoroLLARY 2.4, If X is a compact metrizable space, then SAX = FA(X).
Proof. Since for every two compact metrizable spaces X and X the

relation Sh(X) < Sh(Y) is equivalent to ShX < ShY (see [11]), we have

SAX = B (X). Let SAX = k. Then by Corollary 2.3 there is a compact

metrizable space Y sueh that ShX = ShY and dimY = % But then

Sh(X) = 8h(1) and Fd(X) < AimY = k. Thus Fd(X) < 8d X and the

proof iy finished.

Remark. Corollary 2.3 18 a generalization of some result (unpublished)
due to W, Holsztyniski (see [15]). -

3. Cobomotopy groups. Cohomotopy groups have been introduced
Dy K. Borsuk in [2] and studied by 1. Spanier in [16]. We recall the
detinition of the #th cohomotopy group of & space X formulated by 8. God-
Towski in [7]. Let § = 8™ be an n-dimensional sphere. Tet us choose a point
soe 8 and consider the subset SV 8= (8 X {8}) v ({s} x 8) of the Car-
tesian product 8 3¢ 8. Let us define the map 2: §V §—8 by the formula
(8, 89} == (89, 8) == s for §eg. Take two arbitrary maps ¢, ¢s: X—8.
A map @: Xx[0,1]-8x S such that P(z,0)= (p(2),.(x)) and

6%
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D(w,1)e SV 8 for we X is called & normalizing homolopy Tor the maps ¢,

and ¢,. Then the map ¢: X—8V § defined by the formula () = D(w, 1)

is said to be a normalization of the maps ¢, and ¢, (see [16], p. 210),
Let us suppose that a space X satisties the following conditions:

(3.1) Tor every two maps g, @, X—8 there existy a normalizing ho-
motopy. '

(3.2) T ¢ is a normalization of maps ¢ and ¢y, then the homotopy class
[Q¢] of the map 2¢: X—8 depends only on the homotopy elagses
[pi] and [@,].

(3.3) The addition in the set- J (X, 8) deflined by the formuala [¢]--

+[pg] = [2¢], where ¢ is a normalization of the maps ¢, and g,

makes the set H (X, 8) an Abelian group.
This group is called the n-th cohomotopy group of X and iy denoted by
a™(X). The addition defined in (3.3) is called the n-th cohomotopy addition.
It may be defined if Conditions (3.1) and (3.2) are satisfied. Then we say
that the space X admits the nth cohomotopy addition. Moreover, it Con-
dition (3.3) is algo satisfied we say that the space X adimits the existence of
the ath cohomotopy group.

Let us suppose that X and ¥ admit the existence of the nth cohomo-
topy groups =™(X) and #*(Y) and let f: X—Y bo a shaping. Thon we have
the function f#: [§¥]—[8%] which is equal to f5. The funetion f i said
to he induced by f. ) )

In [7] 8. Godlewski hag proved the following

TuworeM 3.4. If topological spaces X and X admit the ewistence of the
n-th cohomotopy groups a™(X) and x™(Y) and f: XY is a shaping, then
the iiduced function f¥: 2(Y)—a™X) is a '/;(”‘)’nm’))),())‘j[)7).’135”)/(.,

The main result of this section is the following

TaEOREM 3.5. Let {X,, [p3], A} De an inverse sysiem in H associuled
with X. If all X, admit the existence of the n-th cohomotopy group, then X ad-
wits the existence of the n-th cohomotopy group and the natural transformation
@: a(X)—1lim {a"X,), P AY i an asemorphism.

Proof. Tet f,g: X—8 be continuouns maps. By Condition *(L.2)
there exist ¥, o ¢ A- and maps /), A= 8y g0 X =N sueh that [fp,] [ [ ]
and [¢,2,]= [¢]. Since 4 is a direeted set, thero is an o ¢ 4 with Vet
Let F: X, x[0,1]-8% & be a normalizing homotopy for thoe maps [,
and ¢,p5,. Setting @ = F(p, X idy,y): X 3 [0, 1]— 8 % A, we obtain o map
for which

G(“”? O) = F( a(w)a 0) = (fyp;pa(m)7 gw.plr,lupa(m)) e U‘y}’y(mh !/m/pm(w))
and

h@) = G(@,1) = Fpa), 1) e 8 v §

icm°
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for each @ e V. Since [f,,py‘j =[] and [¢,p,]= [g], it is clear that there
existy @ map H: Xx[0, 1]-8X 8 such that H(w, 0) = (f(x), g(w)) and
Hw, 1) == h(w) ¢ 8V 8 for every @ e X, i.e., theve is o normalizing homo-
topy for maps f and g.

Let g2 X—8V 8 be an arbitrary normalization of maps f and g. By
Condition (1.2) there exist o 22 « and a map %t Xg—8 Vv 8 such that
Crpppl = L2 Taoh sy Xg— 808 be o map defined by the formula 85{)
= ([0, ¢,20(@) for @ e X, Now,

sple) = (Lfpa(n)s o opp(@)) = (£,2(2), gupole))  for
and sgpy 18 homotopie to the map s+ X— 83 8 given by the formula s(2)
= (f(w), ,(/(m)) tor w e Y. Bince y is o normalization of the maps f and g,
wWo have [evge gesx] = [8] and this implies [isvicsxstal[Ps] = [igvmesasit]
== [§] == [s][pp]. Then by Condition (1.3) we huve o€ 4, f < o such that
Uiy scaxsxalpl = [$gpgl. Sinee
sePp(@) = (Loiwa(a), 9,popf()) = (F,05(2), 9,05 (@) for
then. we infer that g,pf is a normalization of the maps f,p; and ¢,p%, . Hence

