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we get parts (i) and (ii) of the thesis (for the case of absolutely continiious
measures in (ii)). The general case in (ii) is obtained in the same way
as we did in Theorem B and it is not necessary to repeat the argument,

2.8. Remark. As a corollary we have that T,(gradl, g) converges
a.e. to T'(grad I, g) also in the metric I” under the assumptions of hypo-
thesis i).

In the case (ii) T,(gradF', u) converges &.e.
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Fractional integration on the space H* and its dual
by
UMBERTO NERI (College Park, Maryland)

Abstract. The theory of fractional integration and generalized Sobolev spaces,
modeled on the L? gpaces, presents certain gaps in the “extreme cases” p = 1 and
p = oco. We show in this paper that the standard results for 1 < p < co have direct
analogues at the extreme cases if we replace L' with a smaller space H?, and L® with
a larger space H® = B.M.O. which is the dual of H.. We also characterize a new
Banach space whose dual is H*, establishing thus the non-reflexivity of H' and H™.

Introduction. The theory of fractional integration and generalized
Sobolev spaces, modeled on the Lebesgue spaces L7, presents certain
gaps in the “extreme cases’’ p = 1 and p = co. The purpose of this paper
i to show that most of the results obtained when 1< p << oo have direct
analogues at the extreme cases if we replace I* with a smaller space H?,
and L™ with a larger space H* which is the dual of H*.

In the first part of the paper we describe some basic results in frac-
tional integration using certain modified Riesz potentials which, though
essentially equivalent to the widely used Bessel potentials, are somewhat
simpler and better suited for other applications. Short proofs have been
included for the sake of completeness as well as for easy reference when
the new results are presented in the second part. Some of these new results,
though usually not surprising, may also prove to be of independent interest.
I wish to thank Charles Fefferman for informing me of the result described
in Remark 2.6, for pointing out an easy proof of Theorem 2.11, and for
other useful hints that came up in our conversations.

Our notation is quite standard. Points in Buclidean space E", n > 1,
are usually deénoted by ; those in the dual space by {. Moreover, (@, {)
w2 @y Oy b oo o Byl 2|2 = <@, @), and |F| denotes the Lebesgue measure
of a soti E < I For any multi-index a = (ay, ..., &) la] = a3+ ... +0y,
D¢ == .. Din where D; == (2mi)” *(0/0w;) and these demvatlves are

- usually tcﬂ\en in the sense of distributions. As usual, & denotes the class

of smooth (C*) functions with compact ﬁupport in B, 2(U) the class
of smooth functions with compact support in the open set U, & denotes
the class of smooth rapidly decreasing functions and (its dual space) &*
the elass of all tempered distributions.
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The Fourier transform of a function (or tempered distribution) f is
denoted by f, and is taken with exp( —2nilw, >). The convolution of f
and g is denoted by fxg. '

The Riesz transforms R, are formally defined by (R;f)" = (/2))F,
j=1,...,n. For fel, 1< p< o0, R;is given by a principal value
convolution, with a kernel which is singular in the sense of Calderén-—
Zygmund. For fe L™, a slightly different integral representation is required
(see [2]). The same remarks apply to the Hilbert transform on Z* which,
formally, is given by (Hf) = —iagn((,‘)f. For 1<p< oo and any
ke N = {natural numbers}, we denote by ILf = Lf(E") the Sobolev
space {fe LP: D°fe I” for all |a| <k}, equipped with the norm [1£iL,7e
= [Ifl,+ }gjku])“f“p where |fll, is the L® norm of f. Finally, for brevity,

Id]
we let B = B™—{0}.
§ 1. Review of fractional integration. Let de (®(E") be a strictly

posttive radial funetion such that a(¢) = |¢| for |Z| = 1. For any real s
we define on %’ the operator I° by the formula

(I'f)" = a()~f.
On &, I’ has 2-sided inverse I, where (I°f)" = d(t)"f, and I° is the

identity. Hence, for all real s, {I*} is a commutative 1-parameter group
of translation invariant operators on .

