

STUDIA MATHEMATICA, T. LIII. (1975)

On commutative approximate identities

b

T. PYTLIK (Wrocław)

Abstract. It is shown that every locally compact metric group G has a commutative approximate identity for $L_2(G)$.

This result was earlier obtained in [2] even for $L_1(G)$, but in a more complicated way. A simple construction of commutative approximate identity for a C^* -algebra was given in [1].

Let G be a locally compact group, and assume for simplicity that G is unimodular. We say that a bounded operator T, which acts on $L_2(G)$, is a convolution operator if there exists a function f in $L_2(G)$ such that

(1)
$$Tg(s) = \int_{G} f(su^{-1})g(u)du$$

for all $g \in L_2(G)$. We then write $T = T_f$. The conjugated operator T_f^* is of the form T_{f^*} where $f^*(s) = \overline{f(s^{-1})}$, $s \in G$. If $f \in L_1(G) \cap L_2(G)$ then (1) defines a bounded convolution operator with norm at most $||f||_1$.

LEMMA. For a locally compact metric group there exists a continuous function $f = f^*$ with a compact support and such that $\ker T_f = \{0\}$.

For the proof see [3], Theorem 1.

THEOREM. Let f be in $L_1(G) \cap L_2(G)$, and suppose $\ker T_f = \ker T_f^* = \{0\}$, $||f||_1 \leq 1$. There is a family $\{p_t\}_{t>0}$ of functions in $L_2(G) \cap C_0(G)$ which has the following properties:

$$(i) p_t = p_t^*;$$

(ii)
$$p_t * p_s = p_{t+s}$$
;

(iii) if
$$g \in L_2(G)$$
 then $p_t * g \in L_2(G)$, $t > 0$, and $g = \lim_{n \to \infty} p_t * g$;

(iv)
$$\int\limits_0^\infty e^{-t}p_tdt=f^**f$$
, the integral being convergent in $L_2(G)$ and in $C_0(G)$.

Proof. Let $T=T_{f^**f}=T_f^*T_f$. We have Sp $T\subset [0,1]$ and ker $T=\{0\}$. Let

$$T = \int_{0}^{1} \lambda E(d\lambda)$$

be the spectral resolution of T and for $t\,\epsilon(0,\,\infty)$ denote by $P_t,\;Q_t$ the operators

$$\begin{split} P_t &= \int\limits_0^1 \exp t (1-1/\lambda) E(d\lambda), \\ Q_t &= \int\limits_0^1 \lambda^{-1} \exp t (1-1/\lambda) E(d\lambda). \end{split}$$

Then $P_t = TQ_t$ and $P_tP_s = P_{t+s}$,

$$\|P_t\|\leqslant \sup_{{\scriptstyle \lambda\in[0,1]}} \exp\,t(1-1/{\scriptstyle \lambda})\,=1\,,$$

$$\|Q_t\| \leqslant \sup_{\lambda \in [0,1]} \lambda^{-1} \exp \, t(1-1/\lambda) \leqslant \max\{t^{-1},\,1\}.$$

It is clear that $\ker P_t = \ker T = \{0\}$ for all t > 0 and that P_t strongly converges to the identity operator when t tends to zero. Since $f \in L_2(G)$ and $P_t = TQ_t$, each of the P_t 's is a continuous mapping from $L_2(G)$ into $C_0(G)$ with norm at most $||f||_2 ||Q_t||$, and

$$L_2(G) \ni g \rightarrow (P_t q)(e) \in C$$

is a continuous linear functional on $L_2(G)$. Consequently, there is a function $p_t \in L_2(G)$, $\|p_t\|_2 \le \|f\|_2 \|Q_t\|$ such that

$$(P_t g)(e) = \langle g, p_t
angle = \int\limits_{\Omega} g(s) \overline{p_t(s)} \, ds.$$

Since each P_t commutes with the right translations on G, we have

$$P_t g(u) = \int_G g(su) \overline{p_t(s)} \, ds = p_t^* * g(u).$$

We also have $p_t^* = p_t$ and $p_t * p_s = p_{t+s}$, thus $p_t \epsilon L_2(G) \cap C_0(G)$.

For a fixed $\varepsilon > 0$, both $\|p_t\|_2$ and $\|p_t\|_{\infty} = \|p_{t/2}\|_2^2$ are continuous functions of t, bounded on the interval (ε, ∞) , therefore the integral $\int_0^\infty e^{-t} p_t dt$ is convergent to a function h_{ε} in $L_2(G) \cap C_0(G)$. Since

$$\int\limits_0^\infty e^{-t} P_t dt \, = \int\limits_0^1 \int\limits_0^\infty e^{-t} e^{t(1-1/\lambda)} \, dt \, E(d\lambda) \, = \int\limits_0^1 \lambda E(d\lambda) \, = T,$$

we have

$$e^{-\epsilon}h_{\epsilon}=e^{-\epsilon}\int\limits_{\epsilon}^{\infty}e^{-t}p_{t}dt=\int\limits_{0}^{\infty}e^{-t}p_{t+\epsilon}dt=\int\limits_{0}^{\infty}e^{-t}P_{t}p_{\epsilon}dt=f^{*}*f*p_{\epsilon}.$$

Hence, since both functions h_s and f^**f*p_s are continuous, we have

$$e^{-\epsilon}h_{\epsilon}-f^{*}*f=f^{*}*f*p_{\epsilon}-f^{*}*f$$

and also

$$\|e^{-s}h_s - f^* * f\|_{\infty} \leqslant \|f^*\|_2 \|f * p_s - f\|_2$$

which by (iii) shows that

$$\lim_{t \to 0} \int_{1}^{\infty} e^{-t} p_t dt = f^* * f,$$

whence the convergence is both in L_2 and C_0 .

References

- J. A. Aarnes and R. V. Kadison, Pure states and approximate identities, Proc. Amer. Math. Soc. 21 (1969), pp. 749-752.
- [2] A. Hulanicki and T. Pytlik, On commutative approximate identities and cyclic vectors of induced representations, Studia Math. 48 (1973), pp. 189-199.
- [3] T. Pytlik, A nuclear space of functions on a locally compact group, Bull. Acad. Polon. Sci., Sér. Sci. Math., Astr. et Phys. 17 (1969), pp. 161-166.