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Linear isometries of subspaces of spaces of continuous fumctions

by
W. P. NOVINGER (Tallahassee, Flo.)

Abstract. Let X and ¥ be respectively compact and locally compact Hausdorff
spaces, and A-be a linear subspace of 0(X) which separates points and contains the
constant functions. It is shown that if T' is a linear isometry of 4 into 0o(Y) and
B = T'(4), then there are continuous maps ¢: Ch(B)—{g: |¢| = 1} and h: Ch(B)—>
Ch(4), such that Tf(y) = e(y)f(h(y)) for all fed and all yeCh(B). Here Ch(B)
and Ch(4) denote the Choguet boundaries of respectively A and B. Results obtained
in this paper extend work of W. Holsztydski which appeared in Studia Math. 26
(1966). :

Let ¢(X) and O(Y) denote the familiar supremum normed Banach
algebras of continuous complex-valued functions on compact Hausdorff
spaces X and Y. The well-known Banach-Stone Theorem ([2]; p. 441)
states that if 7: O(X)—>C(Y) is a linear isometry of C(X) onto C(Y),
then there i a continuous complex function ¢ of constant modulus 1 and
a homeomorphism & of ¥ onto X such that '

(*) Tf(y) = e@f(h(y) (fO(X), (yeT).

‘W. Holsztynski [4] has generalized this theorem to the case of linear
isometries of ¢(X) into O(Y). His conclusion in this case is that there is
a cloged subset Y, of ¥, a continuous complex function ¢ of constant
modulus 1 on ¥,, and a continuous surjection h: ¥,—X such that (x)
holds with ¥ replaced by Y,. Holszbyriski’s result has been applied, for
example, by Pelezynski in his paper [5] and by Baker in [1]. In the present
paper we shall go a step further and describe the linear isometries of
certain subspaces of O(X) into Co(¥). This description will presently be
" gtated and proved, but first we must record a few additional definitions ;
|
|
|
}

and facts.

Let Y be & locally compact Fausdortf space, let Cy(Y) be the sup-
remum normed Banach algebra of complex-valued continuous functions
on Y which vanish at infinity, and let B be a sup-normed linear subspace
of Cy(¥). The unit ball ¥, in the normed dual B* of B, has extreme points
and this set of points will be denoted by ex(V). It is a consequence of
Milman’s “converse” ([6], p. 9) that each member of ex(V) has the form
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2y,, where z is a domplex number of modulus 1, ye Y, and y, is the eva-
luation funetional, v,(g) =g(y) (geB). The Choquet boundary for B,
denoted by Ch(B), is defined as {y ¢ ¥': y,cex(V)}. (Although this definition
of Ch(B) differs from that in [6], p. 88, — Phelps (as do most authors)
defines the Choquet boundary only for ¥ compact and subspaces of
0(Y) which contain the constant functions — the two definitions nev-
ertheless agree whenever both are applicable.) A property of the Choquet
boundary which we will need later is that it is a “boundary for B’ in
the sense that each geB assumes its maximum absolute value at some
point of Ch(B). Only minor modifications of the proof of Proposition 6.3
in [6], p. 40, are required to establish this. We are now ready for the main
theorem of this paper.

TeporEM 1. Let X and Y be respectively compact and locally compact
Housdorff spaces and A be o linear subspace of C(X) which separates the
points of X and contains the constant fumctions. Suppose that T is a linear
isometry of A into Co(X) and B = T(A). Then there are continuous functions
¢ and h.on Y such that e: Ch(B)->{z: |¢| = 1}, h: Oh(B)—~Ch(4) is onlo,
and such that

If(y) = e()f(h(y)) (fed, y<Ch(B)).

Remark. Many of the ideas in the proof to be given below are well
known and are to be found, for example, in Hoffman’s hook [8], pp. 144~
147. Holsztynski’s argument in [4], however, is quite different from the
one which we present here.

