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On commutators of singular integrals*
by
CALIXTO P. CALDER ON* (Minneapolis, Minn.)

o
Abstract. The commutator v.p. f E%Lt;/%@/—)g(y)da =T(F", g) as well ag
oo !
ity m-dimensional generalizations are treated through this paper. The previous
known results stated that if ge I?, F’(x)e L2, with 1/p+1/g < 1, then |T'(F’, g)lir
< OpgllT"llgllgllps 1/r = 1/p-1/q. Here it is presented the following novelty: that the
restriction 1/p+1/g < 1 is not any longer necessary. We face the cases 1/p+1/g> 1,
obtaining as expected the same inequality in this situation.

0. Introduction. The purpose of this paper is to extend and generalize’
the results proved in [1] and [3].
We shall be concerned with singular integrals of the type

(0.1) pev.

~ —F
f M!](y)d?/ = T(F, g)

2 (e—y)p
and their n-dimensional generalizations. Here, F (m) stands for a function
having a derivative in the distributions sense in the class L% ¢ stands
for a measurable function belonging to a clags L”.

11 1 1
It -p——}-~é—<1, l1<p<oo, 1< ¢g< oo and 7 iy given by 7::?4—

—|~-§o'—; then I'(F', g) exists in I"™-norm and pointwise a.e., see [1] and [3].
Through this paper the condition 1/p-+1/¢< 1 is relaxed to the
following omne: '

(0.2)

1 1
7 r 7 oo,

I<gg oo, 1l<ps oo, Z9._|,Hq. =
The condition r 7 oo means that p and ¢ cannot be infinity simultaneously.

Under the condition (0.2) we show that the operator defined in (0.1)
exigts as a principal value in the metric L" (notice that r can be less than

* The author was partially supported by NSF Grant No. GP-15832.
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one) and, moreover, it exists pointwise a.e. Therefore the novelty here
is the range of values of 7 lying between 1 and 4. The situation ¢; 1 << ¢ < oo
and p = oo is particularly interesting and it is used for extending the
result to the n-dimensional case.

It the conditions (0.2) are relaxed to the following ones:

(03)  1<g< o, 1<p< oo,

then the principal value (0.1) exists a.e. and instead of having a strong
type inequality we get a weak type inequality; more precigely:

(0.9 B2, 91 > 3 < 221,
where 1/r = 1/p-+1/q.

The case p =1, ¢ =1, r = } is particularly mtere%tmg because we
may take g to be a finite Borel measure and F' to be another finite Borel
measure and geb the existence a.e. of the corresponding principal value
defined by (0.1).

The m-dimensional case is both more difficult and more technical
.and will not be discussed here in the introduction; nevertheless, the
same type of ideas are used there.

The techniques used throughout the paper consist mainly of a suitable
generalization of the Calderén-Zygmund covering lemma (soe [2n,
and also a specialized interpolation lemma.

Part Tis concerned with the 1-dimensional result, and Paxrt IT is devoted
to the n-dimensional result. I would like to mention at this opportunity,
that a weaker form of theorem [A] in Part I was gotten by the author
in 1971 during his stay at “Universidad de Buenos Aires”. This result
was exposed by the author in [5].

Finally, I would like to thank Professor . Fabes and Professor
N. M. Riviére for their valuable advice and discussions while this paper
‘was in preparation.

1. THE ONE-DIMENSIONAL CASE

Before proving the main results of this part we sha.ll state and prove
some auxiliary lemmas.

L1. Let T(f,9) be an operator mapping Lgn x Ly (LK po<< o0)
into the set of real measurable functions defined on R™. Suppose that the
operator T satisfies also the following properties:

e ©

icm
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iy (9) 1T (0uf, eag)l <

IT(Z:O?L“ g)} < i IT(fies 91,
(b) lT(f’ffhc)K flf(f,gk)|.

Let us denote by § a cube and by IS the dialation of S I times about
ity center.

(iil) If f is supportéd on S and ffdt =0, we have
iz <

ady ]Sj f]fmfflgldt

where (18) stands for the complement of 18; |8} stands, as usual,
for the measure of 8 and the constant C does not depend on f,
g, or 8.
(iv) If fe L™ and g e L' nLP; g supported on S and fgclt = 0; then
we have:

1041CLT(f 91,4

J1T(f, 9)lde < Cllfl [ 1g1dz.
sy 8

As before O does not depend on f, g, or S.
v) If fe L and ge L, then:

E(IT(f,9)

Here B(|T(f, g
where |T(f, g)
g or A.

> 2) < —=IfIE llglihe.

W

)| > A) stands for the measure of the set of points
)| exceeds A. The constant C does not depend on f,

The following lemmas are a generalization of Calderén—Zygmund
covering lemma (see [27).

1)(€h)
=— + L the
9 Do

1.2, LeMmA. If the operator T satisfies properties (i), (iii) and

-

?lr—‘

(v) we have for all g such that 1< g< oo and r given by

Sfollowing estimate:

¢
(1.2.1) B(L(f, ) > 2) < 5 151 gl

where the constant C' does not depend on 2, f or g.
Proof. We are going to define the following set G,. Let 1> 0 be
a chosen number and a family I of cubes defined in the following way:

Inl =0, i#j,
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(1.2.2) e < f b < Arlagn,

ILA

where > 0, [|fl, = 1 and ¢ such that 1 <
_ris given by

¢ << o0; once wo have fixed g,
(1.2.3)

The cubes are 50 chosen that in R"— UI,; wo have f< 170 » (Hoe

.[2]). The get G, = UI,c To the set G, wé m'e going to astociate the set (5‘4,
where .

(1.2.4) Gy = U,
1
Clearly, we have from (1.2.2)
ln
i< f s, i<t [ e,

g

We.are going to construct the following functions

(1.2.5) f=J+f ae.

where

F= D@ {F(0) ),

= —]l ffdt;

gbk(:v are the characteristic functions of the cubes I L.

My 18 given by

If ¢y (w) is the characteristic functions of R — U I, then fm given by

f= Jholw

)+ Z tie b, (@
Clearly we have
(1.2.6) 0<fgomtiph g,
For the sake of simplicity call f, = &,(){f(a)— /«%}‘ Then

(1.2.7) f [ fool dow < 27 ’Z”"|I,c|.
I

icm°®
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Lot us fix ge L"o(R™) and write f =J~”+ f We have the following
inclusion relation:

(1.2.8) (T(f, 91 > 2 = 42(F, )l > W uiT(F, 9) > 34
Therefore:
(1.2.9)  B(Z(f, 0 > A) < B(T(f, 9)l > 1)+ B(T(F, 9)) > 34);

from condition (v) and from (1.2.6) we have

' ~ ' oA
(1.2.10) B(IZ(f, 9l > 44) < 02097 = g0

1 1
= (909 f Lo Jm il
7 ) loide "

rY

R

1
+—~-).
Do

Now we are going to evaluate the measure:

z * '
HIZ(f, ) > 3230 {R"— G ]
Z [T (fes 9)|; (thislast follows from property

[ii{a)]) and taking into &ccounb that (R“—Gl) « UJ(I,) we observe:
1

(1.2.11)

Since we have |T'( f , g

-]

[ s glae<

R} 2

(1.2.12) T(fxr 9)| d

T dyy

oo o0
02"‘"”‘ f o [gla< oot 3 [ jglas.
T Ik Iy Iy 1 Iy

Obgerve now that |@;| <
(1.2.13> ]G;,|1—1“7° < 01—1/:170&—1‘(1—1/1:0) — Or)L—r—M‘/xco'

Observing that

047" since {|f]l, = 1, this last gives

fimdmé [Gtﬂli’lll’o( f|g|p°dm)lm°,

(€] ne

we have inumediately by (1.2.12) and (1.2.13):
f [T(f’ g)\ i < ¢ gntl 27'/0@—«9'3‘7‘/1)0( f ‘glpodt)lfho-

RN

(L.2.14)

-Gy

Applying Kolmogorofi’s inequality to the right-hand member of
(L.2.14), we get

(1.2.15) |{JT; ) > 34N {R" — Gl}l<0"’2”“ (flgl”d)
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If p, happens to be equal to one, p, =1, we have 1/r = 1/q-}1 ;
1 .= r/g4r, from (1.2.12) follows directly

[ 11(f, 9)ldz < (Constant) '~ [ g
Rn"é/l nn
and therefore (1.2.15) is satisfied in this case. Taking also gty =1,
we see after collecting estimates that:

Constant

{1.2.16) E{T(f, 9l >} < 7

since |fll; = llglly, = 1. .