[Qx] = [Lpl = [Logmin,] = v ({051} = » ([, 051+ 9,051}

reX

redX,,

Therefore the homotopy elass [£2y], where y is a normalization of maps f
and ¢, depends only on the homotopy classes [f] and [¢], and moreover
D([2%]) = PN 4D ([g]). Thus X admits the nth cohomotopy addition.
Since @ is a one-to-one function (see Corollary 1.7), @([f1+[g]) = D f1)+
+®([g]) and lim{a"(X,), pi¥, 4} is an Abelian group, it is casy to see
that the nth eohomotopy addition makes the set [8%] an Abelian group
and. the natural transformation @ is an isomorphism. Then X admits
the oxistence of nth cohomotopy group and the proof is finished.
Remark., Theorem 3.5 is a generalization of Theorem 3 in [5].
K. Borsuk proved in [1] (Theorem (11.10), p. 61) that every metric
gpace X with dim& < 2n-—1 admits the existence of the nth cohomotopy
group #"(X) and it is known that cach compact Hausdorff space X with
dim A <2 2 1L adimits the existence of the ntl cohomotopy group (see [16]).
Tn the next theorem wo give a generalization of the above results.
THioreM 3.6, Tvery topological space X with SAX < 2n—1 admits
the cxistence of the n-th cohomotopy group a™(X).
Proof. Lot g, gyr X—>8. By §: X—8x § we denote a map such that
8 (@) == (s (@), pa()) for cach @ e X, Since Sx S has a structure of a CW
complex such that v 8 iy a 2n—1 gkeleton of 8 8, by Lemma 2.1 the
map §: X—8 x & is homotopic to the map s: X—8 X § with s(#) C SV 8.
Thus ¢, and @, have a normalizing homotopy and Condition (3.1) is satisfied.
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Lot us suppose that ¢: X—8 v S and g: X8 V & uve iwo normaliz-
tions of maps @, and @,. Bvidently igy geg. P i homotopie to ig, o
Let {I,, [p¥], A} be an inverse system, in CW associated with X and sueh
that AimXK, < 84X < 2n—1 for cach «ed (sce Pheoran 2.2). By Con-
(Aiitions (1.2) and (1.3) there exist an aed and maps ¢p K-8y o,
Pyt ](‘a—..»ﬂhv § such that [(;gnzpa] e [(;JI; [’J’n’l’a:l = rﬁ’l éhlld li‘f*»’v:":'lfIAS'>:S'(//;u
~ TgyscaxsPar MoTeover, we may suppose that both (;Ju and 1]»“ are eollulyr,
Letﬂ H: K, xI-+8%8 be a map such that I, 0) - ¢ ) und If (a, 1)
= (@) for every @ ¢ I,. By the cellular approximation theorem (see [107,
p. 72) the map H is homotopic to the cellular map B K, 50 L83 8,
and since H | Rax {0} UKax {1} is cellular, wo may suppose that & R IR ()
= H|g xmorexy NOW, QI3 L) - dn--1 and thevetore JK, % T)
C8x Syr=t= 8 v 8. This meuny that ¢, ~ 9, and consequently ¢
& PPy = PP, = 9. Thus Condition. (3.2) is satistied and X admits the nih
cohomotopy addition. We shall prove that this addition is associntive.
So let f, ¢, h: X—8. By s: X—8x 8% 8 we denote o map sueh that
s(w) = (f(r), g(»), h(®)) for each w e X. Since '

J e Q Nan—1 __ Tse fod fo Une Mo o wot S L e
(838 x8) = 8 {80} X {8} {80k X 8 {8p} v {8y} < g
=8yv8SvV&¥,

by Lemma 2.1 there is a map #: X T—8 < 8 x & such that Iy 0) == 8 ()
and F(z, 1) e SV 8V 8 for cach @ e X. Lot F(a, 1) == ( Julw)y ga(e), y)
o

for every x « X. We define the maps y, ¢, 9, o: X~8 V § by the formula

7 (@) = (fl(w)} f]l("")) ’
(@) = ("QZ('J")7 ’h(a")) ’
P(2) = (.(]J(m): 7"&({”))’
. o(@) = (£(), 2p(x)
for each # ¢ X, If? is easy to see that x and v are normalizations for maps f, g
and ¢, % respectwgly. Similarly ¢ and o are normalizations of maps £y, ¢
and f, Qyp respeeﬁxvely. Since Qp = Qw, we have ([f]-[g])-|- (7] = [f] -
+([g1+[R]), i.e., the addition is associative. o .
Let e: X— 8 be & 10ap such that e(w) == 8, for cach v ¢ X. Ividently
[f1+[e] r—-‘['e] -+ ]‘f = [f] for overy map f: X—¥&. Since the wth cohomo-
topy addition is commutative, it remaing only to show that for
ejez;y map f: X—8 there is a map ¢: X¥—8 such that LA T[] = L]
By Theorem (10.1) of [1] there are two maps §, 7 88 such 1;?1:1K17"'r" o~ ulg,

r(@) = 8, or j (@) = s, for each = ¢ S and the map b §—8 defined by the
formula (

re) i
J@) it

7 (®) = S0 9

(@) = &,

icm°

A generalization of eohomotopy groups 87
is null-homotopic. Then it is easy to see that setting y(z) = (1f(x), if (2))
we obtain the map g: X'—8 Vv 8, which is a normalization of maps f and jf.

proof.