Proof of the theorem. Let U denote the closed unit ball in the
dual 4* of 4 and equip U with the relative weak* topology of A*. Let
V bhave a corresponding -meaning in B*. The map #-»p,, where g,(f)
= f(@) (fed), is then a homeomorphism of X into U which maps Ch(4)
onto ex(K), where K = {ped*: (1) = p| = 1}. Verification of the
preceding statement is routine and will not be repeated here. As for the
map y—y,, this is a continuous map of ¥ into V which (by definition)
sends Ch(B) into ex(V). The sets of extreme points of V and U have
the following descriptions: ex(V) = {7yt [#] =1, y<Ch(B)}, while ex(U)
= (e, |l =1, 2eOh(A)} = {zp: o] = 1, geox(K)).

Now the adjoint T* of T is an isometry of B* onto A*, iy weak*
continuous, and takes the extreme points of ¥ onto those of I7. Conge-
quently, we have a rule e: Ch(B)—{z: |2| = 1} where given ye<Ch(B),
¢(y) is defined as that complex number of modulus 1 such that Z(E}«) T ypye
ex(K). As a matter of fact, e(y) = T1(y) when y<Ch(B); and so we
can use this equation %o extend ¢ to a function in Cy(T). Finally, define
h: Y—A* by h(y) = e(y)T*y, (ye¥). Then it is easy to see that kb is
continuous on ¥ because ¢ is continuous and because the function
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y-s\—T*% (yeY) is the composition of the two continuous maps, y—>y,
(yeY) and T*: B*->A*. TFurthermore, if yeCh(B) and fed, then
e(y) Tf(y) = e(y)py (Tf) = e(y)T* v, (f) = h(y)(f). Remembering that h(y)e
ex(K) and that ex(K) can be identified with Ch(4), we can write
Tf(y) = e(y)f(h(y)). It is not difficult to verify that h maps Ch(B) omio
ox (K), so the proof of the theorem. iz complete.

Now let us consider some of the corollaries that result when the
gubspaces 4 andfor B (= T(A)) are assumed to have various additional
properties. It will be convenient to henceforth identify X with its image
in U via the homeomorphism s—p, (veX).

COROLLARY 1. Suppose that T maps A onto Co(XY) so that B = Cy(X).
Then Ch(B) = ¥, Y is compact, and h is a homeomorphism of ¥ onto Ch(A4).

Proof. The statemeént that Ch(B) = ¥, of course, means that for
each ye ¥, v, is an extreme point of the unit ball in (0y(Y))*; but then
this latter statement follows readily from the Riesz representation the-
oren ([8], Theorem 6.19, p. 131). That ¥ must be compact now follows
from the fact that |e(y)| = 1 for all yeCh(B) (= XY) and that ec0,(¥).
Finally, since Oy(Y) separates the points of ¥, the map y—h(y) is a one-
to-one continuous map of the compact space ¥ onto Ch(4) and thus
is a homeomorphism. )

Note that if we take 4 = C(X) in the previous corollary, then
Oh(4) = X and we obtain the Banach—Stone theorem.

CorOLLARY 2. If Ch(A) is closed in X, then Ch(B) is closed in Y.
Turthermore, if B separates the points of ¥ and Y is compact, then Ch(A)
and Ch.(B) are homeomorphic.

Proof. It is almost immediate from what has already been done
that y<Ch(B) if and only if h(y)eCh(A4). Since % is continuous on ¥,
Ch(B) == h~'[Ch(4)] is closed in Y. If, in addition, B separates ¥ and
Y is compact, then h is a one-to-one continuous map of the compact -
subset Ch(B) onto Ch(A) and thus is a homeomorphism.

Note here that if 4 = ((X), then Ch(4) =X and Corollary 2 is
egontially the statement of HMolsztynhski’s results [4].

CoROLLARY 3. If A and B are algebras and if e = T1 s identically
1 on Oh(B), then T is an algebra isomorphism.