Here the constant does not depend on the functions bub only on the
¢ involved. The homogenity condition (i) gives the thesis for general
fand g.

1.3. Before stating the two interpolation lemmas that are going
to be uged later we are going to add some definitions.

Dy, will denote the space of distributions F on R" having all deriva-
tives of order k in LP(R". We are going to introduce the following pseudo
norm:

(1.3.1) . N = > 1D,

la|=alo

If E; denotes the jth Marcel Riesz Transform, then we define AR
in the following way:

< 9
(1.3.2) a7 = Mg, ("547 ,)

where 8/0x; denotes the corresponding partial derivative in the distri-
butions sense. Observe that (1.3.2) is well defined for any distribution
Of'ch,]H P > 1: p< co.

In general, we define A = 44", From the wusual arguments of
singular integrals it can be shown easily (see [3])
G lI1F || < 1A% 1Y), < 0, U 1, e
for 1< p < oo.
Now we are going to prove a lemma which is due to Mary Weiss.

1.4. LeMMa. Suppose that I e Dypand p >n,n stands for the dimension;
then if we define

DF (%) = su E(Mﬂ}]
v |z —7|
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we have

*
() IDF, < Oy llgrad Fl,, p>n.
TFurthermore we have the estimate

F (@) —1(y)
e -yl

1 e
(i) <0,,(Iw f |grad].7'|1’ds), P>,

n
vl le—s| <llz—y!

where Oy depends on p and on 1,1 > 1. .

Proof. It will be necessary only to prove (ii) since (i) will follow
from (i) by a standard argument. If Fe (§ we have the following repre-
sentation:

n

; Yy OF y,—s
(14.4) Py =0, Y} [ o= e
i=l gn ¢

where O, depends only on the dimension.

0
Now, if ¢@(y) =1 for |y|<1, @(y) %0 and —a—y—~<p #0 for y,
i

1< yl<?2 §=1,2,...,m; e(y) =0 if |y| > 2. Suppose in ad@ition
that ¢ is C®. Now consider the function ¢, = p[¢™'y]; with the aid of
thig function we construct the following function of y:

(1.4.2) {T () —F(y)}p.(@~y)

that can be represented as

(1.4.3)  {I'(y)—F(0)} @ —1)
S
= O — (B (8) = F () (s — 2)] K (y — 5)ds
%f 08;

for |y—a| << 2¢ where K;(s) = s;/[s|” if |s] < 8¢ and zero otherwise.
Observe that

) , . o
”‘;52;7; Pl =T @hplo—s) =5 -plo—s)+ (P (s)— F(2)) 5o 75=)

‘where
|§ — | > 2e,

= () if \s-—m[<e,

Yl i w()m ), (8~ 1
(B (@) — () s, P(8— )

(1.4.4) F(s)— T (w)

if e<|s—a|< 28,

!(]f‘(s)—wl'ﬂ(w))‘b%? pals —0)| <
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Accordingly, we have for |y—ux|<< 2
(14.5)  HE(y)—F(@)}es(z—y)l

1p 1 Pip—-1 (p~1
<01( f lgradF\”ds) ( f (_._.71_) s +
18l <108

[si""
[z—8]<2¢

. Fz ) F(S’)) tin ) ey ﬂ)illllml i (0=~1)lp
+02( f ( o — as [al-c:jl()n ( g™ s ‘ '

Jig--g] <28

Observe that

(1.4.6) f

le—sl<2e

17 (@)~ F(s) o

28
‘. 1 .g ]‘1 . P, .
s — ds if z,f ' j |grad I (- at)]rltl ¢"rdodo

After an application of Hardy-Littlewood inequality (see [7], Vol. I, p. AO)
to the inner integral on the right-hand 31(10, for p > n we got

(

le—sl<2e

»

(@)~ I(s)

& — |

ds)<0p [f lgrad B (% - ap)|? 0" dodo,
A

Cp—>00 when p | n.
Taking into account that

p-1

1 2ip—1 » mﬁ‘_“
( f (WT) ds) =& 0, with Opn=+o0 when p | n,
|8l< 108 .

we get finally for |y —a] < e

~ (1 le
(L47)  |P(y) =P (o) < &0, (—,T f lgmdlf’]”ds) ,
& lr—g|<2e _
Oy p=>00 when. p | n.

Taking in (L4.7) |w—y| = 27'¢ we get the thesis (ii). This finishes the
lemma’s proof.

L5. FIRsT INTERPOLATION LnMMA. Let T, be a family of sublinear
operators mapping the space D, n of B into the space M of measumbla

Junctions defined on R, 4 =1,2 and L<py < py<< o0, Call J)l,‘(l)
supD(]T ()] > 4 and suppose thait

i

BT, (1) |>Z)<~- iy

204 1,2,

where C; does not depend on a or the partwular F. Then we have the Sfollowing
inequality :
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o0
i) [ Dp() 133 < O\ Fll, . for all p such that p,< p < p whers
0
0, does mot depend on I'; it depends on p only. As usual,
Cy—roo  for plpyor ptp,.

Proof. We are going to prove the lemma for k< n (dimension).
Jonsider the subset 8 of all distributions # for which we have

(15.1) R R m—
o lo—yF
with ¢(y) in L”(R") and vanishing outside of a compact set; clearly we
have [[|F]l,,, equivalent to |A*F||, and consequently to liglly, L<p < oo,
Then the operators T, can be thought of as operating on the spaces
of functions g. Therefore we have:

] ) _— O, v
(1.5.2) B(To(1) > 2) < ) lgPdae.
nn
Algo:
(1.5.8) 1),, f lg/Pide.

Notice that if ' = ¥, -+ F, we have in this case:
* * #*
(1.5.4) Dyp(A) < Dy, (32) + Dy, ($4) .

Given 4 > 0, we partition g >0 as g =g"+g,, where ¢* =g if g(z)< 2
and. zero otherwise and g, = g—g¢°.

Defining
i 1
Py = fmlw—w i g9 (¥)dy,
n y
(1.5.5)
Iy == f ******** ;’ e 0y dy,
o =yl
we have
# *o ¥,
(1.5.6) Dy(2) < Dy, (43) -+ D, (34).

For p sueh that py <7 p << Py, we hawve from (1.5.3).

j Dy ar=Yar< G, J iY Um“mm]ﬂ' L
nn

w
am _
0, f = f [mﬂldm]zﬂ aag f o,
§ i
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This last estimate follows after interchanging the order of integra~
tion in the sum of the two integrals.- v
" As the reader will notice this lemma is essentially Marcinkiewicz's
interpolation lemma,

If ¥ =0 we have F =g and the interpolation argument is valid
for p, =1 and p, = oo, provided that for p, = oo we replace the weak
inequality for the strong type inequality.

This finishes the proof of the lemma.