4, Homotopic %-skeletons and Borsuk’s generalized cohomotopy groups.
Let us recall some notions infrodueed by K. Borsuk in [3] and [4].

Let X, and. X be two closed subsets of a space X and leb iy, and ix,cx
denote the inelusion maps (ot XX, gyt Xp— X, We say that the
seh Xy homotopieally dominates the set Xy in the space X, written X, < X,
in X, provided there exists a continuous map «: X;— X, such that lecx
2 dperte A closed gubset Ay of A s said to be a homotopic k- skeleton
of X provided dim.A 0k and X, h?._ X, in X for each closed subgset X,
of X with dim X, - k.

Let A be o cloged subset of o binormal space X (i.e., X x[0,1] is
a normal space), and let 8 == §* be n-dimensional sphere. Let us denote
by 84°¥ the subsel of 84 consisting of all maps f « §4 extendable over X.
Sineoe § is an ANR-set, it is clear that all maps g € §4 homotopic to a map
I e 842X helong to 84X, Tt follows that S4% is the union of some homotopy
clagses helonging to [84]. Henee [S4°%] C[S4]. If 4 admits the existence
of the ath cohomotopy group, then the set [$4°¥] generates a subgroup
of [84] denoted by oA CX). In [4] K. Borsuk has proved that if X
and X, are homotopic k-skeletons of a compact metric space X and
I« 9n--1, then the groups a™A; C X) and »™(X,C X) are isomorphic. -
Wo show thab this statement is true in a more general case, namely when X
is a binormal space. The abstract group isomorphie to all groups =X, C X),
where .V, is o homotopic %-skeleton of a binormal space X (k< 2n—1),
is denoted by af(X).

Tomma 4.1, Let A and B be such closed subsets of binormal spaces X
and Y, respectively, that both 4. and B admit the ewistence of the n-th cohomo-
topy growp. If [+ XY is a map, then for each map p: 4—B such that

{1) ipey®? = flgcx

we have g Ha™(B C V) C (A CX). If g: A—B is anolher map satisfying
(1), then by« gM(b) for each b ea™BCY).

Proot, Tiob & ¢ S5 and let § ¢ 8 be an extension of s.Then for
overy mapy: A—»B sabistying Condition (1) wo have sy = §ipcpyp Sfigexe
Therefore for cach b e [S#€F] wo obtain ¢¥(b) = #(b) and consequently
gM(b) == ot5(D) for every b e aB C X). Now since Sfiycx has as extension
a map 57 and X is a binormal space, there exists an extension of the map
s, .., yE([8]) == [s9] € [§4%]. eneo yif([sP¥]) C [84°¥] and this implies
(B C V) C a™A C X). Thus the proof is concluded.
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By f*: 2B C ¥)—a"(4 CX) we denote o homomorphism given, by
the formula f*(b) = ¢H(b) for b e 7B C Y. Tividently f* is defined if there
exists a map p: A—B satisfying Condition (1). Let us observe that it
g*: 70 C Z)—a™BC Y) iy defined for some map ¢g: ¥V--Z%, then (4)*
is also defined and (¢f)" = f*¢*. Tndeed, if u: B—¢ is a map such that
Tgczh 2 Glpcy, then dgc (up) = gigeyp = (@) icx, 1.0, up satisfies (1)
with respeet to the map ¢f. Therefore (gf)*(e) = (upfth(e) - ¢ {plt(e))
= ¥ (e)) = fH(g*(0)) for cach e¢ea™((!CZ). After these considerations
it is easy to see that groups »"(AX,; C A7) and o™y, C A7) are isomorphie for
every two homotopie k-skeletons X, and X, of the binormal space X and
Io<< 2n—1.

If f: A—B is o function and A, By ave such subsets of A and B,
respectively, that f(4,) C By, then we have the funetion f/: Ay B, detined
by f. If not stated otherwise, we shall denote [ Dy f.

Let us prove the following

THEOREM 4.2. Let {(X,, Xo), 9%, A} be an inverse system of compact
Hausdorff pairs with (X, Xy) as its inverse limit. If all Xy, admit the caistence
of the n-th cohomolopy group, then

Pla™(X, C -X)) = lim 7" X C X,), 25, A},
where @: a™(Xo)—Hm{n™(X,,), I, AY s o natural transformation.

Proof. Let us observe that {X,, [p¥], 4} it an inverse system. aso-
ciated with X, (see Theorem 1.5) and by Theovem 3.5 X, admits the
‘existence if the nth cohomotopy group; so we may write #*(X,C X).
First Iet us show
(1) D[8%0 X)) = T {[§%wCe], i, 4} .

In fach, if f € 8¥°°* and 7 ¢ §% is an extension of £, then by Condition (1.2)
there is & map f: X,—8 for some ae A with [T ]=[F][p.]. We have

(falx0a) Poa = Jaldixocx = fixsex = f, Where po: Xy—X,, s [ﬂ: natural
projection. Hence

(because fly, e §%eC%e), Hence

B([S¥0CX]) C lian {[§¥0aC ], ik, 4)
On the other hand, if f, e §%=¥a and 7, ¢ §% is an oxtension of f,, then
~ X . ol oo ~ ., \ ° o KoC X
Japa e 8 is an extension of f,py, = Fipix,cx. Therofore JuDu € BFCN

and O ([fupoo]) = {{foJ}. Thus @([§¥ecXy) D Him {[§%0atXa] paiti " 40 and
consequently

B([8%0X]) = lim {[ §%0aC Xa], po'tt 43 .
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Let 0 2™, CX,)— B {7\, C X,) 92", A} be a natural projec-
tion. Since @ and », are hmnmnozrphimn,s, 1*;1('(])(7{1( XOCX))) is a sub-
group which contains by (1) the st [§XwC X0 Sinee [§%wCXo] venerates the
oroup (A, CX), we  infer X, C X, ) = »;%zp(ﬂ(i’o C X)}) for
each o e A. Consequently

4
o
be)

) D (" (A C X)) D T {a(X,, C X,), p*, A3

On the other hand, by (1) we infer that Dl {7"(X,, C X)), e, AY)
is o subgroup of #"(X7) which containg the sel [8%CX| Therefore

Dl (A, C ), p*, A}) D #"X, C X)
and by (2)

D™ &y C X)) == lim {a"(X,, C X,), pe™*, A} .
Thus the proot is finished.