For any s > 0, I'f = g, «f is a convolution with an integrable, vadial
function g,e 0°(Ey) which is rapidly decreasing at oco. More precisely
(see [5], formula (11)),

O |w"™" + og o] ~"log |,

Pee S,

o) g(lal) = near 0,
away from 0,
where ¢, and ¢, are constants, with ¢, = 0 if 0< s< n or if s is not an
integer. In particular, for any s > 0 and f ¢ L7, I’f is defined amd |I°f||,
< Gilifllpy 1 <p < 0. It follows from this and a result in [4] (p. 184) that
for any s > 0 and any ke N, I* maps Lf into itself continuously, with norm
<0y, if p<< co. For s =1, we have ([4], p. 187-189) the following
Lemya 1.0, If 1<p< oo and k=0, the operators It: L —LP,,
and I7': IE L2 are continuous.
For n > 2 this lemma follows from the formulas

(1.1) D,I* = By~ Ry, + Ky,
(1.1 I = A— AR, + K,
whereﬂKl, ...y K, are convolution operators with kernels in &, and where

4 = 1Z’R,.Dj satisties (Af)" = [¢|f for all fe &. For n = 1, the same argu-
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ments yield

d
(2m)7 = = H—HIG, + K,

and again (1.1') where now A = (27:)‘1H6% and H is the Hilbert trans-

form. Note how (1.1) shows that Lemma 1.0 fails for p = 1 or oo. .

Ay in [4], we introduce the spaces #? = £%2(E™ as the images .#?
= I°(I?), 1 € p < oo and s real, equipped with the norms || fllp,e = L% flly
which. make them Banach spaces (of tempered distributions if s < 0)
isometrically isomorphic to L?. As remarked in [5], for 1 < p < oo, these
spaces coincide with the spaces LI? of [1] and hence.for s = a > 0 with
the potential spaces #2 in [6]. From this definition and Lemma 1.0 it
i evident that

(1.2) 8 =1I2, it 1<p< oo and keN.

(Compare with [6], Theorem 3, p. 135.) Again, (1.2) fails for p =1 or oo,
except when » =1 and & is even ([6], p. 160).

Let us verify some rather well-known properties of the £%.

TeEOREM 1.1, Let 1 < p < oo, and let r, s, t be real. Then:

(a) I*: L0—>L7, o i8 anm isomelric isomorphism.

(b) If s<t, £¥ c £% and the inclusion is continuous.

(¢) If p < oo, both & and X%, = (" L% are dense in £5.

8

Q) If p< oo and g = p[(p—1), L2, is the dual of L% with dual pairing
ey = ffgdm, for all fe £%, and ge %,

which can be emtended to a continuous bilinear form on L5 xL%,.

Proof. (a) follows directly from the group property I°I" = Jr+e,

For (b) note that, since t—s > 0, the operator I'* is a convolution
with an integrable kernel. Hence, if fe #7,50 f = I'g with ge IP, we have

oo = L2 gl < Olgll, = Cllfll e
||f”m(c) '.gf P ﬂlﬁoo, Sjgig dense iﬁn L?. For any real s, since I°: ¥ is
one-one and onto, and %2 =I*(LP) is a continuous image, it follows
that & is denge in Z%. Hence, by (b), £ is dense in %% for p < co and all
t > 8. Therefore, %, is dense in #7. ‘

{d) We may suppose that s > 0, so I*f = g,=f with g, L* and md%al.
Henee, for any fe #2, and g« £%, we have that I*ge 7, and, interchanging
the order of integration, we obtain (f, I°g> = (I°f, ¢). Since I~°fe %,
it follows that <f, ¢) = <I*I7*f,g> = <I°f, I’¢>. Thus, by Holder’s
inequality, '

(1.3) I<Fs o1 < I Fllp 1 gllg = 1 llp,slg g, —s-
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Since .#%, is dense in #7, we can extend {f,¢> by continuity to
LY x &% and then (by the Hahn-Banach Theorem if p =1, ¢ = oo)
to #Z x%%,, so that (1.3) still holds there. For this extended form, if
fe#? and ge £%,, 80 I7°f = ue L? and I°ge L%, we have

I, gy = <u, Ig) = [ u(l°g)dw.

Interchanging the order of integration, we see that (u, I*¢d = (I°u, g
= <{f, ¢>. Thus, {I7°f, I*¢> = {f, ¢> for all fe 2P and ge 2%,. Let now
A(f) be a continuous linear functional on .7 . Since f == I« where we L?,
1< p< oo, A(f) = A(I*w) is a bounded funetional on L? and hence A(f)
= (u, gy where §e L Letting g = I7*§, we conclude that A(f) == (u, I »
=<I7f, gy =<{fy9)- m ‘

If p< oo, 2 is dense in L. Thus, (1.2) and Theorem 1.1 rveadily
imply that 2 is dense in every £7, if 1< p < co. We have also that,
for all real s,

(1.4) D;: £1-»#%_, is continuous, if 1< p< oco.