L.6. SECOND INTERPOLATION LEMMA, Suppose that in addition o
properties (1), (ii) (a), (iii), (v), the operator T satisfics also (ii)(b) and (iv).
Suppose further that p, in-(v) is strictly greater than 1, py = 1. Then under
all the previous assumptions we have

(i) ( Szt 91 an)” < 0, 151, g1,
"

Jor all p such that 1< p < p,, all ¢ such that 1< 4 oo and v given by
1 1 1

A=
TP g
Proof. For g = oo, it is essentially Benedek-Calderén—Panzone
Theorem (see [2]). For proving this part we use only hypothesis (i), (ii)

(b), (iv) and (v). ~
Observe that we have for 1< p< Doy -} = -1“-|- -:-L«, the following
9 »
estimate:
. o .
(1.6.1) B(T(f, 9)1 > 2) < —}fﬁ—"' 171z llg -

Furthermore, the construction we did in Lemma, 1.2 can De repeated in
this case, since we have the cage g =00, 1<p<p, a8 a consequence
of Benedek-Calderén-Panzone’s Theorem.

Let us fix p > 1, p < p, and consider Py such that 1< p, < p < p,.
Let g be greater than 1, ¢ >1 and r such that

h1“~1_ 1
r—ql———.

p
Let r, be determined by the condition:

— =— and ¢, such that ~1~ = »1 4= ;1;_

Do P 7o Qo P ’
Then, clearly, we have
To

(1.6.2) To _ Too_
Do '

b

"Si%
'JQ!%
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In the same way we determine r, by the condition:
1

: 1 1
e e e and by — = — - —.
P P ’ by T1 (/SN 41

o 7y 7 To
q do
Now we are going to repeat the construction of Lemma 1.2

o0 * o
Gi=UlL, &= LIJ Uy,
1 .

(1.6.3) -t =

(1.6.4)
< L ffdt< onjrie,
llkl Ilc
and also the decomposition
(1.6.5) f=Ff+f

‘We get the estimate )
(1.6.6)  B(T(f, ) > ) <B(T(f, )l > ) +B(T(f, 9) > 34).

Bstimate for f/l“lE([T( fr9) > 4)aa.
L]

Call

*
D3 = swp BTG, 91> 2).
o f’llfumglgnﬂ ( Jy )

According to Lemma 1.5 and the fact that our Theorem is valid for ¢ = oo,

we have '
(1.6.7) [ Dy aa< o, gl
0

H1<p<p,. ]
On the other hand we have

(1.6.8) (T(F, ) > 3} = {IT(F2"", g)| > ™7}
CUongequently : . ,
(1.6.9) D(T(f, )| > 1) < Dy(A™)

since | FA~"17, < 2™, .
" Therefore we have that our integral is dominated by

) o .
(1610)  Of 7 D,m)an = [ #1D,(MaA< O, [lgirda.
. g

0 0
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Bstimate for fﬂ’ ’D(fT(f, ) > §A) @A
0
Recall that

B(2(F, 9 > 1) < HIZ(F, )1 > W) (0 — G116y
We are going to estimate first the following integral:

©(1.6.11) [ @ i
0

Recall that [G*,1| < I"@] and from the very definition it follows

G {M(f) > W /“}
where

M(f)

ll?l fjoll

over all possible rect.mgles (n-dimensional rectangle) R containing the
point @, and having edges parallel to the coordinate axes. Olearly, JE(f)
is the maximal function of Jessen-Marecinkiewicz-Zygmund. Thus, we
have that (1.6.11) is dominated by '

R:(m}

o

]
(1.6.12) P [ I Dy (A1 a5 = 1 [ 277 Dy (2.
0 , 0
Now, from the - Jessen-Marcinkiewicz—Zygmund theorem if follows:

(1613 . - p f A7 Dy (A d2 < O(q) 1 [1f12de.
RY
This is the desired bound for (1.6.11).
Let us return now to

~ . *
(1.6.14) HIT(, )1 > 3230 (R — ).
In Lemma 1.2 we found a first bound for this measure, that is,
(1.6.15) f |7 f, ) do < -«W fygjcu.
R”—Gz (v‘;_

We shall decompose |g| = |g|" + |9liwir where |g"™ = g it lg] < arte
and zero otherwise. || is then [g] — | 91”7, Then the right-hand member
of (1.6.15) is dominated by '

(1.6.16) A2 g71e 7l | @, 4 a1 [ 19lmwde < 016, +AE [ gl do.

¥
Gy (3;_

icm
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Observe that:
(1.6.17) 0 f 76 do < O [ e
R"

Tot the integral A7 [ |g|mpdn we are going to replace #/g by r,/g, and
& .
r[p by r/p, and, afterla,n application of Holder’s inequality, we get

(1.6.18) min-1d, J“’l"”’”l( f 19173 0y 8) .

Observe that |6, < 17- ”'1 [ m(y N dmwhereM(f)lr.l/al_—_M(f)ifM(f)

o
> )"0 and zero otherwise.
Then (1.6.18) is dominated by:

(1.6.19) A’l’“l""lwl“‘”’”l“z’l’”l/1“’1[ [1m (f)aufad‘“dw](“"m‘><
BN

. y
. x [J (gl pumysaa] ™.
Taking into account that:

|AB| < !AI”"(’“"”-F |B|”l
29

we got that (1.6.1.9) is dominated by

(1.6.20) O f M (f) gy 0+ Oa 5 f 198, 80

Now we have to integrate (1.6.20) against A”“l. between 0 and oo. Thig
gives, after interchanging the order of integration,

muin : Py .y

(1.6.21) 0, fM(f) [ f - ldl]dm +0, f|g|‘°l[uf - da]dm.

n»n

Noticing that r,/p, == r[p and r,/g, = r/q we geb %3.6.21) to be equal to
(1.6.22) 0, f M (f)%dm - 0, f lglPdw < Oy, f fdm + 0, i lgI? de.

Thiy lagt estimate together with (1.6.17) and (1.6. 13) finishes the proof
of the lemma gince we get

[1T(f, g)l'dw < O4IIfI+Csllglly

zln i
where ¢, and ¢, depend on p, and g. An homogenity argument gives the
inequality (i) of the thesis.

4 — Studia Mathematica LIIL.2
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1.7. Our next task is to prove a lemama which will be nseful to handle
the maximal operators of the pointwise convergence. We are going to
* .
agsume that the operator T'(f, g) satisfies the following properties:
(1.7.1) Properties (i),
1<p< Do

(1.7.2) T(f, 9)

(ii) (a) and (i) (b) and property (v) for all p such that

admats the following domination:
*
IZ(f, o)l < Talfy 9) +Tu(fs 9) e
o o0
for f having the form Df, =f, and we((J18,), where supp f,
. 1 1
= 8, (sphere), 8§;NS; =0, i £j and [ fdow = 0.
8

T
As before 18, will denote a dilation of §, about its center; I gives
the size of the dilation. 7T, satisfies the following inequality:

02 i f{qldw flfk[dw,

where the constant 0 is independent of f and g, T, satisties the following
inequality :

(b) To(fy 9)(=

(@) [ w9

7. mlg
BRY— (J 1Sy,
hsllb

<0 J o) Ziia) (0

where B(T,(g) > /1) < }% f}g[pda: for all p such that 1< p < p,. The T,
R

are non-negative T;(f, ¢) > 0 a.e., T, is sublinear.

*
1.8. Lmvma. Suppose that T(f, g) satisfies the properties stated in
(1.7.1) and (1.7.2); Then, if 1<<p<< p, and q > 1, we have:

) ( S (1, 9)1 40" < g1l gl

7 1is given by 1fr =1 /p +1/q, C,, depends on p, g only.
If 1<p<p, and 1< g< o0, we have instead

(i) BT(f, ) > ) < M AT

where as before C o does fnot depend on f or
Proof. VVe a.re going to use the constmetion of Lemma 1.2 and
also the proof of Lemma 1.6. From (1.7.1) we see that the thesis iy true

for ¢ = oo. As in Lemma 1.2 we pick p such that 1 < p < p, and q such

icm
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that 1<
*
and G;J

g<< oo, 1fr =1/p+1jg. As before we construct the {I,}, &,

¢ =UL, &=UiL, < 'Ii] ffdm<2"zﬂq

& Iy
and in R™— U I, f < 7 a.e. Recall £ > 0 a.e. As before we decompose f
ag f = f—|—f and have ’
* o~ * X
E(IT(J’, 9> N<B(T(f,9) > )+ B(L(f, 9) > +4).

