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A simple diophantine condition
in harmonic analysis *

by
RON C. BLETI (Genova)**

Abstract. We prove that if B < I' satisfies a simple diophantine condition,
then I§(G) = Og(@). In certain settings, not resorting.tf) Drury’s theorem, we show
the abundance of non-Sidon sets that satisfy our condition. The “Drury free” proof
allows us to extend a previous result, that “every non-Sidon set contains a non-Sidon
sup-norm partitioned set.”

In what follows below, " is a discrete abelian group, and I = G.
Throughout our paper, we do not lose any generality by assuming that
I' is countable. As usual, Z will denote the additive group of integers,
and T will denote the cricle group. We refer to [8] for standard notation
and facts. X

Bc I'is a Sidon set if there exists a>0 such that |jp|, = o> 2 (y)],
for all trigonometric polynomials peCp(@), where Cx(G) = {f<0(G):
f(y) =0 for y¢BE}. The Sidon constant of B is the supremum of all such
a’s. It easily follows that if F is a Sidon set, then LF(G) = Op (G).
Non-Sidon sets B = Z such that LF(T) = Cx(T) were constructed first
by Rosenthal [7] — sets & sueh that L% (@) = Ox(G) will be called R—setg —
and in [1] we proved that if £ < I'is a non-Sidon set, then there exists
a non-Sidon R-subset of E.

DemiNizioN. B < I' is said to be a sup-norm partitioned set if there
exists a family of finite, mutually disjoint sets, {F;}, such that UF,- =F
and !

®a0y, () ~ Og(6).

{I;} is said to be a sup-norm partition for B. In [7] a,gd [1], the exis’ngnee
of non-Sidon R-sets followed as a corollary to the existence of non-Sidon
sup-norm partitioned sets. In partieular,

TumorREM A ([17]). Every non-Sidon subset of I' contains a non-Sidon
sup-norm poriitioned set.

* A portion of this paper was presented in the Conference on Harmonic analysis,
March 1973, held at Bex, Switzerland. ) ) -
#* The author was supported by the Italian National Research Council (Comitato

per la Matematica).
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Let D be a dense countable subgroup of @, and let gp: I'—D De

the matural injective map: (pp(y), d) = (y,d). Of course, g iy simply
the ecanonieal map: I'>I"/DL, where I*is the Bohr compactification of
. I', and D~ is the annihilator of D in . We note that g, preserves Sidon
constants and sup-norm partitions (see Lemma 2.2 of [1]), and recall
that the sup-norm partitions of Theorem A were constructed as subsels
of B ¢ I', where F satified the following diophantine condition: There
exists D < @ as above so that ¢,(H) is a countable set with one limit
point in D (we shall henceforth ignore the case where J iy finite). The
abundance of non-Sidon sets that satisfied the above condition in [1]
strongly depended, via Lemma 2.3 of [1], on “the finite union of Sidon
sets is a Sidon set ([2])”. At the outset, when ¢ =T, ® Z,, ;> OF & countahble
product thereof, we prove a similar basic Lemma 1.1 below without
resorting to Drury’s theorem, and extend Theorem A (Theorem A’) in
that setting. Then (for any &), without appealing to sup-norm partitions,
we prove that if B < I' satisfies our condition, then E diself is an R-set
(Theorem B). For example, if (n;) = Z is so that nya—weT (mod 2x),
where o/2% is. irrational, then (#;) is an B-set. We do not know whether
such sets in Z can be sup-norm partitioned. However, when ¢ = ®7,,
where p is any prime integer, and F < @ Z, satisfies our diophantine
condition with respect to some D = ® Z,,, then H iself can be sup-norm
partitioned (Theorem C). We conclude by listing some open problems.

1. Let (p;) be any sequence of distinet prime integers tending to
infinity; @ Z,, denotes the algebraic sum of the Z,, ;8 and ® Zy, (= (j@L)Zz, )
i J

denotes tile topological produet of the ij’s. In what follows below ¢ = T,
® Zy,, or any countable product thereof.

Levma 1.1. There exists D < G, o dense countable subgroup of G, with.
the property that if B < I' is' o non-Sidon set, then there exists a non-Sidon
set B H so that pp(B) accumulates at exactly one point.

