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As a final application, let us indicate how the preceding discussion,
can be used to describe the isometries of certain Banach spaces of Lipschitz
functions. Specifically, let (X, ¢) be a compact metric space and Lip (X, o)
denote the linear space of complex-valued continuous functions f on X for
which ||fll, < oo, where

| (@) —f(@)]

= Ju
Il p{ 6.9
If Lip(X, o) is equipped with the norm

[Ifll = max {[|fl, ”f”n}y Selip(X, o),
then (Lip (X, o), |||) is & Banach space. Its structure had been the subject
of considerable study in recent years, and we state below one additional
property of this space, which is an easy consequence of work that appears
in [7], pp. 1150-1156, and in [9], Theorem 5.1, p. 1397, and of that which
we hayve done above. The proof is omitted altogether.
THEOREM 2. Lt (X, o) and (X, 6) be compact, connected melric spaces,
each of diameter at most 1. Then a map
T: (Lip(X, o), [ l)—(Lip(¥, ), {-I)

is a Uinear isometry onto if and only if there is a metric space wsometry h of
(Y, d) onto (X, @) and a compler number o of modulus 1 swch that

Tf(y) = of(h(y)) (feLip(X, o), yeT).

tw,teX, » #:t}.
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Constructive function theory and’ spline systems

by
Z. CIESIELSKI (Sopot)

Abstract. Integrating m--1 times, m > —1, the Haar orthogonal functions we
obtain a set od spline functions of order m. We complete this set of functions with
the monomials 1, ..., ¢™. Now, applying the Schmidt orthonormalization procedure,
we get a complete orthonormal set {f™, n > —m} of splines of order m. Differentiating
and integrating % times the functions f™, 0< k< m+1, we obtain new systems
{fim, m > I —m} and {gd™® n > k—m} of splines 6f order m—% and m+ %, respec-
tively. All these systems are discussed as bases in various function spaces. The cop-
vergence a.e. for funetions in I, is proved. The direct and inverse theorems of approx-
imation theory for partial sums corresponding to the expansions with respect to {7,
n > —m} ave established. New characterization of the Holder classes is obtained and
the linear isomorphism between these classes and suitable sequence spaces is exhibited.

1. Introduction. In this paper the investigations of spline systems
started in the works [4]-[11] are continued. Some of the results were
announced in [9].

We are concerned with systems of splines which are bases in varions
claggical function spaces.

In Section 3, partial sums of the spline expansions are treated as
singular integrals and the convergence almost everywhere for functions
in I is established. Moreover, the norm and local estimates for the sup
of the corresponding partial sums are obtained.

The order of approximation by partial sums of the spline expan-
gions is esbablished in Theorem 4.1. In Lemma 4.3 it is shown that this
order of approximation is the best possible in W7** unless the functions
are polynomials of degree not exceeding m--1. The same order of approx-
imation in the case of periodic functions was egtablished earlier in [21]
where guitable interpolating spline bases were constructed. In the case
of non~periodic functions and of interpolating bases similar results were
obtained recently in [12].

The normg of the biorthogonal splines are estimated from above
and from. below in Section 5. Local estimates for these functions are
obtained in Section 6.

Theorem 7.1 establishes the relation between the coefficients of the
gpline series and the series themselves.
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The biorthogonal functionals are treated in Section 8 as bases in
L, and C. In particular, a variational characterization of an interpolating
basis iy given in Theorem 8.3.

The last section contains characterization of the functions satistying
the Holder conditions, corresponding to higher order differences, in terms
of the coefficients of their spline expansions. The linear isomorphism
between suitable sequence spaces and the spaces of functions satisfying
Holder conditions is establigshed.

2. Preliminaries. In what follows the notations introduced in [10]
is going to be used. For the purpose of this paper it is convenient to con-
sider the integer parameters %k and m with the domain: m > —1 and
0<' k< m+1. It appears that the restriction of the considerations in
[10] to m > 0 and 0 <<k < m was not essential, all the definitions and
results can be extended to the wider domain of the parameters & and m.
For the sake of completeness we recall the necessary notations, defini-
tions and results, extending them simultaneously to the larger domain
of & and m.

For each positive integer » a partition s, = {8n1 0 =0, £1,...}
is defined as follows: for n =1 we put s,; =4 and for n o= 2* -9, with

the integers w and » such that u >0, 1< » < 2%,
i .
S for i< 2,
(2'1> Sn,'t = .
T .
—2;4— for 1> 2.

Thus, for each n >0 we have Sni < Spgpy A0 80 =0, 8,, =1.
The sequence of partitions sy, @,, ... induces in I = {0,1> the dyadic
points %,,1,, ... which are ordered as follows: t, = 0, #, =1 and for

n=2"Ly>1
2v 1
(2.2) t, = 371,,21'-—_1 = W
Now, let
$agery Suq)  for i<,
(2'3) In,z‘ = <'gn,1'—-17 8n,i> for ¢ = N,
(‘911,'12—-1) Srr;,i> for > m.
- For each =, the partition of unity of gplines of order m = —1 ig
defined as follows )
(2.4) NOY(8) = 1 for el
. 0 for #¢I,,.

icm°®
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It is known (cf. [20]) that for each m > 0 the following splines of
order m

(2.5)

'Ng:?:(t) = (‘?n,'t-km+1 - 811,1‘—i) [sn,i-l’ ey 8n.i+m+1; (S - t),-c-H]

form partition of unity corresponding
to m,; the square brackets denote the divided difference of (§—¢)7™! =
(max (0, s —)]™** as a function of s taken at the PoInts sy 1y .-+, Spspmer-
It is & consequence of (2.4) and (2 5) that supp N‘"‘) = (s,,,hl, Sy ibmal)
for mz —1 and i =0, +1,.