In fact, D,I° = I°D; so that D; = I*"*(D,;I')I~*. Hence, by (1.1), the
conclusion follows from the continuity of R; on I?, 1< p< oo. Note
how formula (1.1) points out that, for p =1 or oo, analogues of (1.2)
and (1.4) should hold if we replace L* and L* by suitable spaces on which
the R, are continuous (see § 2).

As is well known, if p > ¢ there are no non-zero translation invariant
bounded linear operators 7': LP~»Lf% but if p < ¢ there are many.

TurorEM 1.2. Let T: LP—L% be a tramslation imvariant bounded
linear operator, where 1< p << q< oo, and let s> 0. If |T| is the norm
of T2 LP—Lf then:

(a) T: L2} is bounded, with norm < || 7.

(0) If p>1, T has & unique bounded ewtension T: P FL,, which
commutes with tramslations end differentiations and |]i‘|| = |||l

Proof. By a familiar result (e.g. [4], p. 209) there is an fe &'such
that Tu = fxu for all we . This readily implies that TI° = I*T on &.
It we S, |Tuly, = ITL(IU)lye = |T(I°0)ly < NIl = I Jully,e-
Since & iy dense in %P, (a) is established.

Let p' =p/(p—1), ¢ =g/(g—1), and T': L¥-I* denote the
transpose of T, that is, {Tw, v) = {u, T'v}. Then, 1" is again translation.
invariant and, like T', commutes with differentiations. Hence by part (a),
T': 27 —2% is bounded with norm ||T"], < W) =1, It Tis the transpoge
of the restriction of T’~ to £%, then, by part (d) of Theorem 1.1, T:
2P, Moreover, |T] = ||T']|, < |IT]|. Again, T commutes with transla-
tions. Let us verify that it commutes also with differentiations, and
gives the desired extension of 7.
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Tor all ue L) , and ve#?, which is dense in £, <§’D,-u, )
= (—1)u, D;I"v) = (—1){u, T"D;v) = <Dji’u, vy, Moreover, for all
we L? and ve 2%, which iy dense in I, (Tu,vy = {u, T'vy = {Tu, v).
Tence T = T on L?. Finally, since L? is dense in %2, and el —FL,
is continuous, it follows that this bounded extension is unique and that
Wy = 7. - :

The following description of Lf and its dual is often useful.

TumoreM 1.3, Let 1< p< oo and ke N. Then:

(a) LY coincides with the class of all fe I” such that D°fe I? for all a
with |a| =k, and the norm |fl,, = ||f“p+|a2k ID*f1l,, is equivalentto ||fllyz-

(b) L2, == %2, coincides with the class i)f all ge &' of the form g = go+-

+ 3! D%g,, where g, and g, are in L, and the norm |igol, +1 IZ; 19allp 38 equiv-
jajek A aj==
alent to [9lly, —r-

Proof. Let us denote by (2 the Banach space of all fe L” such that
D*feL? for all |a| =k, with norm |f|,,. Evidently, If = ¢4 and the
inclusion is continuous. Let us show that if fe 0% and 0 < |af < k then
Dfe I”, 1 < p < oo,

We set m = k—|a|, D* =I"(I"™D% and 4 = 3 E;D;. By (L.1)
' 1

- we have that

I = » R D +8y,

|81 =m
where the ¢, are constants, B’ = RJi... Rin is a product of powers of
the Ry, and the operator S, has the property that D*8,, and 8,D" are
bounded on IL?, 1< p < oo, for all a. Now, with 0 < la| < k and fe C%,
we see that

ID = ) R DMf+ 8, D°f

1Bl=m
and DP*%fe I since |B+al ¥m+|a[ = k. Therefore, in view of tl_lq
boundedness of R; on L?, 1< p < co, and the continuity of I™, we obtain
that D2f = I™(I"™D"f) belongs to L”.

Conclusion (a) now follows by & standard argument. Part (b) follows
from (a) by an argument analogous to the proof of Theorem 2.2.13 of [4].
(See algo Theorem 2.5 below.) m T

" The next theorem, and the remarks following it, extend slightly
a regult in [1].

TunoruM 1.4, Let 1 < p < oo.

1 t—7r

o) 1 p<a< (-

-1 )
) < oo, then 7 = % and the inclusion

8 Continuous.


GUEST


180 TU. Neri

(b) If 0< s—n/p<_ 1, each fe 27 is continuous and, for all
If(@)] < Op,sllfl,er 1 (@+1) = (F(@)] < Cp,o 1, 1112,

Proof. (a) We must show that I*: IP>If s bounded, where 0 < s
={—2< n/p < n. There are two cases.