Tiet A De a closed subset of a topologieal space X with dim 4 < k.
We sy that A is the outer homotopic - skeleton provided for every map-
fr Z— X with dime =k there exists a g: Z—A such that [i,.g] = [f].

Lemaa L3, Boery owter homotopic - sheleton of X is a homotopic k- she-
leton of XA X has an ouler homotopie k- skeleton, then every homotopic
k-skeleton of X s an outer homotopic k- sheleton of X.

Proof. Let X, C X be w closed subset of X with dimX <% k. Then
there exists a map g: Ay —A such that i yyg ~ ixcx, i-e, d > X, in X.

h

Thus 4 is o homotopie k-gkeleton of X

Liet B be an arbitvary homotopie k-skeleton of X. Since B> 4 in X .

)3

there ix & map a: A—B with g o iyep. Let f: Z—X be a map where
dimZ < k. Binee 4 is an outer homotopic k-skeleton of X , then there is.
w map [ Z—dA such that f o io0f. Setting ¢ = of': Z—B, we get.
inexy = ipexdf’ = igen’ = f. Thus B is an outer homotopic %-skeleton
of X" and this completes the proof,

Limma dd. Lt A be a closed subset of o metrizable (compact metrizable)
space Xoaith dined. - ko If for every melrizable (compact metricable) space Z
wille Qi 2« L and Jor each map fi Z—X there is a g Z—A such that
Lagxt = fy then A ds an outer homolopic %-skeleton of X.

Prool. Lot 7 Do any topologival space with dimZ 5 k. It f: Z—X,
thoen by Liemma 2.2 of [14] theve is o motrizable space 7 and maps f': Z— T,

J7 T A7 sueh that dim 2’ -2k and f* f' == f. So in the first case there is.

' T A wueh that i yepg’ = f7 and consequently taexlg [ = /' f/=f.
Thus ¢ = g f': Z~A sadisties thoe required condition and it remains only
to consider the seeond ease. Tt X is compaet, then f has an extension.
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T pr—X, where g7 denotes the Jech-Stone compactification of 7. Tt ig
Well known that AimpT = AmP = k. Let b pI'—I and s: M—X boe
maps, where I is a metrizable space with dimdi - dimp?, such that
§h == jN and ) is onto (for existence see [14], Lemna 2.2). Tence A1 iy o com-
pact 1110‘t1'i7ub1e space and there exists a map 8@ M—d4 such that
dgcxs’ = 8. Setting g = §'Mgepef’s Z—4, wo geot

‘J'Acx.’/ = 4 yex ’!“'avc/wf & shigepef” = "1"?{31] e
i.e., g satisfies the required conditions. Thus A is the outer homotopic
k-skeleton of X and the proof is eoncluded.

Let us recall that a compact mebric space X satisfios condition ()
(we write X ¢ (4)) provided for every point @ ¢ A and for every neighbor-
hood U of @ there is a neighborhood V' of & such that cach cormpact subset
A CV is contractible to & point in & subset of U7 having dimension less
than or equal to dim.A--1 (comp. [1], p. 163).

K. Borsuk proved in [3] that cvery ANR-set X e (4) has & homotopic
k-skeleton for every k=0, 1,.. Here we prove the stronger result.

TuEoREM 4.5, If X e(d) and X e ObW, then for cach k0,1, ..
X has an outer homotopic k-skeleton.

Proof. Since X iy a compact Hausdortt gpace and X e Ob ¥, there
exist a finite CW complex W and maps h: W—-X, g: X—W wuvh that
hg ~ idg. Since the subset of X™ consisting of all maps f e X% which
satisty the condition dimf(W") = dim W* is dense in the space X
(see [1], p. 164), there exists a sequence of maps fu: We— X converging
t0 higicy in a compaet-open topology on X" such that dimfy(W5) < k
for each n = 0,1, ... Therefore the sequence of maps ¢fu: WE—W con-
verges to ghi™" o ; in a compact-open topology on W*, and if follows from
W e ANR that gfn ~ ghiprgy for some m. Uenee fu = ghfn = hihipecy
& Migprcy . We show that A = fu(W") is an outer homotopic k-skeleton
of X. Evidently dimd = dimfu(W") < k. Lot f: Z—X be a map with
dimZ < & Now ¢f: Z—W and by Lemma 2.1 there is an s: Z—W* such
that dprepps = gf. I we set f' == fus: Z—X, then we get f(Z) == fus(%)
Chn(WE) = A and fus & hpigys = hgf ~ f.Thus 4 is an ouber homotopic
k-skeleton of X and this completes the proof.

Lot us prove the following

Tumorzm 4.6. Let A be an outer homolopic k-skeleton of X ¢ Ob W
and let Z be a closed subset of a novimal space Y, with SA% = k. If at least
one of the spaces X and X is a compact Hausdor ff space, then for each map
fr XX there is a g: XY —X homotopic to f with ¢(Z) C A.