To fixed m > —1 and n > —m corresponds finite-dimensional space
83 (I) of spline functions of order m defined over I. If —m <0< 0,
then 8 (I) is defined as the linear span over 1,%,..., ™, and if n > 0
then it is spanned by the linearly independent functions Nﬁ{"}, i = —m, ...

wo,m Clearly, S7(I) < Sy, (I) and dim S5 (I) = m+n-+1. Now, let
8™(I) = U S7(I). It should be clear that 8™ (I) is dense in C(I) for each
n

m 2= 0, and it is dense in L, (I) for 1< p < co and m> —1.

Bach function fe8™(I), m = 0, has absolutely continuous derivative
of order m. In what follows it is always required that D™'feS8~'(I) for
feS™(I), m = 0, and congequently D™ 'f is agsumed to be defined every-
where in I.

Now let us consider S%(I), n > —m, ag subspaces of L,(I) with
the sealar product

(2.6) C(f9) = [fihgyas
I

There is orthonormal, with respect to (2.6), system of spline functions
of order m, m = —1, {f, n = —m}, such that f&, =1, fMeSP(I)\Sp_(I)
for > —m and f("‘) ™) = 1. Moreover, let us define
fi]m,,rn) - chfgn) for
gﬁn,k) o= _Hk f,(;m) for

=2k—m, 0<E<m+1,

(27 'n,/k——m, 0k m+2,

where D is the differentiation operator and

Defining
Gf(t) = [f(wan,

we check easily that H = 6%, i.e.

(2.8) (Gf, 9) = (f, Hg), f,gela(I).
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The Sobolev space over I of order r > 0 corresponding to the ex]po-
nent p, 1< p < oo, is denoted by Wi (I). Since DGf = f, we infer for
fe Wi(I) with 0<k<m-+1, m> —1, that equalities (2.7) and (2.8)
imply

(2.9) (DEf, gf™R) = (f, ™),

Consequently, since ff™eSy(I) = W'(I), we obtain for 0<Jk
<m—+1, m> ~1, from (2.9) and (2.7)

(2.10) (™1, gmRy = 6, 4,

and it is assumed in this notation that ff™ = fjm — gm0
) The space of all & times continuously differentiable functions on,
I is denoted by C*(I), and it is used that O(I) = 09(I) and L, (I) = W5(I).
' The basis expansions which we shall consider are the Fogrier
series with respect to the orthonormal complete system of splines {fm
%> —m} and the expansions eorresponding to the biorthogonal syste“m;
{fm, g&"""){ 5, j>k—m} with 0< k< m+1, m> —1.
In the orthogonal case for given m > —1 and for a given function
SfeLy(I) we have the partial sums |

. Pf() = [EM(, 5)f(s)ds,
I .

izk—m.

iz k—m,

‘where

n
EP(tys) = D' fim)fim(s)

tm= i
is the Dirichlet kernel. The operator P{™: Ly (1)~ (I) projects orthog-
onally Ly(I) onto Sp(I). It is convenient at this place to introduce
notation for the projection operators, and for their kernels, corresponding:
?:0 the partial sums of the biorthogonal expansions metioned above,
Le.for 0<h<<m41, m> —1 and feLy (1) let '

PORI) = [EGO(, 0)1(s)ds,

I

n
( ’k' 1
E™EN, 8) = 3 fmB (1) gmd(s)
Telo~m
Wh:)(.;)e k1> 0, and by definition K™ = gimhh, Clearly, Pi9 — P gnd
K = ™. The operator PGB Ly (1)~8m%(1) is a z)rojeeti:n for
each &, 0 <k <m+1, m> —1. This is a consequence of (2.10),

The basic result established in [10], Th
] 1 oorem 2, can be extended
to the wider domain of the parameters wl, k, 1, i.e. We, have )

icm
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THEOREM 2.1. Leét m = —1 be given. Then there are constants M, and
Py 0 < T < 1, Such that :

(2.11) [ (1, 8)] < M, mPH 1Tyl

holds for >0, m+1=2k>=120 and 1, sel.
The following result proved in [11] will be needed later too.
TuroreM 2.2. To each m,m > —1, there are constants M,, > 0 and
Ty 0 < 1 < 1, such that

(2.12)

holds for all teI and &, 0 <<k m-1.

Another important result proved in [10], which is a consequence of
Theorem 2.1, concerns the spline bases.

TrEOREM 2.3. Let 0 < k < m. Then there is a constant M,, > 0 such
that [P < M,,, and consequently {ff™9, j = k—m} is a basis in C(I)
and for each feC(I) we have

B ()] < M+t

co

f= 2 (fgrmmn.

J=k—m

TumorEM 2.4, Let 0< k< m+1, m> —1. Then there is M, >0
such that |P™9|, < M,, holds for all p, 1< p < oo. Consequenily, {f{™",
j=lk—m} is a basis in L,(I) for each p, 1 <p < oo, and (2.13) holds
in Ly (I). ‘ .

It is worth while to realize that {f{™,j> —m} for m = —1 is the
Haar system, and for m = 0 the Franklin system.

Important role in the following sections is played by the Bernstein
type inequality (ec.f. [10]):

TumorEM 2.5. Let m > —1. Then, exist constants M, and v, such.
that for each feSy (I) the inequality

(2.14) D% flly < Mn® [fily

holds for 0 <k L m-+1, n>0 and L < p < oo
Tt ghould be remembered that the constants M, introduced above.
depend on m only.