. Case 1. If ' = p~'—s/n, the conclusion stems from the Hardy-
Littlewood-Sobolev Theorem (e.g. [6], p. 119) since, by (1.0)

°fl = 1gs%f | < oy (J*~"[f1).

Ot_vse 2. If g~ > p~* —s/n, then by a theorem of W. H. Young (e.g. [4]
. 18) it suffices to check that g,e L® where p~'—g~! = 1—g"), Sincé
a! = 1-.-p"'1—!—g"1 >1—s/n, so that —u<a(s—n), the conclusion
follows directly from (1.0).

(b) For any fe #7,f = I*u = g,%u where we L? and np<s<mfp+l
<7+l By (1.0), goe L%, g =p/[(p~1), since n+(s—n)q=>s—n(g—1)/q
= s~n/p > 0 and log|z| is locally in I? for all ¢ << co, Hence, f is con-
tinuous and, for all g, N

(@) < lgsllylully = Cp g lfllp,e-

Let d,g,(2) = Ge(@+h)—g,(@). If 8 % m, (1.0) and the mean-value-

theorem give the estimates

(@ + Rh|*~" 4 lmla_n)y
G 2" |1,

lwl < 2R,
|@] > 2h|.

IAhga(w)| <

Sin'ce fn+(s~n—1_)g S8P—n—p<0, if follows that A,g,¢I? and
a simple computation yields |4,g,l, < O, , [h|*~™= . Thus,
[ 4nf(@)] = | dygwu) < O, 5™ [ flly -

For s = n, we have likewise

a|loglo+hl—loglall, o] < 2(h,

lAhgn(w)l < ‘ ’
o o7 [B], @] > 21|h|.

Since nfq = n—n/fp, it suffi i b i
the estitate [P, ices, by the preceding argument, to verify

L= | |dxlogla||? do < O b
I <213
~which in fact holds for any ¢ > 1.

Now, log |1 —|h| [2]7Y] < log(|o -+ h|/ja)) < log(1+ |h||®|™*) implies that
|tog 12+l /lal) | < log (L + bl 2=) + | Log | 1 — | lo| =] .
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Hence, letting 7 = |#| and then y = |h|r™, we can easily see that
I, < 297 O1h" [ {[log(1+y) )+ flog|L —y|[Fy~"'dy = Cphl". m
‘3

Remarks. 1.5 (a). In part (a) of the preceding proof, Case 1 is false
when p = 1, whereag Case 2 remains true (that is, %} = #% continuously
if ¢~' > 1 — (t~7)/n) since Young’s theorem also holds for p = 1.

1.5 (b). Theorem 1.4 (b) also holds for p = 1 or occ. In fact, for p = 1,
n< §< n-+1 implies that g, is bounded and |4,g.l. < C;1R[F~™ For
P = 00, 0 < s < 1 implies that g,¢ L' and that |[4,g,ll, < C,[hl°.

'§ 2. The space #%, p = 1, co. In view of the results in [6] (Chapter
VII, §3) we denote by H* = H'(E") the class of all fe L' such that
n
By(f)e Lt § =1, ..., m, equipped with the norm [[flyo = [fla+ 3 1B,fls-
‘We let &5 = {fe &: fe 2(H})}. Then (see [6], pp. 230-233) H! is’a Banach
space and & is dense in H'. Moreover, if me 0" (E}) satisties the estimates
D m(£)| < 0 for 0< |a|<n, the operator T, given by (T,f)"
= m(i‘)f, is bounded on H'. In fact ([3], § 3), any m({) satisfying the
assumptions of Mihlin’s Fourier-multiplier theorem, and any m({)
= [p.v. K(@)]" where K (») = 2(»)|x]™" is a Calderén-Zygmund kernel,
give rise to Fourier-multipliers T,, which are bounded on H*. In particular,
R;: H'->-H' continuously, j =1, ..., n. ' ‘
We denote by H® = H*(E") the class of all functions of bounded
mean. oscillation, where we identify functions which differ by an additive.
constant. Then, H> is a Banach space with norm

Iflx = sup{[QI™ [ 1f(w)—fol du}
Q

where f, = mean value of f on @ and the sup is taken over all cubes-
Q = B". By a theorem of Fefferman ([2]; [3], § 2) we know that H* is.
the dual of H', with dual pairing

(2.0) roy = [fl@)g(@)dw, feFy and ge H,
which extends, by continuity, to a continuous bilinear form on H' x H™.

n
Moxeover, ge¢H® if and only if g =g,+ > Ry(g;) where gq, §15 -+ 9n
are in I*®. =1
Tt is well known (e.g. [3], § 1) that R;: L®—+H™ continuously. Hence,
n

for any ge H®, g = go+ ) By(g;) as above, we have
1

gl < Ngolle+ >, 1R;gylle < 2 196lloo + D, 65 1050ko
1 1
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and a familiar argumen‘d shows that [lg|lx is equivalent to the norm.