Proof. Let W be a OW complex for which theve exist IY.ULI)S
i WX, s: X—W with hs ~ idy. Since at least one of the spaces
& and ¥ is a compact Hausdortf space, there is a finite subeomplex
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v oof W ocontaining sf(Y). By f: Y-V we denote a map given by the
formula f(y) == sf{y) for ’I/ « Y. By Lewna 2.1 there exists a map a: Z—V*
gueh thab ¥ puepo s }mnml,upw 0 Plyey. Hence in view of Ve ANR there
exints an extension @: ¥-V of ams AP dprcpe With @ ~ p. Since 4 is the
oul,vr lummtupm k-skeleton of X, there is a map »: V*—4 such that
g’ 22 Mipecy . Now, by 1110 hmnumpy extension property of the pair
(W, V%) (see [10], Theorem 7.2, p. 68) with respect to any space, there
exists an extension l:,. W-+\ ol the map 4, b': Ve X homotopm to 7&'
W X, Helting ¢ = /m,;( W Y =&, we get g == /z.‘z.,,c,,,,a e 7b87‘
o hsf 2 f e g (4) lu,. i (5) C‘ h/(!”"’) w2 B(V*)C A, e, g satisfies
the required eonditions. Lhus the proof is concluded.

An innnediate consequence of Theorem 4.6 and Lenana 4.3 is the
following

lorotLARY LT ([8], Theovem (3.1)). Let Y be a compact ANR-set
satisfying condition (A) and let Y™ ¢ ANR be a homotopic n-skeleton of Y.
If BA(X) -5 ny then for cvery map fr X — Y there ewists map g: X— Y homo-
topic to [ and sueh that ¢ (X)C 1™

Tawores 4.8, Let {(Xy, X, 2%, 4} be an inverse sysiem of compact
Heusdorff padrs aith (X7, o) as ibs dnverse limit. If X, Xy e Ob W and X,
s et outer homolopic - .sl.,('l(*tml/ of X, for each a e A, then X, is the outm
homutopie k-skeleton of X

Proof, Sines the inverse systems {X,, [p€], 4} and {X,,, [p%7, 4}
are assoeiated with X and Xy, vespectively (p0: X(,a,—uloa is the map
dofinwl by p¥: X=X, there oxist an aed and maps f: X,—X,
gt XAy such that fop, o idy and ¢, = 1(1X0: We have fiix,.cx,Po
----- = fuldlxoe x o idylxeex = fxe A(juf)(,“ and by Condition (1.3) there is an
{} €A, o f such that f4 xqacx,ﬂ'm = ’\*ocxjap(,a Let f: Z—X be a conti-
nuous map with dim# <7 k. Then there i8 a map r: Z—X,, such that

Ofa e s
Cxppex, Ppf. Belbing g == (]up() Z—X,, we get

. : 0f e 08y .. f mbBy "
/I‘XnC,X-(/ == ”/;m:x!lu'l'm:’ =~ ./al'Xo,,CXupoz" "‘ .fapal‘XopCXHJ
= fuplippf = o = 1xf = f

Thus ¢ sebisfios the requived condition and this shows that X, is actually
an ouber homotopie k-skeloton of X,

5. A generalization of cohomotopy groups. Lt & e a natural number.
By H0Op wo depoto o full subeategory of IT whose objects arve binormal
gpaces having outor homotopie k- skelotons. Bvery space X ¢ ObHOy
wo eongider with o fixed outer homotopic k-gkeleton X,. By Lemma 4.1
we oblain the following generalization of Corollary 8 in [9].

GorornARY B, For each natwral number n with &< 2n—1 there s
a contravariant /u'n,c.,to'r‘ a from HOp to the cutegory @ of Abelian groups such
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that 7y(X) = a™(X, C
X, Y cObHO;.

It is clear that wo can comsider OW as a subcategory of Inv( W. we
show that by this assumption one can extend the functor 7 considered
only on the category ¢W to the functor af: Inv(/

Let X = {X,, %, _flf e ObInv W, By Cor ule'v L m,u(ﬂ’”), l'u ‘, A}
is a direct system of Abelian groups. Lot us pub % X) = i {af( A,), p<¢ ,4'
Now, it fi X=X = (¥, pf§, B} is & map of .&y.ﬂ.(*nm, then 7 f1): #f(Y
— (X)) (by [f]we denote the homotupy class of /) is delined by thefor llllll(h

g U D) = {afi([. f/ﬂ [’/J)]'

where b, is a vepresentative of b, foeay b {by}. T 8 easy 1o seo that vr, (W)
is well defined and =z is a contravariant functor from Inv W to .

Now, let us observe that Theorem 1.6 establishes (in view of Theo-
rem 1.4) the existence of a covariant functor ¥ from S o Inv ¢} such
that 7'(X) is associated with X. The functor I will be ealled the association
Sunctor.

Lemma 5.2. Ewery two association funclors I', G:
natural equivalent.

Proof. Let hyelInv (“’11/'(]’7(1’) GH(X)) (011(*.%“)()11(] to the identity
shaping 1yt X—X (sec Theorem 1.6). If j XX 18 a shaping, then by
Theorem 1.6 G (f)hy and kel (f) corresponds to Jly == fand Ly [ s [, vos-
pectively. Consequently G f )hX B (), dee., “the diagram,

/ur Sr A,

S—Inv W are

Ty

) —E ¢)
() a0
F(Y) (X)

is commutative for each shaping Jr X—=Y. Bvidently, if

R e Tnv OW (G(X), 11(X)
corresponds to 1y: X'— X, then highy == Ly and hyh == Loy Therefore
is an isomorphism and this completes the proof,

Thus, taking the composition of functors 7 and a2, we obtain the con-
travariant functor #fF: §— @ Wvidently for cach Lwo associntion fune-
tors F and G the functors n’“.[l and 727G aro natural cquivalent.