(2.18)

3. Convergence almost everywhere and estimates for partial sums.
The main result in this section is (in the case of m = 0; cf. [7])

TamornM 3.1. Let 0 < k< m-+1, m> —1. Then there is a constant.
M, such that

1
(3.) J var BG4, u)ds < My

§ s<usl
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i
(8.2) ’ ‘ var K0 (¢, u)ds < M,
5 I<u<s
hold for m >0 and tel.
Proof. In the cage of m = —1 the result follows immediately. Now,

let m >0 and let tel, , for some i =1,...,n. We are going to prove
(3.1) only, the proof of (3.2) is similar.

n

1
(3.3) [ var K0 (¢, w)ds < D) [ var EPP(, u)ds

¢ 8<su<l . Ami Inha&;ugl

a
< DMLl var  ER(, w)

=1 8p, L SUST

n n
= Z 1,0l 2 var K03, u).
i=i Jmh weln,g
However, for k >0,

var KW0(t, u) = [ DK (3, )| du

weln,g Ing
= [IRGD (0, 0) du,
Tn.g :
whence by (2.11)
(34) var'Kg:n,k)(h 'u) = Om(lln,jlnzr:w_e”’jl) = Om(/”’qg.—.jl)

uely .
holds with some constants 7, and g, satisfying the inequalities 0 < 7,
< ¢n<1; here and later on the index m at the capital O indicates that
the bound depends on m only. ‘
In the case of k = 0, K(t, s) is symmetric in ¢ and s, and thevefore
(2.11) gives

(8.8) var E™R(f 4) = [ DB (2, )| du

uely Inj
= [IDEP(w, Hldu = [ KGO (u, 8)|du
Ing In,g
S Mpnt [t du = 0, (ngi™)

In,j
with some 7, and ¢, 0<r, < ¢, < 1.
Combining (3.3), (3.4) and (3.5) we obtain

1 n n

J var BP0, wyds = 0,,( D) X' gl = 0,(1),

¢ esus<l fimi j=h

and this completes the proof.

icm
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THROREM 3.2. Let m = —1, 0 <k < m-+1, fely(I), and let for given

tel -
1 thh
(3.6) f(t)=1ll_r»{1—,;tf f(s)ds.
Then, ‘
(8.7) F) =2 (F dAR ).

In partioular, (3.7) holds almost everywhere in I.

The proof is omitted since it goes exactly as the proof of Theorem
4 in [7).

TerEorEM 3.3. Let m 2 —1;, 0< k< m+1. Then there is a constant
M, such that

1 §
(m, k) —_
SL;p[P,, f) < M, . t:f flu)du

sup
081
holds for every f in Ly(I), for all t in I, and for n > 0.

Proof. For given tel we split the integral into two parts

t 1
PrAfe) = [ KO0 (1, ) f(s)ds + [ K (2, 9)f(s)ds.
i

0

Applying Lemma 6 of [7] (cf. [23] as well) we obtain

1 .
|J &R, $)f(s)ds |

VAN

. 1
up | — tf F(u)du

fasgl | ©

1
f[ VarlKSL"”C)(t, w)++ K8 (¢, 1)]ds.
H SRUS

Now (2.11) gives
. .
[ KG9 (8, 1) ds < M, (1 — 2y = 0,(1).
i

The combination of the lagt two inequalities and of (3.1) gives for

1 1 8
(1, ) (4 4 . e daul.
Ik (6 )19 < O 09 | 5= [ i a0

Similar argument applies to the second integral and therefore the
proof is.complete.

& ~ Studia Mathematica LIIT.3
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TEROREM 3.4. Let p > 1, m > —1, 0< k< mid-1. Then there is a con-
stant C,, such that for f in L,(I) we have

»
[sipensopa<on (2N [inora.
I

b n>g

Moreover, if |fllog™|f] is in L (I) then there are constamts C,, and
M, such that

[ sup [PEMOf ()] di < Oy [ 1£(5)log™ |£(1) [dt -+ M,
I n>0 . I

Theorem 3.4 follows from the previous theorem and from the ine-
qualities of Hardy and Littlewood (cf. [26], pp. 244-245). Theorem. 3.4
in the case of m = —1 was proved earlier in [24].

4, Orders of approximation. To’ state and to prove the main result
it is necessary to introduce the best approximation and the moduli of
- continuity of higher orders.

For given n >0 and m > —1 the best aproximation by splines of
order m, with respect to the fixed partition =,, in L,(I) spaces is defined
as follows:

(41) BOMf) =

By

It {lf —glp: g8z (D)},

and in the case of p = co it is understood that B (f) = D),

=1 leo-

Now let us take m > 1 and k such that 0 < m+1. According
to Theorem 2.4, | P{™™|, < M, for some positive M, for all p, 1 < p < oo,
Since P{™® is a projection of IL (I ) onto SZ’:"“(I), it follows from (4.1)
by standard argument that

B (f) < Nf PR ()], <

(4:2) Dy
holds for all f in L,(I) with 1 < p < co and for # = —m+k.
The modulus of continuity of ovder r > 1 of the function feZ,

1< p< oo, is defined for finite p by the formula

(1+M,) BG (f)

1Tt
d) = su
) 0<h£d (of
oo by the formula
)(f; 8) = sup{|d5f(t)

where it is assumed that 6 < 1. The symbol 47 is used here for the for-
ward progressive difference of order r with the increment h.

W f; afra)”,

" and for P =
0t <i+rh<1,

wr(f;a '—w1 h-ﬁ (5},

icm
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Levma 4.1. Let m=>0 and 1< p < o. Then emists M, such that

1
(4.3) MW =Pl < My — D (F —PE),
holds for n >0 and f in W, (I).