9lko0 = nf{gallo + > 1951}
j=1 .

which, from now on, will be taken as our norm on H*, where the inf is
taken over all possible representations of ¢ in terms of g,, g, ..., g, in L,

The following lemma iy implicit in [3].

Lumma 2.0. If ge Iy then Tf = g«f is bounded on HY, and extends
to a bounded operator on H*, with norm < |jg|,.

Proof. Taking Fourier transforms, we see that Byl = TRy on &5
Hence, for any fe &,

WZlo = llg*fla+ D) 1B, (1)l

< lglaflifla+ 3 1By} = gl 17 00
1

Since #; is dense in H', T' is bounded on H* with norm < |lg[,. Clearly,
the same holds for the operator i’f = g+f, where §(#) = g{ —w). Since H®
is the dual of H' with pairing given by (2.0), the dual of T' is an extension
of T to a bounded operator on H® with norm < llglly. =

With p =1 or oo, and any k<N, we consider the Sobolev-type
spaces Hf = {f¢ H?: (D°f)e H*, for all |a| < k} with norms

e = 1flpo+ ) 1D lyo-

la|<k
The completeness of H* and H*™ imply, in the ugual way, that Hj and HY
are Banach spaces. Furthermore, a slight adaptation of the proof of the
density of &5 in H' ([6], p. 231) shows that & is dense in H;, for all ke N.
As shown in [3], many singular convolution operators (such. as the
Calderén—Zygmund operators .and hence the transforms R;) extend to
bounded operators on H™. This fact and Lemma 2.0 yield an easy conse-
quence. .
LeMMA 2.1, Let Tf = K «f, where K< I* or else K (@) 48 a Calderdn—
Zygmund, kernel. Then for p = 1 or oo and all I N, I': Hf,~H}; continuously.
Proof. Viewing T and D* as Fourier multipliers on &', we have
that D*T' = T'D" on &'. For any |a| < % and fe HY, ‘D“fe H? and hence
T(D°f)< H” also. Therefore, D*(Tf) = I(D*f)e H? and .

1T e = 121+ > 1D* (D)l

|a, <k
< TN lp,0 + Z 1D°Fllp,0} = 1111l 5
la|<k ‘
‘where ||T'|| denotes the norm of T on H?, p =1or co. m
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We examine now the action of the fractional integral I' on the
gpaces HY. )

LmmmA 2.2, If p =1 or co and k>0, the operators I': Hy—+HZ. ,
and I7': HE,  -~HY are continuous. At

Proof. Since I'f = g, *f with g,e L', Lemmas 2.0 and 2.1 ghow
that I' iy bounded on HZ, for all k> 0. Let n > 2 (the case n =1 is
identical). By formula (1.1), for all fe H}, Dy(I'f) = B;f — R; (K, f)+ K.f
where K, f and K,f are convolutions with kernels in &. Thus, by Lemma
2.1, D, I* is bounded on HY for any j =1,...,n and hence I': HY—HI,,
continuously.

Similarly, by (1.1'), for all fe HY.;, I7'f = Af — A(K,f) +K,f where

n

A = M RD;, K,f and K,f are convolutions with kernels in &. Since
1

Ry D; = D;R; on &' and R;(D;f)e HE, for all fe H,,, we see by Lemma
2.1 that |Afl, » < Olfllpeen and the conclusion follows readily. m _

Viewing H? p =1 or oo, as linear subspaces of &', we may define,
for any real s, the spaces #% = S#Z(F") as the images #% = I°(H®)
equipped with the norms |[|fl,s = II7%fl,, which make them Banach
gpaces isometrically isomorphic to H®. From Lemma 2.2, the equality
(with equivalence of the norms)

(2.1) AL =HY, for p=1or coandall keN,

follows at once.
THEOREM 2.3. Let p =1 or oo, and let r, s, t be real. Then:
(a) If: o2~ A%, is an isomelric isomorphism.
(b) If s<t, #} < % and the inclusion s continuous.
(c) & and AL = () H#: are dense in H%.
8