Recalling that f< 2" 4" a.e., we have

,.

(082) B, 9> 1) < f 0P = Oy f o o,

* o~
For handling E(|T(f, g)} > }4) we are going to use the conditions (1.7.2)
(a) and (b), that is, by using the operators T,, T, T;.
Keeping the notation of Lemma 1.2 we see that

f = Z Jes
1
Now it will be enough to estimate:

(1.8.3) B(T3(f, 9) > W)+ B(To(f, 9) > 1.
The first summand, according to (1.7.2) (a), is dominated by

[fudw =0,  [ifilds< 2v+2 2Ly
Iy Iy

(1.8.4) f ITs(f, 9) ltlw<~—l”“ flgldw

R"“G;. &
if this is handled as in Lemma 1.2 and one obtains the desired weak type
estimate.
According to (1.7.2) (b) we have

(1.8.5) Tyo(f, 9)(@) < O T4 (g) ().
And obgerve that
(1.8.6) Ty (g) > 2} = {Ta(g) > 7}
Therefore:
¢
(1.8.7) BTy (g) > ) < ya f{gl"dﬂo.
R"

So (1.8.7), (1.8.4) and (1.8.2) give part (ii) of the thesis.
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In order to obtain part (i) of the thesis we pick p, and g such that

1<p<py 1<g< oo
and 7 is given by
1 1 1
o=
rop g
As we did in Lemma 1.6 we pick p, such that
1<ps<p

and r, such that »/p, = r[p, then ¢ is given by 1/g, +1/py = 1[ry.
Ag before we estimate EUT f, )l > ). Calling

D) = sup  B(T(fyg

) 7l uﬂlm<2“ 2
we see as in Lemma 1.6 that

(1.8.8) BT, g)] > 2) < OD, (o)

where C and ¢ are different constants.
By using inequality (1.8.4) proceeding as we did in Lemma 1.6 we
get, as in Lemma 1.6,

(18.9) B(T.(f,9) > 1) < i f My dotOmgy [ 1978 d0

n
80 when we integrate againgt A"~ between 0 and oo, we get Oy |l £ 18+ Csligl2,
which is the desired bound.

Observe that Ty(g) is strong type (p,p) if 1< p < p,, and from
inequality (1.8.5) and from (1.8.6) we have

(1.8.10) B(IT(f, 9)| > $3) < 0Dy (07)

where Dy, (8) stands for the distribution function of T'y(g).
"~ 'When integrating the right side of (1.8.10) against A"~ between
0 and. oo, we get the p-norm of T,(g) which i a desired bound also.
This finishes the proof of part (i).

) > )

1.9. We are going to apply now this general lemma to the theory of
commutators. We shall deal in this part with the one-dimensional case.

As we said in the introduction we shall deal with the following
operators :

2(f,0) =tim [ TEZZ yay = 1imr g, ),
(1.9.1) e AT =
r T ()~ F(y)
T(f, g) = Y
(£, 9 sup I e g(y) dy
where F'(2) = fe L#(—o0, ), ge L*(— 00, o).

icm
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Now we are in conditions of stating the following theorem:

1.10. THEOREM A. If 1<p< o0, 1< g<< o0 and v is given by
1/r = 1/p41/q, fe L — o0, o), ge LP(— o0, oo), then we have

F'(2)—F(y)

(i) lim PEmn

&->0

g(y)dy ewisis a.e.

lz—vl>e

- Furthermore, we have

*
(i) B(T(f,9) > 2 2 lglln
where Oy, depends on p and q only.
If 1< g o0, 1< p<< o0 we have:
o, r
(i) ( [ (@t 9y o))" < G flligly

and consequently

(iv) ( [17f, 9= T(F, q)r da)" >0 a5 &->0.
Proof of Theorem A. It can be readily seen that the operators
T,(f,g) satisfy the conditions (i) to (v) in paragraph 1.1. Nevertheless,
*

it will be enough to show that T'(f, g) (the maximal operator) satisfies
the conditions in paragraph 1.7. So that is going to be our task. First
it follows from Bajsanski~Coifman Theorem (see [1]) that

(1.10.1)

1121915, 1<p< co.

* (0.3
B(I(f,9) >4 <75
(This part is on page 16, paragraph 8 of [1].)

The other properties of (1.7.1) can be readily checked, since.they
are {rivial verifications. Now we are going to check properties (a) and
(b) of (1.7.2) for a suitable choice of the opertors Ty, T, fl’3 ‘We are going
to define the T in the following way:

o
T.(f, )@ 012|“ flfktd | GEr—er

(1102) 2,(5,0)o) = 0wz f 1fk|dt)M(|g|)<w),

lg(y)ldy,

Ty(g)(2) = M(|g})(2),
where M (|g|) stands for the Hardy-Littlewood function.


GUEST


156 C. P. Calderén

Y
Call I, to the 8, and choose | = b. Defining Fy(y) = [ fi.(3)dt, we see
halte)

that supp By, = I,. Pick now we (U BI,C) then we get

F(o)—F(y) ) [Fr ()l
1.10.3 g(y)dy =g (y)| dy -+
( : llz—yi>e -y sty (@Y
1 1
tmox (e [1ndas)oe [ wmigEa

17‘1 fg<|m-—u|<153

where I and I, are the two possible intervals containing the endpoints
of [#—e, x+&]. Now Sup 1B ()] < ,f |75 (®) & and also for @(w, I,) > 2T,
we have &k

(1.10.4) < Constant

o y|? [T+ o —y|*”

If ye I, the constant does not depend on .
On account of these two last remarks we get

(1.10.5)  IT.(f, 9)(a)] 012 A f‘f"‘m f"x"flaf-i— @=yp !

1
+0,(ow g / ) 311 o)

{(y)|dy -+

Since the right-hand member of (1.10.5) does not depend on ¢ >0, we

have the desired estimate for the maximal operator T (f, 9). This finishes
the proof of Theorem A.

L11. Let 4 be a finite measure on R, let y be another flmte measure
deflned on R. Let us introduce the funetion

(1.11.1) fdy =y(—o0, 2] = F(n)

and consider the operators

- B (x)—F
(L11.2) T, w@ = [ Z@=TW)
lo~yl>8 (w_Z{;)
In the same way we are going to introduce the maximal operator:
* ) n —
(111.3) T, @) =sup| [ TP o
>0 | yne (E—Y)?
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By \/ wu and V y we are going to denote the total variation of the

measure “ and y, regpectively.
The following theorem will take care of the cases not covered in
Theorem. A.

1.12. TIIEOREM B. Suppose that ge L°°( — 00, 00);
1<g< oo, we have

(1) IIT Iy Dle< Coliflle19leo O depends on qoﬂly Furthermore, T,(f, g)
converges pointwise a.e. and in g-norm 1o. T( I 9.

(i) If g = L we have

then if fe 19,

E[-T (finl< ~—Ilflllllylloo

As before, T,(f, g) converges pointwise a.é. o T(f, g).
©a -] :
(i) If fe L', ge I and V p< o0, \V y< oo, we have:

0 Bl w> )< 2

Iifll”( V M)

1
1§q< oo, =Ex—]—1,

. 0, _— 1 1
() B(I(y,g))< —A:i(_vmy)’ngup; T =t

*

(0  B(I(y,m)<

l<p< ooy
g o . oo '
7:1/7(\/ y)l/z( v‘u)l/z'
—0 00

In the cases (a), (b), (¢), T, converges pointwise a.e. to T
Proof. We are going to prove (i) first. Take

f F

le—vi>s

(112.1) T.(f,9) = g(y)dy

where fe L% 1< ¢<< oo, ge I™; we are going to show that T,(f, g) has
I%porm bounded by a fixed multiple of the IL%horm of f times the
[/3 .