Proof. Inequality (4.3) is being proved here essentially by the
argument presented in. [13] and for the sake of completeness the proof
is given in detail.

The B-splines M) are simply the N{™ splines normalized as follows

up) = "2y,
’ Snj+1bm — Sn,4—1 g
It is known that (ef. [20]) ‘
00
J uZwa =

Let us congider at first the case of small n,ie. let 0 < n < mv+2.
Applying (4.2) we f£ind that there is M,, such that

If — PP Sl < M || £ —1(0)

= M |6 D(f — Pl <

)= (PRf =P (0)]
< Mp D (f =P f)llps
whence (4.3) follows with some new constant denoted by M, as well.

Now let n > m -2 and let for the time being 1 << p < o0, ¢ = p/(p» —1).
Moreover, let

=D(f—Ff), 4= [g@a,
In,j
n—m-—2
ho=f(0) +GDPPf+ ' o, @MY,

:/='1

Clearly, heSy(I) and therefore by (4.2) there is a constant L, such

that
N—m—2
=Py < |l = bly = Ly|| 65— > a@0™],,
F=1
the integral under the norm is being split into two parts corresponding

to the intervals <0, 8, 12> 80d (S, my2, 1). The first integral is estimated
a8 follows
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n—m—2
Y aeme | a

J=1

Sn, mA4-2

|6g ()~

m+-2
D
d=1 I g f=1 8n,i—1
m+2
<) f(21a1|+ f:g ) du)” @t
i=l Zp g §=1
m+2 Sn, 6

<y, il(f lg(w)] du”

i=1

du~2aj u D )| a

n, m+2

SO gyaf < (20 g, ).

n
0

For the second integral we have
n—m—2
[Gg(t y ajazm:f,.—n(t)[‘” it
sn,m+2 g=1
i—1 T—m—2 K
HZaj—k f g(u)du— 2 & — 2 a,GMﬁf‘,“"(t)’”dt
rt=-m+3ln 3 I=1 8, 4—1 Fel Jmi—gn—1

i-1

VAN

lay] (L — GM(””"I)(t)+ f |g(u)]du)pdt

i=mt3 Iy j=f—m—1 I

=

n,
i=m+3 Sp j-m—2

8,4

(lg(w) au)’

n Sn, i

<92

i=m-3 8y, (.—mv—z

ptpans (22 g )

Since all the estimates are uniform in p, the proof of Lemms 4.1 ig
complete.

LevMA 4.2, Let m >
18 a constant M,

~1, 1< p < oo, and lot fe Wit*(I). Then there
such that for n>0

1
(4.4) If— P""f o< Moy 1™+l
Proof. Inequality (4.4) is being proved by induction with respect
to m. For m = —1 we have the Haar case and therefore by Theorem
7 of [7]
If ~ P54l < 60 (f; 1/n).

icm
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On the other hand,

1—~h

([ 0w —fora)® {If_hlijhl)f(u)du[ﬁ a”

1-h t+h

- h(f f Df () die

i
If =P f

: )" <niop,,

and consequently
6
< 1Dfl,.

Now, let m > 0 and let fe Wo**(I). The function f is absolutely continuous
and therefore

I
£(t) = £(0)+ [ g(w)au,
0

where ¢ = Df is in W D*+(I). According to the induction hipothesis
we have

1

P !

lg —P5Dgly < My D™ |-

However, PimYg = DPMf and therefore (4.2) leads to the following
inequality

1D (f =P )y < Mo i D™l

with some constant M,,. Combining this with Lemma 4.1, we complete
the proof.

Leyva 4.3. Let m, m> —1, be fived. Moreover, let given fe Wi+ (I)
be suoh that
1
(4.5) If~PMl, = o ( nm+z) as . M->oo.

Then D™f = 0.
Proof. For m =
Thus, if

—1, {f{™, j > —m} is the Haar orthonormal system.

zzajﬁ_])w #

J=1

then (4.8) is equivalent to
antl

2" 3 gyl = o(1).

Jemall
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On the other hand, for absolutely continuous f we have (cf. [2])

antl

2 D)l =kvarf+o(1) = {IDfl+o(1

J=otp1

whence if follows that Df = 0.
Now, let m > —1. Then g = D™'f is in Wi(I) and according to
(4.2) we get with some C,, >0

(4.6) D™+ (f — PEOS) |y = H!J — P gl > Oy llg — Pl
Moreover, if n = 2 then
(F—PMfl < Y D™ (P4, — Pem

d=p

(D™ Wil

whence by (2.14) and by the hypothesis

D™ (f — P‘”"f nl;on 5”2*""”“( ), — PO flly .
T=p
v 1 1
- S3) -
dm=pt

Combining this with (4.6) we get
. 11
lg =P Vgl = o (—;)

and therefore, by the first step of the proof, Dg = D™*+2f = 0.

Before the next result will be stated let us recall the definition of
the Peetre interpolating K-functional (ef. [17]). We are interested in
interpolating the Banach spaces I, (I) and W7 (1) with » > 0 and 1 < p < oo,
The K'-functional is defined for f in L, (I) a:nd for ¢ > 0 as follows:

K (t; f3 L (1), Wy(I)) = int{If — gll, +-1D"gl,: g Wi(I)}.