(d) 5%, is the dual of 7 with dual pairing
(2.2) fy 9> = [ fodo,  fordll fe L and ge AT

which can be ewtended to o continuous bilinear form omn HERA,

Proof. (a) and (b) followas in Theorem 1.1, using Lémma 2.0. Part (c)
is provoed in the same way using the fact that, for any real s, I8: S+,
is one-one and onto. (Notice that if fe &5, then d(£)™*f({) is again in 2 (Hp)
for any real s.) For part (d), we have as before that, for all fe A% and
ge 2, (f, o> == <I7%f, I*g>, s > 0. The rest of the proof follows py the
same argument as for Theorem 1.1, except that instead of Holder’s
inequality and the duality of L? with L” we now use Theorem 2 of [3]
on the duality of H® with H'. m :

6 — Studia Mathematica LIIL2
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Oorresponding to (1.4) we now have that, for all real s,
(§.3) C Dy ADSHT s continuous, if p =1 or p = oo.

The proof is similar to that of (1.4), using however Lemma 2.0 and the
boundedness of B; on H' and on H™.

‘We omitted to define Hf, and #7% for 1< p < co only because the
corresponding definitions would yield again the spaces L and %7, respoe-
tively, with new norms equivalent to the old ones. In view of this, we now
state only a partial analogue of Theorem 1.2.

THEOREM 2.4, Let T' be a Fourier-multiplier operator which is bounded,
on H' (or on H®) with norm ||T||. Then, for all s> 0,

(@) if p =1 (or p = o), I's ALY is bounded with norm < |T).

(b) T extends, by continuity, to a bounded operator on -, s With norm || 1.

Proof. As Fourier multipliers, 7 and I° commute on &, for all real s,
Hence, for any f = I°w in #%, |Tfl,, = IT*(Tf)lpe = |Tul,, < |1 full, o
= |T1iflps and (a) is proved. Now, by part (c) of Theorem 2.3, & is
dense in %, Thus, for any fe s, |Ifl;_, = IT(Z)ly0 < Tl
= [[TIIfll,—s and the conclusion follows. m

For any ke N, let us define H*, to be the dual of ;. Then, formuls
(2.1) and Theorem 2.3 (d) show that, with equivalence of norms,

(2.4) P = H, LeN.
Another representation of H®, is given by the following analogue of
Theorem 1.3. -

THEOREM 2.5. For any ke N, H®, coincides with the space of all ge 5"

of the form g = go+ 3 D%g,, where g, and 9o are i H°, and the norm

|a| =k

Wollwso 4 > 19ulloro

{a]=L
18 ‘equivalent 10 |||, -y
Proof. As in the proof of Theorem 1.3 (a), we muy verify that H
{fe I{l: D°fe H' for all |a| = k} with (equivalent) norm 0 == 11,0 -
+I %. 1D°fil,,o. Moreover, by definition each ge 02, is a bounded linear

functional ¢(f) = <f, g> on HL,
Consider the product space H'x [] H' with norm %0 == Wholly,o -+

lal=lc

+|a|2k (fall,o where T = (R, hy)y_, and kg, hye H'. Then the mapping

J=>(fs D*Piumr gives an isometric embedding of Hj into our product
gpace. 8o, by the Hahn-Banach theorem, we can extend cach ge %y,
to a bounded linear functional § on H* x [ H', that is, to an element

[at|==le
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¢ = (§0) u)joj=n Of the product space H® x Il H>. Hence, for all fe HL,
|

al=k
> =<9 =90+ D) <D, 5>
|| =k
=90+ D) <Fr (—1FDG,
la|=k
=l 90+ D D(—1)G>
la]=k

g0 that g = g¢-- 2’ D*g, where g, and g, = (—1)*g, are in H>.
[ajele

Conversely, by (2.3) and Theorem 2.3 (b), any ¢ of this form belongs
to o7y Moreover, by (2.4), #%, = H>,. Finally, using (2.3), we sec that

1900, 2 < oo, ) 10 gullo, 2 < Clllolhorg+ Y a0}
la|=k lal=k
and the equivalence of the norms follows. m

Our next objective is to show that H', and hence the spaces Ay, are
also the duals of certain Banach spaces. In particular, we shall see that H*
(and hence H™) is not reflexive. ’

Lot €y (™) denote the space of all continuous functions on B which
vanish at oo, equipped with the sup norm, and let %(E"™) denote the Banach
space of all finite Borel measures » on B", with norm |pll; = [ |dv(@)|.
Wo consider now the class G =G> (Z") of all locally integrable functions

n

g which can be represented in the form g = g,-+ 2 R;g; for some
j=1

J
Fos 1y eovs Gn A0 Oo(B™), If we equip ¢ with the (H*) norm

19,0 == 10t {Igollcs + 3, 19511of
1

where the inf is taken over all possible representations of g, then G is
a Banach space, in fact a proper subspace of H*. (The function log|u|
ig in % but not in G*.)