L®-norm of g. Let je L% ; then we have

(1.12.2) | f JT(f, g)ia| = |- f 9T.(f, §)da.

Observe that according to Theorem A we have

1T )|h<0 170N _q -

-1

(1.12.3)
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So, the right-hand member of (1.12.2) is then dominated by
(112.4) Collgllo I flallglt 4 - '

g1

This shows that Z.(f, g)

independent of ¢ > 0. Accordingly, the same is true for the limit operator

T'(f, g), that can be defined pointwise a.e. since g belongs locally to all Z?,
Let ¢ (s) be a C*-function supported on [ —4%, ], such that

(1.12.5) f p(8)ds = 1.
Call ¢, = ¢7'p(¢7"s) and consider the difference:
(1.12.6) [Z.(f, ) ~ @ T(F, 9)](@).
This difference can be written in the following way:
(o) —F (y) F(w—8)-F(1')} ]
1.12.7 —_ 4
(420 ] nle [lm w{ (T e o R R
+ f% | [ e as
opl<e LE—8) =Y

The second integral exists a.e. in o, and it is defined as a principal value

) F(o—s)—P(y) ,
Bstimate fm" (8 { L g () Yt 8 .
f Im~!{<s Ho—a g W
Interchanging the order of integration (which we may, provided
that # be a point of existence of the principal value), we get

46 [
r F
(1.12.8) - - f g(y)( fw%-it%(w S)dév)dy
It fi =f, if l[y—o|<6cand zero otherwise, defining I, (y) = f fi(t)at,
we see that for ye [w—e, w+¢], 8¢ [ —1s, 4 -+1s] we have -
(112.9) P()~F(s) _ Ty(y)—Ty(s)
(y—s)* (y—s)
So, our integral becomes
248
i
(1.12.10) — [ oty ( f -———)—-J(f—)qo,(a« s)ds)dJ

(y—s)?

Pick p >1 and such that 1/g+1/p < L (this is possible since ¢ > 1);
define » such that

L—a

11
T—.p-{_

m.] =

has the desired property with constant €,
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Observe that the inner integral in (1.12.10) belongs to I since ¢, (- s)

belongs to .L¥ and f, e L% so an application of Holder’s inequality gives:
r—1

(1.12.11)  Opgligllo(2e) ™ [ fally* lelly

=1 _r_-—l zz~ L wtes .
<27 Oplgleos 7 (7 7 | f ot siPas]” (] ifwras)™
x—G8

< Opg19lloo LI (] f17) (@) T
where M (|f]%)
timaie for | F@-F@) Fo—a-F@] .\
Bvtimate for .{o"’“(”){m_,fb.[ o T g e
Observe that for |w- y| >¢ and |s| < }¢ we have

‘ —F(y) F(w)-F(y)|< . LN @
[(w—s)—y)?

gtands for the maximal funection of |f|%

(112.12)

(@—y)* (& —y)*
§o the integral turns out to be bounded by
(1.12.13) Olgll M (f) (@

Taking into a,ccount the bounds found for the integrals and also

(1.12.6), we get the desn‘ed estimate for the maximal operator T (f, 9)
and therefore part (i) is proved.
Proof of part (ii). We are going to proceed as we did in Lemma 1.2.

Take f> 0 and write f =f~}-f, where 0 <f< 21 a.e. f: ‘%jfk; ‘where
fi. supported on I and ff fpdt = 0, I,nI; = @, calling ¢, to the character-
istic function of I,c. k ‘

W = Im ffdt and  fi = (f(®) — pe} de(®);

also:
A2 fit < 24.
]Ilcl 1y,
As befow we have @ = UIk and. G,L UBIk Finally we define
Fy(y) = f Fe(t)dt. Now, we &re going to evalumte E(T f,9) > 4). Since

fe L’, we hmre

(112.14) B, 9) > 1< —g—uynﬁo f [f P at.
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Since f’ < 42, we have

40HyH o IIgll
i, 2 & e 1R < s 0 N0 r
(11215) [, f [f'Pat< j 11 di < j If)dt.
—00 -
By a homogenity reasoning we change |lg|& to [lg|l, in the inequality
(1.12.15).

Our next step is to bound |7 ( f, 9)(2)] for ® belonging to R'— GA_

As in previous cases, we have:

(112.16)  IT.(f, ) (@)
[ :/Ll- . u fai
<2 n If) oy 113 gl / T

i~5-<|x-:/[<150
and as in the previous theorem we get the bound.:

112.17)  T(f, g)(a)

< 24 iA f’f’ f|1 Fr "”"}')"z' 9|2y + O () (@) g

We finish the proof by observing:

(1.12.18) f (2 i f il it f'i?Tl-Z(l'L“j)"i'
<01§’m fufk!dtfwt olnglmz flf;cldt

< 40l f flas.

-0

Now we are going to proceed to prove ( iif),

Cases (a), (b) and (¢) can be handled very similarly; so, for the sake
of simplicity we are going to deal with case (e¢) only.

We know that if fe I' and ge L' from Theorem A. 1L Tollows

(1.12.19) BTy f, > 1)< M ISR g

tSllllptjpose we have two regular measures y and u, te spectively. Suppose
&

oo oa
(1.12.20) Vy<oo, Vu< oo
- . ~00 i
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Let y, and u, be sequences of absolutely continuous measures converging
weakly to y and u, respectively. Suppose further that

(1.12.21) \/ Va2 \/ 2

o0 Q
Vi <2V ap.
—00 —0

Fix N natural and arbitrary and consider e, &,, ..., &y such that & > 0,
t=1,2,...,N. As a consequence of the Egoroff Theorem applied to
Toy(ur ) on I (interval) we get T (y,, )T, (y, u) equiuniformly
in I except for a set I, of measure less than

/1“‘ (V)’)"2 \/,u)”2 for fixed A > 0.

Consequently, there exists a number ny(A) such that

(1.12.22) 1L, (Yng s Hong) —

Toyly, ml < 34 in I
except for the set 1. '

Calling JT (Y, u) = bllp IT,, (¥, #)] we have that in I—I, we have
the inequality

* #*
(1.12.23) B(Tx(ys #) > 2) & BUTy(Yugs tng) > 2]

OOnsequenﬂy, we have on I

(112.24) B{Eyly, ) >4 < 35 (v /P i'?my)”z

Notice that the constant 40 does not depend on I or N. Therefore by
taking limit we get the desired inequality in the general case.

In order to prove the pointwise convergence, take a typical case,
1”.01 example u singular and y arbitrary. Decompose u = u;+u, Where

\/ ,u9< &% and suppp, = F/F closed and |F| < e Consider ¢ = B'—F

a;nd o belonging to that set. Then -
(1.12.25) T Ty (py o) (@) = Toe)(v5 1) ()
Goer

where §(w) = digtance (@ Lf’.l
On the other hand, im|Ty(y, ue)(®)| >& if o belongs to a set of
A0

measure at most
2 12
1 1
| Ve = 08\ V e
-0

This finishes the proof.
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II. THE n-DIMENSIONAL CASE

2.1. We are going to consider functions K(») defined on R" that
are homogeneous of degree —mn —1 satisfying one of the two conditions:

(211) ()  K(a) is even and [ |K(2')|do < oo,
P
(b)  K(2) is odd, [E(e)aydo =0, j=1,2,...,n
x
and [ |K|log* |K|do < oco.
& .