Proof. We prove the lemma first in the case @ = T. We inject
(—BZ,,I into T': @©Z, > 23 1(j)/2rp;, where x(j) is the jth eoordinate of
<

¥, and addition is performed mod2=. We can then write without ambiguity
@Zﬂj < T. Clearly, @Z,, is dense in T, and the map

Yoz, = ¢ Z— ®Z,,

is realized as follows: For neZ, @(n)(j) is the remainder after dividing
by p;. Let E be a non-Sidon set in Z. First we observe that if B < Z is
anon-Sidon set, and N is a given positive integer, then there exists 0 <7 <N
80 that B N (NZ+r) is non:Sidon. This follows from the elementary
fact that the charactetristic function of NZ - r, for any N and r, is a Fourier-
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Stieltjes transform. Let 0 < r, < P, be the integer such that
, B, =En (pZ+7)
is non-Sidon. We proceed to define », and E, for n>1: Let 0<r, < p,
be so that
En = En—ln(pnz'i"rn)

is non-Sidon. Now, let F, = F, be an arbitrary finite set. For n > 1,

n~—1
let F,, = B,\ U F; be a finite set so that the Sidon constant of I, <1/[n.

J=1
Clearly, F = () F, is a non-Sidon set, and ¢ (F) accumulates at the point
ni=1

2= (1), ¢ ®121,]. and only there.

(=) (=]
In the case where G = ®ij , we set D = (—Bij S ®ij, and repeat
©0 j=1 j=1

the above argument with @ij in place of pyZ. m
i=N

Aside of freeing Theorem A in the above setting of its dependency
on Drury’s theorem, the proof of Lemma 1.1 allows us to replace Sidonicity
in our theorem by a large class of interpolation properties that exactly
depend on equivalence of norms, e.g., norms that majorize the L®-norm
or the Ilnorm. For example, we recall that B < I' is a A(p) set for
1< p << c0if Ly(@) = L(G) (for instance, see 5.7.7 of [81), and we deduce

TeroREM A'. Bvery mom-A(p) subset of I' contains a non-A (p) sup-
norm partitioned set.

Sketch of proof. In order to apply the arguments of [1], we need
to replace in the statement of Lemma 1.1 “non-Sidon” by “non-A(p)”.
To do this, it suffices to prove the following claim: Let  be a non-A (p)
set, and K a finitely indexed subgroup of I'; then, there exists a coseb
7+ K so that r +K N His not a A(p) set. Let {r,}, be the coset represent-

M .
atives in I'/K. Let hel}, and write h = 3 #r;xhy where g, = LB+ E)-

=1
If B n (r;+K) is A(p) for each r;, then Uy #he L7 for each r;, and therefore
heL%, and claim follows. We now recall the construction of the non-Sidon
(non-Helson) sup-norm partitioned set of Theorem 1.2 in [1]: Since we
had a non-Sidon convergent sequence, at each step of our induction, we
were at complete liberty to select an appropriate block with a Sidon
constant as small as we liked. Now, as we have a non-/(p) convergent
sequence, we repeat the inductive procedure of [1], where at the jth step
the chosen block will have 4A(p) constant smaller than 1/5. m

Remarks. a. Theorems of the Theorem A type are deduced in our
setting without any reference to Riesz products.

b. The above methods fail for compact, torsion free groups, e.g.
Z(p®)". For example, as we do not know whether the finite union of
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A(2) sets is & 4(2) set, we do not know how to deduce a completely general
Theorem A’ for /A(2) sets (see proof of 2.3 in [1]).

2. We now consider any compact abelian group, G-

TrEOREM B. Let H < I' be so that for some countable dense s'ubgroup
D =&, pp(E) is a countable set with one limit point. Then, L3 (G) = Cy(G).

Leyma 2.1. LZ(&) = Ox(@) if and only if LL(Q) is separable.

Proof. Let feL3(6), and assume that {y;} is dense in LP(Q). Let
e >0, and set

By = {g<G: IIf,—plo < £/2}

(f, denotes the translate of f by g).
For all j, B; is measurable, and since UEj = @, there exists j, so

that m(H; )> 0 (m = Haar measure on &), and therefore E’, Ej > 0,
an open nelghborhood of 0 in @. It now easily follows from the Lmnsla,tmn
invariance of L3%(G) that for ge0, Ify—Fflo < & Since a bounded and
measurable funetion f is continuous (in I*(@) sense) if and only if
fy—Ffllo==0 as g—0 (ef. [3]), the lemma follows. m

Notation and remark. For # <« I' ag in statement of Theorem
B, we set

AB, 1) =N [{f M@ : f =0 on B},

and

Alpp(B), D) =1(D)" {fl*(D

Fixing D < &, for the sake of simplicity, we refer to @,
Letting w5 be the limit. point of ¢(F), we set

Ao(p(B)) = {feA(p(@): f(m,) = 0}.