In this particular case the functional was estimated in [15], and
it was shown that there is a constant M, > 0 such that

®

(4.7)

P (F3 ) S B f3 L (I), Wh(D) < M, o (f; 1)

holds for 0 < #r< 1.

e ©

icm
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THEOREM 4.1. Let m, k and p be given such that m >
and 1 < p < oo. Then there is a constant M, such that

-Lo0<< k< m+1

d m, I, 1
(4.8) nf—Psp”fMM,,,w;szm(f;;), s m—tt2,

. 1
(4.9) BN < Hoolpl(£i ), wz s,

holds for feLy,(I). ‘
Proof. For given n > 0 and for each ge Wi+*(I) aceording to The-
orem: 2.4 and inequality (4.4) there is a constant M, > 0 such that

1F =P, < If — glly + lg — P gl + 1P F — )l
1
<M, (uf-gnp t uD""“gup),
whence
’ 1 2
G10) U= < M (s LD, D).

Now, the combination of (4.7), (4.10), and (4.2) gives Theorem 4.1.
Apparently inequality (4.9) is known to the specialists (ef. [19])
but it seems that nowhere the proof was given in detail. In the case of
m = —1 it was already proved in [22] and [25]; for m = 0 and p = o
it 'was proved under certain restrictions in [4] and without them in [16].

5. Estimates for the L, riorms of the biorthogonal spline funetions.
Tn this section we consider the biorthogonal systern {f{™ 9, gi™®, ¢, j =k —m}
with m 2z —1, 0< k< m+1 and 1 <p < co.

Lemya 5.1. The following inequalities
(6.1) IFE™ Pl ~ b+,
(5.2) ” {m, k) “ ~ ni"k—l/ﬁ7 (1)

hold wwiformly in n, &, and p.

Proof. It follows. from (2.12) that
(8.8) ”f(m./a)”p = O(nFH-1p),

On the other hand, (fi™", gi™#) =1 and therefore, by the Holder
inequality,
(54 L APl lg™ Pl

() The symbol a, ~ by is used if and only if ay = O (by) and by = O (ap).
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with ¢ = p/(p—1). This and (5.8) give
(5.5) AT = O (g Plp)-

According to (5.4) it remains to estimate lg¢™ @]l from above. In the

case of k = 0 (5.3) and (5.4) imply (5.1), i.e.
(5.6) . Il i
Now Theorem 4.1 gives for f in L, ()
IF, SVl = 1P~ P4 Sl, = O (ks (f; 1/m),
whence by (5.6) we get v ’
(8.7 (£, [ = 002 @), (f; 1/m)).
In particular, for f in WE(I), (2.9) and (5.7) give

[(DEF, g5 M) = O (n=+12 o), (f; 1/m)).
Since

1
“’m—z(f? 1/n) SW; wﬁﬂ_z_k(D"f; 1/n),

the last inequality gives for ¢ in I, (I)
(5.8) 19, 6 P)] = O (n+*+10 08 (g5 1 m).
Olearly, (5.8) implies
(g, 9P| = O (4" g,
whence we infer by the theorem of Riesz that
g™ 2ll, = O (n=¥=k+)

and therefore the proof is complete.
COROLLARY 5.1. For m> ~1 and 0< < m-+1 we have wniformly
in n and k
A3 gl )| ~ .

6. Local estimates for the biorthogonal spline functions. It is assumed
in this section that m > —1, 0 <k < m-+1 and that t, is defined as in
(2.2). Moreover, (™" and s{™" are any numbers in I such that | fim By
= IfEDERD)] and (gmB)) = (gl (s6mH)),

n
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TumorEM 6.1. There is a constant ¢,, 0 < g,, < 1, such that the fol-
lowing inequalities hold uniformly in %, n, and tel

(6.1) B8] = O (nd+ gpit—taly
(6.2) [fm R ()] = 0(,,La+7cq::’-‘&m’k)l)7
(6.3) g8 (1)] = O (nt=>gult—tnl)

(6.4) g B ()| = 0 (%}-kqﬂ‘—aﬂn”‘)\ '

Proof. Inequality (6.1) was proved in [11]. Now, (6.1) implies

k)

AR = O(mishgle
whence by Lemma 5.1
(m,1)_
1=0(g"
which is equivalent to
(6.5) nltm 1] = 0(1).

Thus, nlt—t,] ZnE—"9 —nlf, ™9 = ng—™9 +0(1) and
therefore (6.1) implies (6.2). To prove (6.4) we use Theorem 2.1 to get

(6-6) AP 6P (s)] = O (ngn=).
Now, Corollary 5.1 and (6.6) give

it 1)_ g, 1)
n o~ f P Pl = O(ng,™ ),

whence we infer

. (6.7) n |8 — B = O(1).
Inequalities (6.6) and (5.1) give
lo—t{m )
0P (8)] = O(n¥* g, ™™,

and moreover (6.7) implies n|s—t™M| = n|s—sl™M| 4 0(1), and this
proves (6.4). Finally, (6.5) and (6.7) give n[t—si™™®| > n[t—t,|—nlt,—
— U™ B) — [0 — s B = p[t—1,|+O(1), whence by (6.4) inequality
(6.3) follows, and this completes the proof.

7. Unconditional inequalities. As in the previous sections it is assumed
that m > —~1, 0< k<< m+1, and 1< p< oo. Moreover, let

oA+l
MP(a) = 2#(%1/@( Z [a,,,l-'p)llp.