We are going to consider the operators

(21.2)  dim

60 [g—y|>s

K(o—y){F(2)—F(y)}g(y)dy = T(gradF, g)

where K(z) satisties (2.1); gradFeIf(R"); geL”(R"); 1< g< oo,
1<p<ooand

0<1 P-1<1
p g

Condition (2.1.3) says that p and ¢ cannot be infinity simultaneously,

and also that p could be ¢/(g—1), that is, ¢’s conjugate. We are going
to consider more generally the operator '

(2.1.3)

(21.4)  T(gradl,g) =Sup| [ K(o—9){Pe)~Fly)}o(s)dy
or: e X
T(grad P, g) = Sup |T,(grad 7, g)].
ex>0

2.2. TarorEM C. Suppose that K satisfies conditions 2.1, (2.1.1)(a)
or (2.1.1) (b). Suppose that gradFe L4 (R™), ge L?(R"), p >1, ¢>1 and

1 1
0< — =< 1.
? g
. 1 11
If 7 is given by — = — 4 then we have
r 9 »p .

(i) IF(grad P, g)l, < Oy, lgrad Bl lgl, whers G, , depends on p, g
and on2f|K| do if K is even and. on flKllog‘* | K|do ifzi?.' is odd. ’
z

(i) To.(gradF, g) converges pointwise a.e. and in L -norm to the limit
operator I'(grad ¥, g).

icm
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Remark. Here, the novelty consists in the limiting cases p = ¢/(¢—1)
1jp+1/g=1, p>1, ¢>1, r 5 oo, and alzo the case p = o0, ¢ =T,
q>1. (See [1] and [3].)

The proof of this theorem follows from the one-dimensional case by
the method employed in [1] (rotation method) in the case K even. In
the case I odd it is reduced to the case K even in the way it is done in [1]
with only one variant, an adaptation of a lemma (Section 3, page 6 in [1])
of the maximal type. Actually it will depend only on parts (i) and (iii)
of the coming lemma.

2.3. Lumma, Let %(x) be a function belonging to L'(R™); suppose
that 4t satisfies the following properties:

2(x'
() k(0| < 5, 823 [2(0)dr< 5

(b) for some po =L if Ky =& k(e 0] we have
o ,
Bisup kgl > 1 <> [ gy
>0 Z}'O R

where Oy, does not depend on g.

Let I be a function defined on R" such that grad Fe L7; let g belong
1o LP and consider the operator i
I ()

—F(y)
——t ay .
- Hg(y) Y

f’(gmdlﬂ, g) = supUIc,(m—y)
>0

1 1 1 1 1 R
DIfp>py; ¢>1l;—=—+—; 721 (— +—< 1) the following
is valid ror 1 r o4
*
I (gradF, 9)l < Cp,q lgrad i, glls -
(ii) If we replace properties (a) and (b) of the hypothesis by the fol-
lowing one

(a) T(w) == k(lol) < »—»-—4—;;;‘3, where A s & fized constant,

(L Jof*) *
we have

) .
(e) E(f;."(griullf’, g) > A< —i’;“-”— llgrad B llgl, where 1< p < 00y >0

1,.
¢ »
If p>1, ¢>n, then

1 1
(dimension) and —= o
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(d) [{T(grad P, )} dy < O, lgrad T, gl
fri)

Notice that here'r might be less than 1. ‘

(iil} Suppose n =1, calling f = ', and suppose that p > Poy > 1.

Then
FEE , . 1 1 1

{ / E0 Y g} < O llglghy; = = TR

If p = po, ¢ = 1 then:

* d
B(T > )< 7?“« 171z g,

Proof. We are going to start by the one-dimensional case. The one-
dimensional case will follow as an application of Lemma 1.8, in which
(as the reader will notice), if we change the hypothesis 1< p < p, hy
Po<P < Py, in which we have replaced 1 by p, and 2o by a p, > p,, we
have the same type of conclugions. Of course, the conclusions will be
valid for the range of p sueh that p, < » < p, for the strong type, and
Po < P < py for the weak type.

From this remark, we see that L;"(f, g) verifies (1.7.1) and (1.7.2)
with ‘

. S R (
(281)  Ty(f, g)(a) = 0_>1J iy ,f il ]j E =y 10y
and T', =T, = 0.

Since (1.7.1) does not need to be checked in this cage according to
the hypothesis, we have to check only conditions (1.7.2).

Let f be given by }'f,, where each Ju is supported on I, ff,di =0,
T I
and I;NnI; =@. So, in this case we have g

(2.3.2)
o | 2@ =T (y) v [ 7y ()]
i k(o y)}-—m j.a(wdy »«21 hlo=y) 2 o)y

00 B v
I we(UBL) and Fy(y) = [f;()dt. Recall that [y ()] < &0/ |6~ )

J=1

‘= 0/lw|. Thus we get

(2:3.3) Iz gl<o D) [ 17_1_71— By (3) g (9 dy

J=1 1;

and for d(z, I;) > 2|I| the right-hand member of 12.3.3) is dominated
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by (2.8.1) for a suitable value of the constant. This finishes the proof
of the one-dimengional case.

Part (i) follows from the 1-dimensional by an application of the
“method of rotation” which is valid for r > 1. We shall be concerned
now with the proof of part (ii). We are going to define two avoiding sets
@, and F; defined in the following way:

(2.3.4) TGy = {M(grad ) (m) > 2%
where
1 .
M (grad ) («) = Sup -~ {|F(2) — F(y)|}.
v e—yl
‘We have for & the estimates
0, T N yla
(2.5.5) 6l < 3 f igrad Fitdy or < Dgggenan (19

Recall that, according to Lemma 1.4, M (grad F)(x) is strong type ¢—¢
for g > n. - o

The set I', will be associated to the decomposition: 0 <g=g+¢g
where |§] < A" a.6. and

\F

(9 (@) —my)dy (@)

Qa

2.3.6
(2.3.6) p

—-

where m; = T}T f g(y)dy, ¢; characteristic function of I, I;nI; = Q,'
I ’

i # .
The I; have been chosen such that
(2.3.7) e f gy < 2,
3. . | F
Also R® MCOJI,, 0« g < M a0, Now, we define F; to be
! o
(2.3.8) Iy = 8L

1

where BI; stands for a dilation of I five times about its center.
Jopsider & point @ in R"— {F;NG;} and also

\F(@) =@l

~ 12
(2.3.9) [Bio—p— = 9w
nn
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The absolute value of (2.3.9) is dominated by

&

.._yl)(n+1)/z lﬁ(y)ldy -+

(2.3.10) AM (grad F)(w) R{ (e + |
+A M [grad F](a) f m;]mm 19 )idy.
nn

The first integral of (2.3.10) is dominated by

(2.3.11) AQatre s sinee  |g(y)] < 247
Therefore

* ~
(2.3.12) T(grad P, g)(2) < 0.

In order to dominate the second integral of (2.3.10) we have to take into ac-
E

" count the following property of the kernel W = K, (5—y).
If g—y| >1s, I>1 and |y —y,| < s, we have
N A K«(ﬁwy) =
(2.3.13) O< =221 <0
Eo—y) ="

where C and 0 depend on I only.
On account of this previous remark we have

2.3.14) |T,(gradF, g)(a)| < A0 > — &
(23.14)  |T,(zad T, §)()] OkZ FETm——T ka :(3)1dy.

Recall f[gk Y dy < 2™ I
On account of this last estlmate we get
(2.3.15)
&

I3 rlg @ Fion+2 7/
IT.(grad F, g)(z)| < AXT20 02 prlp f T

dy < 0y,
_Observe that for |F,| the following bounds arve valid:

(2.3.16) 17,
Also

< B UL < B™D gy (2710).
1

5n
mi<— [loray.
RN
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Now by selecting ¢ > 2max(C,, ¢,) we get

(2.3.17) {T(grad ¥, g) > 04} ¢ G,UF,.
That is,
(2.3.18) D (02 < |G4] + 1T,

F(grad F,g)
On account of the estimates we have gotten for |64] and [F,| the
thesis follows.