THEOREM 5.3. If k<< 2n—1 and ShX = Sh Y, then A (X) is dso-
morphic to mpl ().

Proof. 8h.X = 8h ¥ means that X is isomorphic Lo ¥ inthe eategory §
and consequently azF(X) is isomorphic to «F(Y) in the cab jegory Q
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By Sk wu dt mote the Lull sabeategory of s
with S04 -

LATEn A Letl Tr o
Tomonum B Lot k<2 Zn—1. If we consider g ' and the n-th cohomo-
topy functor only on Sy, //wn they ave natural equivalent.

Proof. By Theorems 1.4 and 2.2 there is an association functor H such

that Tor cach X € Obf it H(X) = {X,, [p¥ 1, 4}, then dimX, <% for
every ue.d. Now, by 'l‘lworom 3.0 the natural tmnsfonmtlon

"H (X)

whose objects are spaces X

Dy a™(X)- Al {a™(X,), i y A} e

is an isomorphism, Lot A7, Y ¢ Ob 8y and / XY be a shaping. By g we
denote aan arbitrary map tlnm (X)) to II( Y) such that [¢] = (f). Let
7 Yo and Pp(yl) < {lnly (e, [n]= [,][g,]). Then

LD Py(Un]) = wi(TgD) {Tngl} = {Tny1Lga)}

and it follows Dy [gl== H(f) that (15052 5)] = 15’([77]), Consequently

ALnplpl) - P (S5(D) = Dy H(CyD)) -

Thus the dingran

L g R—y I

L apIL(f)
TF"( J") P yp,‘jl ( 37)

for each shaping Jr AT
compleles the proof.
Asan imanediato consequence of Theorem 5.4 we have the following

CorotrAry hub If SOX -0 k<2 Gne-1, (X) and
a"(X) wre dsomorplie,

- Now I and F ave natural equivalent and this

then the groups R

Thus the groups 20 (X) are actually the gencralization of groups
a'(\).

We sy Ghad an assoeindion funcetor 11 is o special association Sumctor
provided JECW) W Tor caeh W e Ob OW (we veeall that OW is considered
an o full wuheategory of Ty W), Iwulunbly, it IT is » spoeial association
funetor and g ¢ W (W, V), then gk a7 C V)—sa®(WEC W) is equal to

aielh () ale (V) o adf T (W), Lol us prove the following
'luuMM\ b, Lt T be o special  association  funcior. If H(X)
AN [T, A) by then for (mlz [1‘ ¢ A the natural projection vy o "(X,’,” C )

=l (X8 C ), pe, A)

apd (X)) ds equal to a (S[pgl): aH (Xs)
sl (X0,


Artur


04 J. Dydak

Proof. Let p,: {X,, [pe7, Ay X bo acmap of systems which eongigt
only on the homotopy class [id.x, ] Tt 38 eleax that [pg] = H(S[p 51)- Therefore

7 (S[pg)) (¢) = a[pg]) (¢) = {ilg,(¢)} = {0} = ry(0)

for each ¢ e njH (X,) = a'c”(X;’}‘ C Xp) and this completes the proot,

Let {X,,[ps], A} be an inverse system in JI associated with .
If ' is an association functor, then each natural projection p,: X —s X
induces a homomorphism & (S[p,):  #PE(X,)— =l (X )» Moreover,
a < p implies 7l (S[p,]) = all'(S [ppl)— 3B (S[ph1). Therefore the homo-
morphisms aZF (8[p,]) induce & homomorphism

vps B {0 (X,), a0 (S[pE ), A}l (X) .

TuworEM 5.7. pp: Hm{afl! (X,), afB (S[p¥]), A}—ralll (X) is an iso-
morphism for each association functor I

Proof. First we show that yy is an isomorphism for every special
association functor H.

Let H(X)= {W,,[¢§], B} and lect aeap(X). Then there exists
a f B such that o = {a;} for some ag € A (W§C W) and by Lewma 5.6
& = myH (8[qp]) (ag). Now, by Condition (L.2) there exist on we.d and
& map f: X, —W, such that [fp,] == [q.]. Therefore

@ = wiH (8[gs]) (ap) = nfH (S[fp,])(a5)
= i (8[p,1) i H (SLF1)(ag) = (bl (S[11) ()} .

Thus we infer that g, is an epimorphisin. Tt remzaing only to show that vy,

is & monomorphism. So let us suppose that A H (S[p])(e) = 0 for some

element ¢ e #}H (X,). We shall prove that {¢} == 0, i.c., there exists an
« Za such that apH(S[prl)(c)= 0. Let H(X,)=={I",, [*], (}. By

Lemma 5.6 there exists de mpH (V) for some we such that
:z}}H (8[r,)(d) = c. Now, r,p,: X—V, is a continuous map and by Condi-
tion (1.2) there exist a f’ ¢ B and a map g: Wy -V, such that Lo == [
Hence
il (S[gy DTH (ST1) (@) = il (S[gg, 1) (d) = wp (S [rap, ) ()
_ = AT (8P ) (S[r, 1) () = adb T (S[p,]) () 0,
and since
TRH (81g5]): 7 (Wh C W) (X) |
is & natural projection (see Lemma 5.6), theve is a p' e B, p - 4, such
that
0 = (g V' B (S[g)(d) = abBL(S[qf NbH (S[y]) () — R (S [gqpy 1) (d) -