We note that, sinee ¢ (%) is a countable set, the dual space of A (p(Z))
is identified with C’,,(E)(D) with the L®-norm, where ) iy the Bohr com-
pactxflcatlon of D, i.e., with almost periodic functions on D with spectrum

in ¢(B) (see [5] or VI.5.22 of [4]). We also note that A(B)* = I(G)" (an
easy application of Parseval’s formula).

Lemma 2.2. A(B) and Ao(p(H)) are isometric in the natural way:

A(E)>herdog™ e do(p(BY).

1 f =0 on gn(B)}.

A(H), and A (p(B)).

Proof. Since finitely supported functions are norm dense in A(E)
and A,(p(H)), it suffices to prove that

Wl aczy = ho @™ |l azim)»

icm°®
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where % is a finitely supported function on B. But,

h = ¥ ] hi ] ]ocl
1Rl 4z w&i{?@)“ /vl

and

o e agmy = sup _[(hoe™, v)|/lple-

weow(m(p)

Therefore, it suffices to check that if {a,};, is any finite set of complex
numbers, and {4,}" -t is any finite subset of X, then

sup!Za (15 g)l = supl Fa (o (), )‘

The above equahty follows from the definition of ¢ and the density of
D in both D and G.

The proof of Theorem B is now a simple application of the preceding
two lemmas: By Lemma 2.2 L%(G) is isomorphic to a quotient of O~ E,(D
and hence separable; by Lemma 2.1, L$(Q) = Og(G). m

Remarks. a. The map ¢, in fact, induces a ring isometry between

(@) and C, (F)(D) By duality arguments, we conclude that L(G) is
isometric to L. o) (D); therefore we achieve a natural isometry between
I?(@) and L,,,(p)(l)), for all p =1, 3

b. Since the union of an R-set with a finite set is again an R-set,
Theorem B remains valid if we require that ¢(®) be countable with at
most finitely many limit points. Furthermore, merely requiring that

( ) be countable, we still obtain that & is an R-set if we insist that
@(F) contain no Limit points of ¢ ().

In general, confronting the task of sup-norm partitioning a con-
vergent sequence, ¢(y;)—®, in D, we note that the interaction between
the “arithmetic” structure of the sequence and its “speed” of convergence
plays a decisive role. The Cantor group’s convenient algebraic structure,
however, allows a natural apploach to the problem in @Z,:

Tueorem C. If ¥ c@Z is such that for some D < @ Z,, (pD(E'_)
8 a countadle set with one limit point, then B can be sup-norm partitioned
(p 1s anmy positive prime integer).

We first establish a general lemma:

LeMMA 2.3. Let I' be o discreie (not necessarily countable) abelian group.
Let {F;}72, be a family of finite, mutually dz'sjoim and mutually independent
sets (0 ¢FJ), 6., whenever yely, i =1,.. N, I, s F By, 1T
then {y 3N, is an independent set (m the sense of 5. 11 of [8]) Then, {F;}
i8 @ sup-norm partition for UP
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Proof. Without loss of generality we can assume that I' = gp (| .F})
(group gemerated by | F;). By our independence condition we have
I'= @ gp(Fy),

J
and therefore
I'" =6 =gp(F).
7

It easily follows that if f;e0p (@), ¢ = . M, and ¢y, ..., gyre@, then
there exists g,<@ so that
% X
D) = Y figo)
J=1 J=1

Let {g,}}Z, = & be so that for each j, Ifile = 1f;(g;)|. Setting f;(g,)
= a;+bi, we may assume without loss of generality that

M

D4y = (1/4) 3 1 filler

jeP =1

where P = {j: a; > 0}. For each j, 0¢F;, ie. [ f; =0, and therefore
G

Ref; and Imf; must both assume positive and negative values; in partic-
ular, for each ke ~P find g,<@ so that Ref,(g;) > 0. It then follows

that
| 20+ D] > @) X 1

and we deduce

M
[ 352 @) 3. u
=1

Proof of Theorem C. We first observe that any countable dense
subgroup of ®Z, is isomorphic to ® Z,. Therefou,, without loss of
generality, we assume that D = @Z 'y and thus D = ®Z,. We endow
® Z, with the discrete topology, and note that for any we® Z,,, p(H)
can be sup-norm partitioned if and only if ¢(B) — o can be o pa.rtltloned
Therefore, we may assume that the limit point of q:(L‘) is 0.

Recalling that ¢ preserves sup-norm partitions in both dlreotlons,
by the above lemma, we need to show that ¢ (&) can be partitioned into
finite, mutually dl&]omt and mutually independent blocks: Let

= {wep(H): w(l) # 0}
and, for any N > 1,
Sy = {wep(B)\ U Sj w(N) #0}. .