24. Remark, When analysing the case (ii) of the previous Iemma'.,
we see that premissible values of r are in the range 7 > u/(n -+1)

2.5. Remark. If we replace in part (ii) the condition ]K(m)
<t A/[e2+|w—y|PJ"*® by the more general one:

(2.5.1)

w =
0< <1K }<0 it jp—yl<s, |y|>lsforsomel>1,

where C, C do not depend on @, y or s, but on I only. We still have is this
case the same result.

6. We shall Be concerned now with the *‘smooth case” of the
n~-dimensional commutators. Besides the integrability conditions imposed
to K () in (2.1.1) we are going to impose the following one:

(2.6.1) j, 1K (& +h) — K (2)| [2|de < O

21>k

where I > 1 and ¢ does not depend on k. As before, we are going to assume
that grad Fe LY g >n, ge I?, p> 1 and 1/p+1/g > 0.

2.7, TuworeM D. Under the assumptions made on K in 2.6 we have
the following estimates for f(gmdF ) 9): }
(i) if p>1,¢>n, L/p+1/g > 0 we have
[/ [ gad P, g)T dy | <
‘nr
where 1fr = 1[p 41/q;. Oy, q does not depend on F or g-
(11) If u is @ finite measure defined on R™ we have .

Op,qllgrad F'l, gl

lgrad F[ZerD [V ( Mj ]a/(a+1)

* 0{1
E{m(gmalﬂ, 1) > 2 < Ty

where V(u) denotes the total variation of w on R" and q > n, O, depends
on q only.

* o PR
o MUl TRl LY
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In order to prove the boundedness of the maximal operator in the
convenient spaces we are going to use the type of methods introduced
in Part I, combined with an adaptation of the method introduced in
[6] by N. M. Riviére.

- Proof. We are going to consider two special sets ag before, ¢, and F,;
G, is going to be defined as:

(2.7.1) @, —-{y, e > 7 q}_
Calling ‘
M(grad F)(y) = supl—w,

we have according to Mary Weiss’ lemma (Lemma 1.4) that M (gradf)
is of strong type ¢—¢q it g >n.
Therefore
o
(2.7.2) 6] < Daggraam (A7) and also: |Gy émr— f[gradF|“dy, g>1.
Let us define F,. Oonslder a family of non-overlapping cubes {I,} such
that for g > 0 a.e. we have

(2.1.3) P f gat< 2m o,

[Z]

g< A ae. in R"-— UI,C.

We are going to define F, to be U lIk .Aﬁ we did before, we decompose:
g _g-l-g with g<2”l”1’ a.e. and g —Z(g my) éy; where ¢, is the

characteristic function of I, and m; = f gdy. Notice that F, admits

Iy,

I ol
the following two dominations:

(2.7.4) S f Py, i< Dy (1),

where A(g) is the strong-maximal function of Jessen—Marcinkiewicz—
Ziygmund (see [7], Vol. 11, p. 305). We see, on account of the decompo-~

sition ¢ = §-+,
*
(2.7.5) E(T(grad.lf", 9) > A) < B(T(grad ¥, §) > ) +

* ] |
+B(T(grad F, g ) > $4).

icm
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Bstimate for B(T (grad F, g) > }2)
It follows from Theorem C that

(2.7.6) E’(L;’(gradﬂ’, 9> <20

(0
=2 I31e, f lgrad Py

forall ¢ > 1, and recall that g < 22" a.e., where as always 1/r = 1/p -+1/q.
So it follows .

(2.7.7) B(T (gmdr,g ) > 1)< 24(““) f lgrad Fledy.

By defining

K

Dgoam (i) = Diigraar,g(4);

sup
ollgoos2™ 1

we also see that

* * : *
(2.7.8) B(T(gradF,g)>4i) = E(I(gradﬁ,rﬂpg) > 32" < Dygraamy 3479).

By the interpolation lemma 1.5 we get
%
f Diigmaan (341 72 a2 < 0, [ |grad Plidy
Rr®

for 1< g< oo, 1/r =1/p +1/g. .
This finishes the estimation of E(T (gradlf’ 2 9) > ).
Let us consider now the part E( (gradF,q) > »}}.)

o0
We are going to consider #¢ R*— {G;UF,} and § = Y g,()
1

D | E@—yH{F@) ~Fy)gly)dy

1 |e~yl>e

(2.7.9)  T,[grad P, 7)() =
Calling 8, to the sphere of center # and radius & > 0, we shall designa:te
by %' the family of indices for which I;nS, =@ and by %'’ the family
of indices for which I,n08, # @ (where 08, designates the boundary
of 8,). Then clearly

(2.7.10) ﬂ(gmar,g = [E@—y)[F (@)~ Fy)lgy)dy +
K T
+) [ E@—y)[F@)—F@)]ny)dy
K |lo—yl>e

We are going to estimate the first sum of the right-hand me_mber.
Taking into account that the ¢, have mean value zero, we have (y, is the
center of I,):
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[ E(a—9){F (@) —F(9)}9:(y) dy
k

(2.7.'11) >
& I
D F(a)—Fly) [E(@—9)g(y)dy+
Iy :
"I"Z f{F(ylc)
&
F(2)—F(y) f [E (25— ./) K (2 —y3)190(y) Ay -+

+2f{lf’yk

Batimato for 3 (F (@) —F(u0) | (£ (o~9) ~ K (040 10u(9)dy

‘We have that the above sum ls dominated by:

fi

k'

—F (Y} E (2 —y)g,(y)dy

73

F(y)}r K (o~—y)gr(y) dy

(2.7.12) 01(90, grad T, §)

IF (0)— yln
|w Yyl

Observe that in R"—[G, UF,]

[ (@) — (3]
lm“f‘/k\

| f [ (6 —9) — K (0= )| lo— 33l .

< M g,
Therefore :

(2.7.13)  E(6y(=, grad F, 7> A< 0, (z, grad F, g)de +

R (Gur)

sl

+G | HE < 16l +IF +—— D [ lgu(o)l .

k=1 Iy,
Qbserve that

(2.7.14) Oprle=2 3omgriy |11 <027 |1
Je=1 '

Consequently :

(2.7.15) Bl6,(w, grad 7, 5) > 2] < OLI6y] +17311-

. Bstimate for_ gllf K (z—y) [F(y) —F(y)1gu(y) dy

‘We are going to call &; to the diameter of I, and

Z fle )1y~

i=1 1y,

(2.7.16)  6,(x, gradF, §)

Fy)llgi(y)\dy.-
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Observe that according to Lemma 1.4 we have S

@7.47) 1B () —F ()] < Ogy ly— vl (

1 /gy
[y — 9l lgmdwods)

ls—ypl<ly—ygl
for some g, such that n << ¢, < ¢.

Observe that |y — y,|* ™% < 65"/ gince g, > . Consequently, we have .
(2.7.18)

llag
|F(yz¢)—1f’(y)l<0%5k[——— f igmdlf"i“Ods] .
[l

0y

Call

1 ay
Ay(grad F) = sup (_ f Igra.dquﬂds)
1o{ey \ I ;

where the I are cubes with sides parallel to the coordinate axes. Clearly,
Ao (grad F) is strong type g—gq for all ¢ > g,.
We are going to consider as we did before x< R" —[G,u F;].

(2.7.19)  6y(a, grad F, 3)
-9 1 g ]K z—y)
< 02 (T f [gmdF[““ds) A _}‘[’(;—%)T]_I |9l dy -
S (Ll iy, le—ui>18, x—Y
Here (¢ —y) = (2—y)/lw—y|.