By Qondition (1.2) there exisbna Z <4 and a map It Xy Wy such that
[9,0,] = [gp]. Therefore [gqf 9.0, = [99 99) = [9qp] = [rop.] and by
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,f)]1a11;1<>11 (1.3) there is an o' ¢ 4, «, -7 o, such that [gq@ 9,03 1= [r,p%].
Hence

AL (STPE (@) < L (STPE N (STr, 1) (@) = B (STr p%]) ()
= B (S Ta0fe 0,0 @) = w¢H (8,95 1) B (STgg 1) (d) = 0
(becanse n’,@ll'(N[g/([ﬁi’])(d) == 0). Thus 9, is a monomorphism.
Let I be an arbiteary association functor. Then by Lemma 5.2 the
funetors £ and I are natoaral equivalent, i.e., there exist isomorphisms
by B) - JT(X) sueh that the diagram

XY - "h)c” (X))

) H())

B(YY e H(Y)
lyr
iy ecommutative for each shaping f: X'—Y. Therefore we can define a homo-
morphism

Pup, et (gl (X,), 7lbH (STp ), o) =l {akl (X,), a0 (S[p¥]), A}

by the formula gy pla) = {xhlhy,) ()}, where a, is a vepresentative of a.
It is easy Lo see that gy I8 ancisomorphism and pp 9, 5 = 2y vy
Sinee vy, wq(fe) y P, e e somorphisms, we infer that g, is also an isomor-
phism, Thus the proof s concluded.

6. Relations between #f(X) and = (X). :

JororrArY 6oL If X e Ob IOy and X e Ob W, then the groups a¥(X)
and W (X)) are isomorphic.

Proof, Tt W he a ¢W complex having the same homotopy type
as L hen the groaps ol (A7) and 2"(W*C W) are isomorphie (becanse
7 (WHEC WY o altdl (X) for cach special association functor H). On the
other hand, by Corollavy 5.1 the groups a%X) and «"(W*C W) are iso-
morphie and therofore the groups w4 and 248 (X)) are isomorphic, Thus
the prool 8 eonduded, '

Now, we show that i o binormal space X7 hag o homotopie &-skele-
ton Xy and f- B 1, then the group 2 (X) s “greater” in a certain
sense Than Borsulks generalized cohomotopy group ali(X) == a(X, C X).

Thrmorim 6.2, 11Xy iy a homotopic k- skeleton of o binormal space X and
wel 2w Ly then theve ds an epimorplism he o (X)— o™X, C X) for every
association funclor I,

" Proof. Let MV (X, [p¥], A}, Hince X% is the outer homotopic
le-skeleton of o W complex X, there exist maps g, X,—X¢ such that
Exkey P ™ Py x - Henee the homomorphisms Pa: " (XEC X)) —>a™ X, C X))
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are defined. Moreover, a < § implics p* == 2y and therefore the homo-
morphisms p; indnee a homomorphism. ki lim {mMA%* C X,), p<*, 4}
= gl (X)—>a"X,C X).

Let s € 85X and let § ¢ 8% be an extension of s. Then there exigt an,
a e 4 and a map s,: X,— 8 such that s,p, ~ § (by Condition (1.2)). Sefting

9= 8ixkcx,: Xi—8, we get [¢] e [SXECX,| Ca(X* C X,) and
p:([g]) = (pa#([.(/:]) = [Wﬂ = [:Sa/];XZCXa(/Ja] o [:’Qaf)a?:XoCXVl = [Eiq:Xn(ZX] [:.SI '

Thus we infer h(mph (X)) D [§%CX], and sinee [S¥CX] gonoratos the group
X, CX), h is an epimorphism.

TueorEM 6.3. Let X = {(X,, X,,), p%, A} be an inverse system such
that each X, is a finite CW complen and X, = XE. If (X, X,) is the inverse
Limit of X and X has @ homotopic li-skeleton Xy, then the group splt (X)) is
asomorphic to the group n™(X;C X) = a(X).

Proof. Since the inverse system {X,[p¥], A} in W is associnted
with X, we infer that the group ##(X) is isomorphic to the group
Lim {2"(X,, C X,), p2*, A}. On the other hand, by Theovem 4.2 we know
“that

o s . ) . " am .
where the isomorphism @ &(Xy)—Tm {m(X,,), <, A} is a natural

transformation. Let
h: lim {="(X,, C X)), p&™*, 4 Fora X, CX)

be a homomorphism which is deseribed in the proof of Theovem. 6.2, The
honmmor.ph].sm g: aMX, CX)»a™X, CX) is given Dy the formula
gj(zcz)Y = h(d)(q)) for aea™X,CX). Since X, is a homotopic &-skeloton
? '«t’». ’r:h;re VIS a n}‘impin: ;.0;—»1; S‘Il(ﬂ}.. H}:\i’; ‘1:ch',\' = iy oo Therefore there
(JXi.b § & homomorphism idy: w"(X) C X)—a?(X, C X). W shall show that
sak .\ sk - ‘
1(1*, q ——— 1n“(Xo§X)J;Lnd gldX = J‘ﬂ"(X:.CX)‘

