

STUDIA MATHEMATICA, T. LII. (1975)

Addition to the paper "Translation invariant subspaces of $L^p(G)$ " Studia Mathematica 48 (1973), pp. 245-250

bν

AHARON ATZMON (Orsay, France, and Haifa, Israel)

The purpose of this note is to prove that the condition $1 \le p < \frac{4}{3}$ in Theorem 1.1 of [1] can be replaced by the condition $1 \le p < 2$. That is, we prove:

THEOREM. If G is a locally compact abelian group which is not compact and $1 \leq p < 2$, then $L^p(G)$ contains a closed translation invariant subspace which is not the closed span of translates of a single function.

In what follows we keep all the definitions and notations of [1]. It follows from Proposition 3.1 of [1] that the Theorem will be proved once we show that the bilinear functional L — which is defined by formula (3.1) of [1]—which we proved there to be bounded with respect to the $\mathscr{F}_p(I)$ norm for $1 \leq p < \frac{4}{3}$, is in fact bounded for every $1 \leq p < 2$. Consequently, in virtue of formula (3.2) of [1], the theorem will follow from the following:

PROPOSITION. If Γ is a locally compact abelian group which is not discrete, and $1 \leq p < 2$, then there exist in $A(\Gamma)$ real valued functions f_1 , f_2 and a positive function φ , all with compact support, such that for every function g in $A(\Gamma)$ with compact support

$$\Big|\int\limits_{-\infty}^{\infty}\int\limits_{-\infty}^{\infty}u^2\langle g\overline{g},\varphi \operatorname{Exp}|i(uf_1+vf_2)|\rangle du\,dv\Big|\leqslant C_p\|g\|_{\mathscr{F}_p(\Gamma)}^2$$

where C_p is a constant which depends only on p.

For the proof of the Proposition, the following analog of Lemma 2.1 in [1] is needed:

LEMMA. If Γ is a locally compact abelian group which is not discrete, then there exist in $A(\Gamma)$ real valued functions f_1, f_2 , and a positive function φ , all with compact support, such that for some absolute constant K,

(1)
$$\|\varphi \operatorname{Exp}[(uf_1 + vf_2)]\|_{PM(\Gamma)} \le K \exp[-(|u|^{1/2} + |v|^{1/2})]$$
 for all real u, v .

This Lemma is a version of a lemma of Malliavin [2] and is proved in Rudin [3], p. 181 for Γ compact with $\varphi \equiv 1$. The general case is deduced by standard arguments using the structure theorem of groups (see the remarks which follow the proof of Lemma 2.1 in [1]).

Proof of the Proposition. Let S denote the subspace of all functions in $A(\Gamma)$ with compact support. Notice that S is contained in $\mathscr{F}_r(\Gamma)$ and also in $PM_r(\Gamma)$ for every $1\leqslant r\leqslant 2$. For every $(u,v)\in \mathbf{R}^2$ we consider the linear operator T(u,v) on S defined by: $T(u,v)h=h\varphi \operatorname{Exp}[i(uf_1+vf_2)],h\in S$; where φ,f_1,f_2 are as in the Lemma. For every $1\leqslant r\leqslant 2$ let $\|T(u,v)\|_r$ denote the operator norm of T(u,v) regarded as a transformation from S equipped with the $\mathscr{F}_r(\Gamma)$ norm to S equipped with the $PM_r(\Gamma)$ norm. It is easy to see that

(2)
$$||T(u,v)||_1 = ||\varphi \operatorname{Exp}[i(uf_1 + vf_2)]||_{PM_1},$$

(3)
$$||T(u,v)||_2 = ||\varphi \operatorname{Exp}[i(uf_1 + vf_2)]||_{\infty} = ||\varphi||_{\infty}.$$

On the other hand, since for every $1\leqslant p\leqslant 2$ $PM_p(\varGamma)$ is isometrically isomorphic to $L^q(G)$ where 1/p+1/q=1, it follows from the Riesz–Thorin theorem that for every $1\leqslant p\leqslant 2$

$$||T(u,v)||_p \leqslant ||T(u,v)||_1^t ||T(u,v)||_2^{1-t}$$

where t satisfies 1/p = t + (1-t)/2. Therefore, taking into account (1), (2) and (3), we get that for $1 \le p < 2$

$$\int\limits_{-\infty}^{\infty}\int\limits_{-\infty}^{\infty}u^{2}\|T(u,v)\|_{p}\,du\,dv=C_{p}<\infty.$$

Consequently, for every $g \in S$ and $1 \le p < 2$:

$$\begin{split} \Big| \int\limits_{-\infty}^{\infty} \int\limits_{-\infty}^{\infty} u^2 \langle g\overline{g} \,, \, \varphi \, \text{Exp} \left[i \left(u f_1 + v f_2 \right) \right] \rangle \, du \, dv \Big| &= \Big| \int\limits_{-\infty}^{\infty} \int\limits_{-\infty}^{\infty} \langle g \,, \, T(u \,, \, v) \, \overline{g} \rangle \, du \, dv \Big| \\ &\leqslant \int\limits_{-\infty}^{\infty} \int\limits_{-\infty}^{\infty} \|g\|_{\mathscr{F}_{p}(\varGamma)} \|T(u \,, \, v) \, \overline{g}\|_{PM_p(\varGamma)} \, du \, dv \leqslant C_p \, \|g\|_{\mathscr{F}_{p}(\varGamma)}^2. \end{split}$$

This completes the proof of the Proposition.

References

- A. Atzmon, Translation invariant subspaces of L^p(G), Studia Math. 48 (1973), pp. 245-250.
- [2] P. Malliavin, Calcul symbolique et sous-algèbres de L¹(G), Bull. Soc. Math. France 87 (1959), pp. 181-190.
- [3] W. Rudin, Fourier analysis on groups, Interscience, 1962.

TECHNION, HAIFA, ISRAEL