2841
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TrEoREM 7.1. For a given real sequence (a,) the following inequalities
hold uniformly in k, p, and p > 0:

jghtl
(7.1) | 3 aufim 1], = 02 M @),
2H41 -
g+l
& i =of| Sl
1
(7.3) | 3 angi ], = 0 uP ),
e gp+1
(7.4) 9 MkM(JJ) (H Za gm,lc) )
[LES
Proof The theorem in the case of m = —1 i trivial. For m =0,

it was established in [7], and the idea of the argument presented here
goes back to that work.
According to Lemma 5.1 we have

(7.5) I Bl = 0(@*h,  figd™Pl, = O(n™"),
and as a consequence of Theorem 6.1 we obtain

gh-+1

| 3 1gimm| = o2y,

2k
(7‘6) gH4+1

| X 1g51]| = 0(24).
2k 41 )

Now, using (7.5), (7.6), (2.10) and exactly the same argument as
in the proof of Theorem 6 in [7], we obtain (7.1) and. (7.3).

The remaining two inequalities can be proved exactly in the same
way as the inequality (32) in [7] (%), ‘

8. The biorthogonal functions as spline bases in IL,(7) and C(I).
.Aceording to (2.10) {g§™"9, ™™ 4, j = k—m} is o biorthogonal sequence
and by Theorem 2.4 {ff™", j=%k—m} is a basis in L,(I), 1< p < oo,

TasoREM 8.1. Let m and k be given and such that 0 <<l <5 m--1,
mz —1. Then {gf™", j = k~m} is a basis in Ly(I) with 1< g< oo, and
Sor f in L,(I) we have

(8.1) \1 7, f('m,h) m, ) _
=2

(*) In (32) of [7] there is a misprint, i.c. in the very right-hand side term thore
should be no absolute value under the norm. The same ramark concerns Lho relevant
places in the proof of inequality (32).

icm
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Proof. The partial sum

n
QrRg = 3T (g, fim0) g P

J=k—m
iy the adjoint to P9 Lp(I)—vpr(I ) and by Theorem 2.1
(8.2) Q5P < My 0<

holds with some M, > 0 uniformly in # and g: n > 0, 1< q\ co. Now,
for tinite g, {gf™™, > S % —m} is closed in I, (I) To see this, let (£, g™ ™) = 0
hold for j>%—m and for given feL,(I). Then property (2.9) implies
(DEGES, gy = (G, fi™) = 0 for j > k—m and therefore

E—mm—1
ka ¢ f(m, x)
whence f = 0. Consequently, since (8.1) holds for g = g"" B i k—m,
it follows that {g™", j > k—m} is a basis in L,(I).

In the space ¢ (I ) the situation is dlfferent Since for &k > 0 we ha,ve
g™ B (0) =0 for all j >k —m, the set {g{™",j>k—m} is not closed in
O(I). However, we have

THROREM 8.2. Let m> —1 and 0<k<<m+1. Then the system
{1, g+, § = f—m} is a basis in O(I) and for fin O(I) we have

3 JEmP@ (@) gm0

J=lk—m

Proof. Since {g{™", j = k—m} is closed in L,(I) (cf. the proof of
Theorem 8.1), it follows that {1, g{™**", j= k—m} is closed in O(I).

<m+l, mz —1,

(8.3) F) —=f(t) =

Moreover, (8.3) holds for f =1, gf™*, j > k—m. Thus, it remains to

show the uniform boundedness of the O(I) norms of the partial sums

(8.4) QB — f(1)— \1 (ff ) (5) df( .S’)) (1)

jmlc——m

Let us cousider two cases:
The first case: 0 < & < m. Integration by parts in (8.4) gives

SO~ F (L) PGy 5 (1) +F(0) PP T 1, (0) + Q5 FHS (1),
where I ,, is the characteristic function of (7, 1>. Thus,

IS < o+ 225 ) 4 Q5.

Sy ~

Now, the combination of the last inequality, Theorem 2.3, and (8.2)
give [80™¥| < 14-3M, and this proves the case.
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The second case: & = m-+1. According to (8.4)

(8¢ ™) < 1+2[]P(m'm+1)|]+811pvarK(m'"‘+1 mH(¢, 5),

sel tel
and the last term equals

supvar by (f)
sel tel

where b, = P™™HII .

Using Theorem 4.1 with p =1, we get for n > 0 and sel

(8.8) I g5, 15 = Bs ()ls < M,

According to Theorem 2.4,
(8.6) Mool < My el
Since h,eS8G Y (I), we find that it is of the form

n
b= D) () NGD,

F=1
whence by (8.6) we infer
(8.7) los(8)| < My, 1<G<my 86l
Thus,
=1
varky(t) = ) |0;41(8) —;(8)]-
tel =1

Now, let, for given s<I, ¢ be such that s, ;. Then

oy —halli > [ Lo,y (8) —hy(8)] @8

I\In,{

= [ Inmldt+ [ [1—hy(t)d

t<ap, 41 LELI:

i~

= Y la(s)I Ll + 2 1~ (8] Ly,

1=} ’lmi-t»l
>—~(Zloz + 3 =)

1=1 Vemi-h1

1 Nl
T(g[%l 8)—o(s l+l2+l|0m ”Olg)l)
oL
2‘4;[()"3}1'7".9(?)—504(-9)—01—1(-9”"Mh(s)"“"z(s)nr

icm
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and therefore by (8.7)

‘!’all‘ha(t) K40 g,y — hglly + 4D,

This and (8.5) imply var k, < 8M,,, and therefore the proof is complete.

CoROLLARY 8.1. The system {1, gf™ ™+, j >0} is an interpolating basis
in O(I), i.e. if 8™V 4s defimed as in (8.4) and (t,, n >0} as in (2.2), then
for feO(I) we have

(8.8) BPmf () =fl),  §=0,15..5m, n>0.

Proof. We know by Theorem 8.2 that {1, gf™™+%, j > 0} is a basis
in Q(I). Therefore it remains to check (8.8). According to the definitions
of gimm+d) and fim we have

1
) = g | ORI @ =0, n>j,
and therefore (8.3) implies (8.8).