Clearly, {SN}N=U 80 defined, satisfies our requirements. m
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Remark. The independence condition in Lemma 2.3 is sharp. A se-
quence of disjoint lacunary blocks of integers (degree of lacunarity as
high as one wants), {F;}, can be constructed in such a way that {J 7,
cannot be sup-norm partitioned: Let (g)72, be a positive monotone se-
quence such that Y- = 1. Let ()2, be a sequence of trigonometric
polynomials:

hi(0) =1 = |jhll,, and sup k()] < &.
z¢(—25, &)
We can multiply each %; by a character without disturbing the above
properties, and therefore may assume that for each j

Min {|n|: nespecth;}/Max{|n|: nespecthy_,}

is as large a3 we want. We first show that {specth,};2; is not a partition
for U {specth;}. Let n, = 1, and choose d, > 0 so that |hy—h,| <&, On

J
(— 84, 8;). Proceeding by induction, we let =, >mn, ,+1 be so that
(— ey &ny) © (— 015 O3_1), and choose &;>0s0 that by, — Ry, 1l < &nypn
n (— &, O5). It follows that, for any M > 0, and any w7,

12 e

It {F;};2, is a sup-norm partition for U spect h;, we observe tha,t wlhenever
N1~
(V) is & monotone sequence of mtegers tending to infinity { U B, is

'nj+l w)(< 4.

also a partition for () E;. We may therefore assume that specth < &,
for an appropriate (n,), and repeat the above argument to reach a. con-
tradiction.

3. Open questions ,

a. Are there sets satisfying the condition of Theorem B, which cannot
be sup-norm partitioned ?

b. In the above work, we deduced an. interpolation property from
a topological “thinness” property (in the Bohr compactification of I').
Can an R-set, or 2 sup-norm partitioned set in I' be dense in [

c. Suppose that F c Z satisfies the diophantine condition of The-
orem B. It is an easy exercise to see that if F' iy any subset of E, then
FnZ=2F (F =closure of F in the Bohr compactification of Z). It
then follows from a result of Y. Meyer (Théoréme 2 of [6]) that E is a Riesz
set, i.e., LL(T) = My(T).

(i) Does the above hold for B < I', and I' any discrete abelian
group ?
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(ii) Does there exist an R-set which is not a Riesz set?

I wish to thank Professor Figa—Talamanca for stimulating conver-
sations on topics related to this work. I also thank the Institute of Ma-
thematies at Universita di Genova for a congenial working atmosphere.

Also, I wish to thank the referee for his remarks following Theorem
B, and generally for a critical and constructive reading of the manu-
seript. ‘
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Every nuclear Fréchet space with a regular basis
has the quasi-equivalence property

by
LAWRENCE CRONE and WILLIAM B. ROBINSON (Potsdam, N.Y.)

Abstract. The following theorem is proved: If X is a nuclear Fréchet space with
a reqular basis (n,) and if (yn) is another basis for X, then the bases (wn) and (yn) are
quasi-equivalent.

M. M. Dragilev has shown in [3] that nuclear Fréchet spaces in the
classes (d;) and (d,) have the quasi-equivalence property. His results
and techniques were reformulated and extended by C. Bessaga in [1].
B. 8. Mitiagin has shown in [4] that nuclear centers of Hilbert scales
have the quasi-equivalence property, and V.P. Zaharjuta extended this
in [7] by replacing the hypothesis of nuclearity with the Schwartz con-
dition, and finally Mitiagin [9] established this property for the centers
of arbitrary Hilbert seales. Also Zaharjuta recently obtained the quasi-
equivalence property for spaces which are products of a (d,) and (s
space in [8]. However, the general problem of quasi-equivalence for nuclear
Fréchet spaces remains.

In this paper we prove that any nuclear Kothe space with a regular
basis has the quasi-equivalence property. The essential idea of the proof
ig that the diametral dimension 6(F) (as defined in [2]) distinguishes
regular bases.

L. Definitions. For two sequences a and b, a-b will denote the sequence
(@,bn), and if B is a collection of sequences, a-B = {a-b: beB}. A Kithe
space is the Fréchet space of sequences

1 : NI
=0l = J\-c: Vi, [l 7?_"\1 ltalak < +oo},
with the topology generated by the norms |||, k¥ =1, 2, ... We assume

that for all k, n, 0 < af < af™. It is known that A is nuclear if and only
if for all & there exists m such that ' (af /o) < + co, and that A is a Schwartz

n
space if and only if for all % there exists m such that a¥/a®-»0. If 1 is
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