Proof, (Of. [8], p. 146.) Let f, ged and yeCh(B). Since fged, we
have by Theorem 1 that T'(fg)(y) = e(¥)f{h(%))g(h(y)) and hence

() eI (fo)(y) = Tf () Tg(y).

Now if e(y) == 1 for ye<Ch(B) and if B iy an algebra, then the abo.ve
equation (sx) implies that 7'(fg) and (Tf)(Tg) are functions in B which
agree on the “boundary” Ch(B). Hence I'(fg) = (Tf)(T9) agd we have
proved that 7' is multiplicative. So 7' is an algebra isomorphism..
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As a final application, let us indicate how the preceding discussion,
can be used to describe the isometries of certain Banach spaces of Lipschitz
functions. Specifically, let (X, ¢) be a compact metric space and Lip (X, o)
denote the linear space of complex-valued continuous functions f on X for
which ||fll, < oo, where

| (@) —f(@)]

= Ju
Il p{ 6.9
If Lip(X, o) is equipped with the norm

[Ifll = max {[|fl, ”f”n}y Selip(X, o),
then (Lip (X, o), |||) is & Banach space. Its structure had been the subject
of considerable study in recent years, and we state below one additional
property of this space, which is an easy consequence of work that appears
in [7], pp. 1150-1156, and in [9], Theorem 5.1, p. 1397, and of that which
we hayve done above. The proof is omitted altogether.
THEOREM 2. Lt (X, o) and (X, 6) be compact, connected melric spaces,
each of diameter at most 1. Then a map
T: (Lip(X, o), [ l)—(Lip(¥, ), {-I)

is a Uinear isometry onto if and only if there is a metric space wsometry h of
(Y, d) onto (X, @) and a compler number o of modulus 1 swch that

Tf(y) = of(h(y)) (feLip(X, o), yeT).

tw,teX, » #:t}.
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Constructive function theory and’ spline systems

by
Z. CIESIELSKI (Sopot)

Abstract. Integrating m--1 times, m > —1, the Haar orthogonal functions we
obtain a set od spline functions of order m. We complete this set of functions with
the monomials 1, ..., ¢™. Now, applying the Schmidt orthonormalization procedure,
we get a complete orthonormal set {f™, n > —m} of splines of order m. Differentiating
and integrating % times the functions f™, 0< k< m+1, we obtain new systems
{fim, m > I —m} and {gd™® n > k—m} of splines 6f order m—% and m+ %, respec-
tively. All these systems are discussed as bases in various function spaces. The cop-
vergence a.e. for funetions in I, is proved. The direct and inverse theorems of approx-
imation theory for partial sums corresponding to the expansions with respect to {7,
n > —m} ave established. New characterization of the Holder classes is obtained and
the linear isomorphism between these classes and suitable sequence spaces is exhibited.

1. Introduction. In this paper the investigations of spline systems
started in the works [4]-[11] are continued. Some of the results were
announced in [9].

We are concerned with systems of splines which are bases in varions
claggical function spaces.

In Section 3, partial sums of the spline expansions are treated as
singular integrals and the convergence almost everywhere for functions
in I is established. Moreover, the norm and local estimates for the sup
of the corresponding partial sums are obtained.

The order of approximation by partial sums of the spline expan-
gions is esbablished in Theorem 4.1. In Lemma 4.3 it is shown that this
order of approximation is the best possible in W7** unless the functions
are polynomials of degree not exceeding m--1. The same order of approx-
imation in the case of periodic functions was egtablished earlier in [21]
where guitable interpolating spline bases were constructed. In the case
of non~periodic functions and of interpolating bases similar results were
obtained recently in [12].

The normg of the biorthogonal splines are estimated from above
and from. below in Section 5. Local estimates for these functions are
obtained in Section 6.

Theorem 7.1 establishes the relation between the coefficients of the
gpline series and the series themselves.
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