The partial sums Si™™+Vf are related to the splines defined in [1]
as o solution of certain variational problem (cf. Theorem 5.4.1 in [1]).
In particular, if we denote by Vi (f), for given f<O(I), the set of all
ge W2(I) such that g(t) = f(t;) for ¢ =0, ..., n, and D*g(0) = D*g(1)
=0 for ¥ =1,..., m+1, then we have

TEROREM 8.3. Let n >0, m > —1 and f<U(I) be given. Then there
is umique goe Vi (f) such that :

D™+ golly = inf{ID™Eglly: g VR (f)}

and g, = SEumHIf,
Proof. If follows that for ge V3 (f)

(D, f) = (=1 [ @),
I
and SEmtDf o gty Qonsequently,
gy = DS ST (D, .

J=n-1

Thus, go has to satisty the conditions (D"*%g,,ff™) =0, j>n,
jo. Dnttg w D2 AN F o else gy = SGHTTUS,

9. Ysomorphisms between function and sequence spaces. Let us con-

sider for given f in IL,(I) the Fourier series

(9.1) f= Z wf™, o =(f, ")

Jea—m
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The aim of this section is to characterize in terms of the coefficients
a; the functions for which o), (f; k) = 0(h") holds with some q,
0< a< m+1+1/p,p<< co. In the case of p = oo the characterization
concerns the functions f in C(I)for which w,,..(f; k)= 0 (h%) with some «,
0<a<m+l.

To establish the final result a series of lemmas is needed. The first
one is known and therefore the proof is omitted.

LEvva 9.1. Let the integers i 3= 0 and § = 0 be given and let fe Wi (I),
1< p< oo, Then

1—(i+i)h Treghy X
([ 1apewas)™ <w([ 14D as)”
0 0

holds for 0 < (i+j)h<1
Lavwma 9.2, Let m > —1, n> 0 and let fe S0 (I)
stant M, such that for each k, 0 <k < m-1,

. Then there 18 a con-

1~kh

[ 14iferas)” <

[

I (nh)* 111

holds for 0 < kh <L and 1< p <
Proof. The combination of (2 14) and Lemma 9.1 with j =0 and
% =k gives the required inequality.

Levma 9.3. Let m > =1, %> 0 and let feS(I). Then there is a con-
stamt M,, such that

1—(m+2)h
[ 1) P ds)” < A, (e | ),
0
holds for 0 < (m+2)h <1 and 1 < p < oo,

Proof. Application of Lemma 9.1 with ¢ = m -1 and j = 1 gives

1~(m+2)k 1le
([ 1apsperas) <wm ([ 14,000 f ) e as)™.
0 0

Since D™**f ig in S;*(I), we infer from (27) of [7] that
-

(of |4, DM (5)[? 0“) & (nh)He | DmELRY

Combining the last two inequalities with (2.14), we obtain the inequality
of Lemma 9.3.

icm°®
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TrmorEM 9.1. Let m, p, and f be given such that m >
SfeLy (I} if p < oo, and feO(I)

-1L,1<p<g
if p = oo, Then ewists a constant M,, suck

that
©2) o1 < Moz (Ul + ) F B,
i=m+2
(9.3) al5 1) < My (Il + ) 5883
d==m+2
hold for nzm-2 and 1 < k<< m-1.

This theorem can be proved with the help of Lemmasg 9.2 and 9.3
in a similar way as Theorem 10 of [7] and therefore the details of the
proof will be omitted.

Inequality (9.3) in the case of m =
the case of m = 0 in [7].

TomoreM 9.2. Let m =0 and 0 < a < m-+1. Moreover, let feL,(I)
if 1< p< oo, and feC(I) if p = oo, and let a; be given as in (9.1). Then
the following conditions are equivalent:

—1 was proved in [14] and in

() EQ(f) = 0(n™"),
(id) If =P, = 0(n=*),
(iif) o1 (f; 8) = 0(8%,
(iv) MP(a) = 0(2™),

where M® (a) is defined as in Section 7.

Proof. According to (4.2), (i) is equivalent to (ii), and by (9.2), (i)
implies (iii). Now, applying (iif) to (4.8) and combining the result with
(7.2), we get (iv). Finally, (iv), according to (7.1), implies (ii).

TumorEM 9.3. Let fel,(I) if p is finite, 1< p < oo, and let feC(I)
if p = oo, Moreover, let 0 < a< m~+L+1/p and m>= —1. Then the fol-
lowing oonditions are equivalent:

(i) - E(f) = 0(n7%),
(i) If =Pl = O(n™®),
(iii) ofha(f; 8) = 0(8%,
(iv) MP(a) = 0(27),

where MP (a) is defined as in Section 7.
The proof is very much like the previous one and therefore it is omitted.
Theorem 9.3 for m = —1 was proved in [14].
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Remarks. Theorems 9.2 and 9.3 remain true after replacing capital
O by small 0. Moreover, in both cases of O and o in the theorems conditions
(i), (ii), and (iv) are equivalent if only a > 0. Condition (iii) implies each
of the remainnig conditions under the same restriction, i.e. a > 0.

COROLLARY 9.1. Let m > 0 be given, and let f be im L, (I) if 1< p < oo
and in C(I) if p = oco. Then from Theorems 9.2 and 9.3 follows the known
result: If 0< a< m+1, then condition w®),(f; 8) = 0(8%) is equivalent 1o
@@y (f5 8) = 0().

The same is true with O replaced by o.