Letis ¢ 8%C% and let ¥e 8 boan oxtension of s. Then GUSD = LSl e s

e - . . N N AL N g C X e

where s,: X, — 8 and g,: X, —X, are maps steh. that s,p |

~ b Since ¢4 . ~, o & 5 ald 'i',\“ouc;\",,'/ t
s DY e xgPe = SPdxcx S Sl ey WO obluin (0% ([s])
= i Mg, e x]) = (8 Exyext] == [Figye ] o [8]. Thuy g o1
cause the set [8%°CY) generates the group ™A, C X))
- GX1CX e AN L
Let wel et and leb w e 8Y be an extonsion of w. Then gl ([])
= g([un])= g([Wix ~vn]) = g{[ui [t ’ s §
/(XE 7])Y 9 ([, cx]) Gy, e x] L“ﬂ'/.\*nﬂr:.\'n’/’,ﬂ.]: where a,: Xg— S and
A — are maps h that U g ;
zﬁ/g 1> o ¢ ) maps suchjjlm,{, UgPg =2 1w and bxuge gl S Pl cx- Tlonce
) ) o ol . AL =h .
s = Uginex = lixex =, i, gidk{u]) - [n). Thus gidk
= Lax,cxm fmd:ohls completes the proof (heeause f (&) is isomorphie to
the group =™(X,C X)),

(N G N (1"‘"'
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7. An example. In this section we give an example of ANR-set X
sueh that:

(7.1) & has a homotopic 2-gkeleton which is not an outer homotopic
2 -gkeleton.

(7.2) AT has the homotopy type of a 2-dimensional sphere S,

(7.3) The groups #3(X) and #%(8) are not isomorphie.

(7.4) This example gives o negative answer to Problems (9.1), (9.3)
and (9.5) of [6].

Liet L be o simple are lying in o 2-dimensional sphere § and let f be
w eontinuous map of L onto a 3-dimensional cube @°, disjoint with §.
I we mateh every point @ e L with point f(2) € Q%, we get from the set
Sw @ a 3-dimensional space X = § U, @, This space is an ANR-set
and every subset X, = {a} consisting of only one point is a homotopic
2-skeleton of X (seo [3], p. 613). It is clear that f: L—@® is homotopic to
a constant map 't L—@% By Corollary 2.4 of [10] (p. 122) the spaces
Xow= 8w, ¢ and 8 wp @° have the same homotopy type. It is easy to see
that & wp % has a homotopy type of § and consequently X has a homotopy
type of S. Since @j(X) = 2 ({a}CX)=0 and 2X8)= =S CR) =2,
where Z denotes the group of integers, we infer that the groups mi(X)
and w3(8) ave not isomorphic. This gives a negative answer to Problem (9.5)
of [6]. We have ##(X) == 2%(8) = Z and this implies that the groups «2(X)
and #3(A) are not isomorphic. Thus we obtain a negative answer to
Problem (9.3) of [6] (in view of Fd(X) = Fd(8) = 2) and consequently
to Problem (9.1) of [6] (see [6], p. 91). Now, let us observe that miH (X)

not an outer homotopic 2-skeleton of X (in view of Corollary 6.1).

An immediate congequence of Theorem 6.3 is the following

CoOROLLARY 7.5. There is no inverse system {X_, p%, A} of finite CW
complexes with X as its inverse limit and such that p%(X2%) C X2 for each
ayu e d, a

T am, thaukful to Dr. 8. Godlewski for his help and suggestions in the
preparation. of this papor.
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Homeotopy groups of compact 2-manifolds
by

David J. Sprows (Villanova, Penn.)

Abstract, Let X be a 2-manifold and let I (X) denote the homeotopy group of X.
Several resulls ave been obtained concerning I (X) in the case X is of the form M —F,
where I is a closed 2-manifold and Fy is a set of » distinct points in M. In this paper
it is whown that these results give rise immediately to corresponding results for compact
2-manifolds. In particular, it is shown that if ¥ is the compact 2-manifold obtained
by removing the interiors of n disjoint closed dises from some closed 2-manifold M,
then H(Y) is isomorphic to H (M- Fy).

1. Introduction. Let X be a 2-manifold (connected, triangulated)
and let H(X) denote the homeotopy group (or mapping eclass group)
of X, i.e. H(X) is the group of all isotopy classes in the space of all homeo-
morphisms of X onto X. W. Magnus [4] and, more recently, J. Birman [1]
have obtained several results concerning H (X) in the case X is of the form
M— I, where M is a closed 2-manifold and F, is a set of # distinet points
in M. In this paper we show that these results give rise immediately to
corresponding results for compact 2-manifolds. In particular, we show
that if Y is the compact 2-manifold obtained by removing the interiors
of n disjoint dises from some closed 2-manifold M, then H (T) is isomor-
phic to H(M—Iy).

2. Notation. Let X be a 2-manifold and ¥ a finite subset of Int(X).
The homeotopy group H(X) can be defined as the quotient group
G (X)/Gy(X) wheve G(X) is the group of all homeomorphisms of X onto X
and G(X) is the normal subgroup of @ (.X) consisting of those homeomor-
phisms ¢ in G(X) which are isotopic to the identity (denoted g ~ 1x).
Similarly, we can define H (X, F) to be the quotient group G (X, F)/G(X , F)
where G (X, ) is the subgroup of ¢(X) consisting of those g in @ (X)) which
map B onto B and Gy(X, F) is the normal subgroup of G(X, I') consisting
of those homeomorphisms 7 in @ (X, F) which are isotopic to the identity
by an isotopy which keeps F' pointwise fixed (denoted h =~ 1 x(rel ).

Let M be a cloged 2-manifold. Let Dq for 1 < i << n denote a family
of digjoint closed discs in M with P;apoint in Int(Dy) for each ¢ between 1
VEd
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