Lot " (B") donote the class of all ue #(E") for which there are
pye BUE) subistying fy(£) = GIE7 (8, § =1,..., % As in [6], p. 221,

ig the dual of O,(B™), it follows that, equipped with the norm |lulle
k) .

= |ully - 2, 1By ully, #*(B") is the dual of G°. On the other hand, by the
1

n-dimengional F, and M. Riesz Theorem (see [7], Theorem I), such
pe B (I (and u,) are absolutely continuous with respect to the Lebesgue
measure and so they correspond to L' functions. Hence, with dual pairing

(2.0 9,1y = [ gfdw, g6 and feH,
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it follows that H' iy the dual of ¢%. Since the dual of H' is H™, we have
in particular that H' is not reflexive.

Remark 2.6. Just as the elements of H* can bo charactorized ag
funetions of bounded mean oscillation (B.M.O.), it is easy to see (ap-
proximating ge, g1, -+, ¢ by smooth functions and using the boundedness
of B;: L®—H>) that each ge G has continuous moan oscillation (0.M.0.).
Specifically, for each ge G there existy a positive set function (@) such
that

Q1" [ lg(@) —gol dw < 0(Q)
@Q

where (@) is bounded above and C(@)-+0, as |Q|~>0 or -+oo, and ag
the center of @ tends to co. Moveover, it ix also known (but more difficult
to verify) that all functions in C.M.O. are in fact elements of G™. (Thig
characterization of G seems to be dne to Hersz, Strichartz and Sarason.)

Levwma 2.7. For any veal 8 >0, I°: G°—G% is continuous.

Proof. Since I commutes with R; and is a convolution with the
integrable kernel g, it suffices to show that, for any ¢ in ¢, (&") , the con-
tinuous function I*g vanishes at infinity. Fix any ¢ > 0 and let ¢, == ||g,||,.
Since ge 0o (B"), there is an N = N(¢)< N such that sup{lg(2)|: || > N}
< &(e,)7" Let now g = g,-+g, where g, = g if || < N, gy == 0 otherwise.
Since g, is & bounded funetion with bounded support and g, is rapidly
decreasing away from the origin, it is easy to see that I°g, = g, *g, vanishes
ab infinity. Hence, the same is true for I%g, since |[I°g,|,, < Gy llg1lleo << &. @

For any real s, we define the spaces %2 = ¢ (H") to be the images
of G* under I equipped with the same norm as #%, so that the @3 are
Banach spaces isometrically isomorphic to G.

TproREM 2.8. For any real s, s, is the dual of g3 with respect to
the duality induced by (2.0'). ) ’

Proof. It suffices to consider the case s > 0. By Lemma, 2.7, ift>s
then I*~*ig & continuous map of G= into itself. Hence 97 < g continuously.
Moreover, if #3 = O(ﬁ;“’, then I' maps @3 into itself (for any real &)
and, for all ge ¥ and fe %, (g,[> = (I*¢, I=°f>. The rost of the prooft
now follows by the same argument used in Theorem 1.1 (d), using the fact
that H* is the dual of G*. m

We shall prove next an embedding theorem for the spacos & which
makes use of the following result.

LwMa 2.9. For any fe H' and ge H®, fxg is a bounded, uniformly.
continuous function satisfying

(2.5) 17 gl < 11111011910+
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n
Proof. Let g be represented by g, + 2 B;g;, where g, and the g, are
in L%, so that 1

n
Trg =frgo+ D fxRig;.
1
Let us note that
SaRyg; = —(Byf)xg;.

In fact, by translation invariance, it suffices to verify this formula at
® = 0. Moreover, since & is dense in H' and R; is continmous on H?,
we may asgume that fe #5. But then, by the duality (2.0) and the fact that
the I, are (principal value) convolutions with odd kernels, the formula
ig readily verified. n

Thus, fxg = fxgo— 3 (B;f)*g;. Since f and the R,f are in I, it follows
1
that fxg is a bounded, uniformly confinuous function such that

1 #glo < Il NG0loo -+ X 1Rsfll 19500 < 1fls,0 (ko + D) 194lle) -
T ) 1

Consequently, taking the inf over all possible representations of g, we
obtain (2.5). m

TaporeEM 2.10. (a) If 1<¢g< (1—
and the inclusion is continuous. )

(b) If 0 < s —n < 1, each fin 3 is uniformly continuous and, for all «,
[F(@)] < Cullfll,ey 1f(@4R) —F(0) < Opllflh,s [