On account of (2.7.19) we have:

(2.7.20)  H(04(z, gradF q) > 4]

<16+ 02(0, grad ¥, §)do

R —[G4UF;]

o ked 1 . Yag .
<72(Tz‘,?1 f oy f 104(0)1dy + 1G]+ 1

gy
< oot o= 12(]“ f |gra,dFI““d?/) L+ 1641+ 1P
k

< ggrti et Ao(grad Fyds + G, + | T,
2] ,.
< 02" |F,| 4 02" 20 Aqg(grad F)ds + 16| + |y
Ag(gradFy>arlo
Consider a family of cubes J;, non-overlapping and such that

(2.7.21) pUL e 2 f Ag(grad F)ds < 2" 41
_ el
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and in R"~UJ |J4l, 4o(gradF) < 477 a.e. On account of the preceeding
: "
remark the integral in the last member of inequality (2.7.20) is dominated
in the following way:
. ol
(2.7.22) 02 [ Ay (grad Fydy < e N AR
o 1
. U7
Clearly, () = {4(4y(grad F)) > A7}, Therefore, the right-hand member
1
of (2.7.22) is dominated by:
' (2.7.28) 02" D 4t (graiy) (A7) .
Collecting estimates we see that
v (2-7-24) E[Bz (my gradlf’, Z) > Z] < O{IGJ.I + I-Zﬂll + DA[AogmdF)](”/?)}-
Now, let us go back to the second sum of (2.7.10), that is,

| E@—y){F@)—F@)}an)dy.

k' |ewyl>e

Recall that for all ke {k""} we have I, N 88, = @. The fact that d(w, I;) > 14,

and d(2, I;) < s implies that there exist comstants J and O depending
on ! only such that:

(2.7.25)

(2.7.26) e {y;0c< |o—~y| < Cs}, ke {k'},

where ¢ > C > 0. We are going to define the functions §,(y) in the fol-
lowing way: ’

(2.7.27) 9e(¥) =19x(¥) b(¥) (1 — ) ~] 1 ()

Where: ¢x(y) is the characteristic function of I, ¢, is the characterigtic
function of §,, m, is the mean value of 9:(9) Py(y) (1—¢,) over I,,.
The g,(y) satisfy the following properties: '

1
— -8 91
iz ka g ()] dy < 2%+3 i |

(2.7.28)
,,,T,% < Qfh2 1rlp,

159 < lge(y)] +2"H2 272 (),
and finally

lf Gu(y)dy = 0.

icm°®
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Congider the following sum:
(2.7.29) [ E@—9){F@)-F@)}g)dy

K le—yl>s
= 2 JE@—{Fe) -T@nw s —4)dy.
The right-hand member o]; (2.7.29) can be written in the following way:
(2.7.30) %,’If K (@—y){F(2)—F(y)} Giy) dy +
k + ;mkzlf E(o—nF(o) =)
for we R" — [G4U F,;] we see that the firgt term of (2.7.30) is dominated by
0, 0,(z, grad 7, ;) +0,0,(x, grad ¥, g*)

(=] *
where g; = > |9yl - A" 3, (x). The funections 6, 0, and g do not depend
i

* *
on ¢ > 0. Given the form of g, we have for §;(», grad ¥, g) the same type

of estimates we found for 6;(z, gradF, g).
The second term of (2.7.30) is dominated by

OM(grad F)(2) i |

- =
ca<|z—y[<ce

(2.7.82) K (z—y)ldy < 0'2

for weR"—{GHUF;}
or better the estimate

(2.7.83) O M (grad F) ().

Observe that )
(2.7.34) {M (grad F) P > 1} = {M (grad F) > A"
Therefore .

(2.7.35) E{M(grad F) > % < Dpoar (A0, g>n.

Since 0,(w, grad.F, ;) do not depend on & > 0, we have

(2.7.36) 1(gradF, g)(@) < olj 6,(@, grad T, §)+6;(w, grad F, g) -+
- + O 4P M [grad F'](x).
On account of the estimates we have gotten for the measures:
E{Hi(w,gl:a,dlf’,?l)>ﬂ}, i=1,2,
B{6,(w, grad Ty g) > 2}, §=1,2,

B{® Y [grad F] > 2},

(2.7.37)
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we get parts (i) and (ii) of the thesis (for the case of absolutely continiious
measures in (ii)). The general case in (ii) is obtained in the same way
as we did in Theorem B and it is not necessary to repeat the argument,

2.8. Remark. As a corollary we have that T,(gradl, g) converges
a.e. to T'(grad I, g) also in the metric I” under the assumptions of hypo-
thesis i).

In the case (ii) T,(gradF', u) converges &.e.

References

[1] B. Bajsanski, R. Coifman, On singular integrals, Proceedings of Symposia
in Pure Mathematies, Vol. X, pp. 1-18,

[2]1 A. Benedek, A. P. Calderén, R. Panzone, Convolution operators on Banach
space valued functions, Proceedings of the National Academy of Sciences, Vol
48, No. 3, pp. 356-865. ‘

[8]1 A. P. Calderén, Commaulalors of singular integral operaiors, Proceedings of
the National Academy of Sciences, Vol. 53 No. 5, pp. 1092-1009.

[4] — Integrales Singularesy sus aplicaciones a ecuaciones diferenciales hiperbdlicas,
Cuxsos y Seminarios de Mathemética, Universidad de Bucnos Aires, Fasc. 8.

[6] Comunicaciones a la Reunién Anual de la Unién Matemética Argentina, Agosto
1971, Argentina.

[6] N. M. Rividre, Singular integrals and mulliplior operators, Arkiv for matematik
9 (1971) No. 2, pp. 243-278.

[7] A. Zygmund, Trigonomeiric series, 2nd Ed., Vol. I and. IT, 19569,

UNIVERSITY OF MINNESOTA

. Received November 8, 1973 (751)

icm°®

STUDIA MATHEMATICA, T. LI (1975)

Fractional integration on the space H* and its dual
by
UMBERTO NERI (College Park, Maryland)

Abstract. The theory of fractional integration and generalized Sobolev spaces,
modeled on the L? gpaces, presents certain gaps in the “extreme cases” p = 1 and
p = oco. We show in this paper that the standard results for 1 < p < co have direct
analogues at the extreme cases if we replace L' with a smaller space H?, and L® with
a larger space H® = B.M.O. which is the dual of H.. We also characterize a new
Banach space whose dual is H*, establishing thus the non-reflexivity of H' and H™.

Introduction. The theory of fractional integration and generalized
Sobolev spaces, modeled on the Lebesgue spaces L7, presents certain
gaps in the “extreme cases’’ p = 1 and p = co. The purpose of this paper
i to show that most of the results obtained when 1< p << oo have direct
analogues at the extreme cases if we replace I* with a smaller space H?,
and L™ with a larger space H* which is the dual of H*.

In the first part of the paper we describe some basic results in frac-
tional integration using certain modified Riesz potentials which, though
essentially equivalent to the widely used Bessel potentials, are somewhat
simpler and better suited for other applications. Short proofs have been
included for the sake of completeness as well as for easy reference when
the new results are presented in the second part. Some of these new results,
though usually not surprising, may also prove to be of independent interest.
I wish to thank Charles Fefferman for informing me of the result described
in Remark 2.6, for pointing out an easy proof of Theorem 2.11, and for
other useful hints that came up in our conversations.

Our notation is quite standard. Points in Buclidean space E", n > 1,
are usually deénoted by ; those in the dual space by {. Moreover, (@, {)
w2 @y Oy b oo o Byl 2|2 = <@, @), and |F| denotes the Lebesgue measure
of a soti E < I For any multi-index a = (ay, ..., &) la] = a3+ ... +0y,
D¢ == .. Din where D; == (2mi)” *(0/0w;) and these demvatlves are

- usually tcﬂ\en in the sense of distributions. As usual, & denotes the class

of smooth (C*) functions with compact ﬁupport in B, 2(U) the class
of smooth functions with compact support in the open set U, & denotes
the class of smooth rapidly decreasing functions and (its dual space) &*
the elass of all tempered distributions.
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