COROLLARY 9.2. Let m > 0. Then wy,,(f; 6) = 0(6™) if and only if
EM(f) = O(n~™). The same holds with O replaced by o.

In particular, for m = 1 we obtain a characterization of the Zygmund
class in the non-periodic case

Toa(f; 0) = 0(0) iff  BD(f) = 0(1m)
In [7], p. 316, an example of fe(O(I) was constructed such that

(9.4)

(9.5) wy(f; 12" = w2 and  B)(fy = O(1/n).
COROLLARY 9.3. Let m > K p< oo, and let f be in L,(I). Then
WP, (f; &) = O(8™+Y) if and only zf B f) O (n~"+Y, The same holds

true after replacmg 0 by o. In particular, if m = 0 then for finite p we have

iff  BQ.(f) = 0(1n).

Itis very interesting to compare Corollaries 9.2 and 9.3 and charac-
terizations (9.4) and (9.6). It follows from (9.5) that the order of splines
in (9.4) cannot be lowered down.

To state our isomorphism result we need the following lemma.

Levma 9.4. Let m> —1 and lot 0 < a < m~+1-+1/p. Then there is
@ constant M,, such that

(9.6) o) (f; 8) = 0(9)

1
sup  1— offh, (7 h) <
0<h(m2)1

(9.7 M'n?(f, < < My [,

Moreover, if m>0 and 0< a<m+1, then for o> m--2

(9.8)  Mn*|f{", < sup

o< {m+1)<1

Proof. The left-hand side of (9
cording to Theorem 4.1,

175, =

1
77 O (F75 1) < My |,

.7) is being proved as follows. Ac-

I — P

(m) “
n—] o ==

< My ofhs (15 1(n—1)),
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whence we infer
Mt 1F5, < n oy, (5 1/m),

M,, = M,2"". To prove the right-hand side of (9.7) we use Lemma9.3
which for k< 1/n gives

1
i a5 ) < M

and for 1/n < b« 1/(m-+2) we use the inequality

1
M]u CU,(,n);.g(f(m) h) 9171+27@ﬂ”f7(,,m)]‘10-

The left-hand side of (9.8) is & consequence of (9.7) and of the ine-
quality o@,,(f; b) < 20, (f; h). The right-hand side of (9.8) for 0<h
< 1[n we obtain using Lemma 9.2

1

57 e (5 1) < Mo £l
and for Lin< h<1/(m-+1)

1

ol w%u f(m) h) L omHlps ”fr(um”bi’

and. therefore the proof iy complete. )
In what follows we are going to employ some more notation. For
given k=0 and o, 0 < a <k, let -

Hp* = {feL,(I): Ifl* < o},
whore
“f”;f'“ = ”f“]) 4~ sup —T; (l)Sﬂ27 f’
0<lehagl

The space <H&" || [ is a complete Banach space. Moreover, let
H == {felp®: of'(f; ) = o(h)}.

The space CHES || [ s a closed subspace of Hy®. .

In fhe case of p = co the definitions are modified in the obvious
way, namely the L (I) space is replaced by €(I). For simplicity we in-
troduce HM® == HEY Hb® = HEY and || [P = [[2°. We denote by
0 and fim 11motmm plopmtlonal o fi and normalized. in the norms
[ @b and || 2% respectively.

The space of all bounded real sequences b = (b_m,
denoted by by, and b = sup{[b,l: # = —m}; ¢p = {bely:

syboy ) I8
= 0(1)}, and
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the norm in ¢, is the same as in 1. Moreover, 1et B = {bely: [bH” < oo},
where

oH ¥+l ’

1ip

i = X s (3T (1),
flear G '

where 2% < m -2 < 2**', Moreover,
k1
=fpetn: ( 3 )" =o(1)}.
J=2+1
The gpace (12, || P> is a complete Banach space and ¢f with the
same norm its closed subspace. Of course, Iy =1, and ¢ = ¢).

THEOREM 9.4. Let m>0, 0<a<m-+l and 1<p< co. Then
(I—I;‘ Fhe |ty ds linearly isomorphic to (lw, (B, and (IR, | iy
18 linearly isophormic to (P, || ™. In both cases the isomorpmsm is given
by the formulae

co

(9.9) F= D b, by = LI, £5).

N=—M
Proof. Accordlng to (9.8) and (5.1) we get

“f(m Mmoo ’)7* S l/p

whence by Theorem 9.2

g+l

(> e = 0(1) (= o(1)),

2M1
if and only if feHM+1e (feHIEMe),

THEOREM 9.5. Let m > —1, 0 <a<m-+14+1/p and 1<Lp< o
Then CHFt™e, || Jtses is linearly isomorphic to (2, || 7)), and <II'7’,‘ i
|2y ds linearly isomorphic to {cf, || | (005, Inm both cases the isomor-

phism is given by the formulae.

(9.10) f — Z bn./zm n - ”fnm 1:1”2,& / j(ub)

W=~
The proof is similar to the previous one.

CoroLLARY 9.4. The Zygmund class, 4)0 the space H3', 1 €
is linearly isomorplic to 15, Moreover, HyG, 1< p < oo, is lzm(,wl'y 480~

morphic to ¢f.
Most of the results of this section were established in the case of
= 0 in [5] and [T7].
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It is worth to mention at this place that in the language of inter-
polation spaces, according to (4.7), the spaces H%®, 0 < a < k, could be
introduced as the intermediate spaces for I,(I) and WEI) (cf. [3] and
[17]). The results of this section and the geneml theory of interpolating
gpaces [18] show that the theorems on isomorphisms can be extended to
Besov spaces and perhaps to several variables t0o.
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