Proof. (a) Letting s = t—r, we must show that I° is bounded from

t—r\"t . "
P < oo, then H#;c L3

“H into L% If s =0, then ¢ =1 and the continuous inclusion #; = &}

follows directly from the definition of H'. Let now 0<s<m. If ¢
= 1.— 8§/, we apply Theorem H of [7] and argue as in the proof of Theo_rem
1.4 (a). If ¢~* > 1—s/n, the conclusion follows from Remark 1.5 (a) since
#t = ¥} continuously. ' '

(b) By virtue of Remark 1.5 (b) for p = 1, it suffices to consider
the extreme cases ¢ =n and s =n-+1. If s =n and fe #,, we have
that f = g, *u where ue H* and, by formula (1.0), g, H”. Hence, Lemma
2.9 gives desired conclusion, since [ull,e = flym- .

Tf ¢ = n--1, we note that g,., is bounded. Moreover, g, = I'g,
so that, by formula (1.1), Djfp.1 = E;9n—8;¢, where §; = R,E,—K,
is again a bounded operator on H™. Therefore, with f = g,,., %%, the mean-
value theorem and Lemma 2.9 imply that

If(@+h) —f(@) < O 1] ellye = Cp B If s ™
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In order to obtain H* analogues of formula (2.4) and Theorem 2.5,
we consider once more the space @*. The key fact is given by the following
theorem. (The proof below is due to 0. Fefferman.)

TaEoREM 2.11. The Riesz transforms B, are bounded operators on G,

Proof. Recall that ¢ is equipped with the H® norm and that E;
is bounded on H®. Since R; maps L ﬂ I} into itself, it suffices to

show that this class is dense in G*.
' Olearly, any function in Cy (") is the uniform Hmit of continuous

functlons with compact support. Jonsequently, given any ge G%, g = go--
+Z’Rj g5, and any & >0, there exists a function b = h, -- Z‘lﬁ, h;, where h,

and h; are continuous and have compact support, such thwt

g — Ploo < 90—l + D 1195 = Tislleo << -
1

 Now, if {p;}, ¢ >0, is an approximate identity with ¢p< 2, we have that

n
@b = (@prhe) + 3 Ry(@,xhy). Since for j=0,1,...
1

1y — (@exy)lloo— 0 88 t—0, and (g, ;) « 2, We may assume by the preceding
argument that the functions k, and h; are in 2. In particular, the functions
ho and E;h; belong to L% ; hence, so does . ®m

For any ke N, we let G5 denote the kth Sobolev space of G equipped
with the usual norm, and we define H?* , to be the dual of G with respect
to the duality induced by formula (2.0°).

Lzvua 2.12. For any ke N, ;’;’ = G7 with equivalence of the morms.

Proof. By Lemma 2.7, I' is bounded on G™. Hence, as in the proof
of Lemma 2.1, I' is bouided on G5’ for any k. By (L.1), D,I' = R, — R, K, +
+ K, where K, and K, are convolution operators with kermels in &.
Thus, with the same proof of Lemma 2.7, we see that K, and K, are
bounded on G*. Since, by Theorem 2.11, Rj 1s bounded on G*, it follows
that D;I' is bounded on G* and hence on G . Therefore, I': GF G5y,
continuously.

Similarly, by (1.1), for all fe G, I™f = Af— AK,f+ K,f where

B n

11
K,f and K,f are convolutions with kernels in &, and 4 = 3 R,D;. Now,
1

the boundedness of D;: 6% ,—G5 and of B, on Gf show that A: G5, 67
continuously, and from this the boundedness of I™': @2,—G7 follows
readily. Oonsequently, T*: G®- G is a continuous isomorphism and the
conclusion is an immediate consequence of the definition of P = I*(G*). m

THROREM 2.13. For any ke N, H', = #", with equivalence of the
norms. Moreover, H,; coincides with the space of all fe &' of the form

,% we have that
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f= fo'*‘ \‘ D"fa,Wkemfo and f, are in H, and the norm Ilfollw-}— 2 A
8 eguwa?em to | flly,—z-

Proof. The first conclusion follows at once from Lemma 2.12 and
Theorem 2.8. In view of the proofs of Lemma 2.12 and of Theorem 1.3 (a),
we verify without difficulty that = {fe@*: D*fe G for all |a| =k}
with equivalent norm

”f“oo,k =

1,0

Wfleoo+ 3 1D Flo,o-

laj=k

Using the fact that H* is the dual of @, the rest of the proof is identica
to that of Theorem 2.5, with ¢* in place of H' and H* replaced by H. m
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