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Weighted norm inequalities for the Hardy-Littlewood
maximal function for one parameter rectangles

by
DOUGLAS 8. KURTZ* (New Brunswick, N.J.)

Abstraet. The paper studies conditions on a non-negative function w 80 that
the transformation which sends a function to its Hardy-Littlewood maximal funetion
is a bounded operator from LP(wdw) to LP(wdz). The Hardy-Littlewood maximal
funetion of a funetion f, with respect to a family of geometric shapes #, is defived as

2 [inonay.

*(x) = Sup
7He (Reat:zer) 1Bl 5

The family of shapes considered are one-parameter rectangles in Euclidean n-space,
with generalizations to collections of shapes similar to such rectangles. If 1< p< oo,
a necessary and sufficient condition on w is that

F 1 1 -1
Sup [— [ w(x)ds) |~ ~1(p-1)
2‘35( IR Rf "’(“d””) (11%1 ,! vl d”) <o

which is the 4, eondition. An analogous resulti is proved for the case p = 1.

1. Iniroduction. In [5], Jessen, Marcinkiewicz, and Zygmund prove
I” norm inequalities for the Hardy-Littlewood maximal function defined
over collections of n-dimensional rectangles. When the rectangles are
n-dimensional squares, Muckenhoupt [6] has obtained necessary and
gufficient conditions for weighted norm inequalities. In this paper, we
prove weighted norm inequalities for the maximal function taken over
a class of one-parameter rectangles. Similar results are then obtained
for eertain classes of metric balls. )

Before stating the main results, we first list several definitions.

Let @, (), pa(t), .-, @, (t) e n continuous, monotone non-decreasing
functions of one parameter, ¢> 0, which increase to oo and decrease
to 0 with t. Define

R(0,1) = {& = (@1, ey ) e B (g < g(1)/2, 4 =1,2, veey MYy
(1.1) . .
Z = {R(x,t): B(z,1) =p+R(0,1),xe B", 1> 0}.

* Partially supported under NSF Undergraduate Research Participation Grants
GY-8929 and GY-10717. :
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Such a collection of rectangles, #, is a one parameter class of reetangles
in B". Similarly, define %-R(x,?) = x+Lk-R(0,{) where

R0, 1) = {mwe B": oy < ko (T )/ , A =1,2, .., n}.

‘Where no confusion should arise, a rectangle of the form E(z, t) will be
represented by R(f) or R. Iixamples of collections satisfying (1.1) are
the collection of all n-dimensional squares and one where ¢, (t) = 1,
for' a; a positive constant, 1 <{<{n. Such one parameter collections
were introduced in [57].

Next, we define the Hardy-Littlewood maximal function, f*(s),
with respect to a class of rectangles satisfying (1.1). Tf Z is such a colleetion
then

12) (@) -sup—rﬁl— I F@)ldy

where the supremum is taken over all Re % which contain . .
The 4, condition with respect to a collection of rectangles, #, satis-
fying (1.1) is defined for all non-negative functions as follows: For 1 < p
9 -1
jw(w)“”‘"‘”dm) <e

< oo, we A, if
1
—_— ) da
([Rif (@) “)(ue.R

for all Re 4, where ¢ is independent of R. A function, w, satisfies the 4,
condition if

(1.4)

(1.8)

w*(x) < cw(x)

for almost every me E", where ¢ is independent of ». These conditions
were fivst considered in [6] and [7] for cubes, and in [4] for cubes with
p = 1. It is interesting to note that an 4, function may not take on the
values 0 or oo on a set of positive measures unless it is the whole space,
due to conditions (1.3) and (1.4).

The major result of this paper is the following theorem.

(1 5) THEOREM. Suppose L < p < co and %R satisfies (1.1).
exists a constant, ¢, independent of f, such that

f[f (@)]Pw(2)do < ¢ f|f )P0 (e

il En
if and only if we A,.

Ag shown in Section 3, a weak type result is pmved for the case

P =.1. Theorem (1.5) has been proved for arbitvary rectangles and a weight
function which is identically one in [5] when 1 < p < o0, and for cubes
and a weight function satisfying 4, for cubes in [6]. The proof of*(1.5) is
contained in Section 5.

*Then, there
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In Section 2, a covering lemma essentially due to Jessen, Marcin-
kiewiez, and Zygmund is stated. In addition, an interesting result pertaining
measures generated by A4, functions is demonstrated. This covering
lemma is used to prove a weak type result in Section 3.

Several theorems relating 4, classes are considered in Section 4.
The most interesting result is the following theorem.

(1.6) TrmoreM. Let 1 <p < oo and wed,. Then wed, ., for some
g >0,

This was proved for cubes by Muckenhoupt [6], and then simplified
by Coifman and Fefferman [1]. Though the proof is similar to Coifman
and Fefferman’s, a new result was needed for its completion.

The final section is devoted to generalizing the previous results to .
certain classes of metrie balls. Such collections are considered by de Guzman
in [2]. A few lemmas are proved which imply (1.5) is true for such collec-
tions. The method of proof demonstrates that the results of this paper
can be extended to any class of shapes which i geometrically similar
to a collection of rectangles satisfying (1.1).

Standard notations will be used in this paper, so that | B} will represent

1 1
the Lebesgue measure of a set B, p’ will satisfy the equation ? + ? =1,

and 0-oc0 will equal 0. ¢ will represent a constant, though not necessarily
one such constant. )

Before continuing, I would like to extend my wzumest thanks to
Dr. Richard Wheeden. This paper never would have been completed
without his effort and guidance, for which I am deeply indebted.

2. The coveriﬁg lemma. The following theorem is a generalization
of a result of Jessen, Marcinkiewicz, and Zygmund, in [5], for Lebesgue
measure. See also [8], vol. 2, p. 309.

(2.1) TuEOREM. Let # satisfy (1.1). Suppose p is a measure such that
(2.2) ' u(k-R)< c-u(R)
for all Re 2, where ¢ is dependent only on k. Suppose E 4is a measurable
set such that 0 < u(B) < co. For each ye B, associate some R, e & which
contains y. Then, there are a finite number of points, yi, ..., yye B, and
a positive constant, v, such that Ry, ..., Rl,N are disjoint and
x
X
D w(By) > yu(B).
=1
The proof is the same as for Lebesgue measure since y satisfies (2.2).
Let we A,,, for some p, 1 < p < co. Define

My (B} = fw(w)dm
B
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for any Lebesgue measurable set, B. Then, m, is 2 measure which, as
pointed out to this author by Dr. B. Muckenhoupt, satisties (2.2). The
proof is as follows.

If w is 0 or co almost everywhere, the result is obvious. Thus, suppose
0 < w(x) < co almost everywhere and that 1 < p < co. Let B = R(w,1)
be a fixed etement of #£. Through x, draw » hyperplanes parallel to the
coordinate hyperplanes and consider one of the 2" quadrants, R;, of R
so formed. Clearly,

1 1 . -
12 (g [ wiorss) (g [rtorean

by Holder’s inequality, so that

1
~1}(p-1) <
(24) (IRJ fw(aa) Ui 16150) < [w(m)dm.

By ’rhe A, eondltlon and (2.4), since |R| ==2"|R,,

~(p—1)

(2.3) L w(z)do < c( fw(m ‘”‘”"”dw) o
IRl & B ¥
1/p-1) @
1o
<6(2’”|R fw(w dw)
< 02"(”“1’ fw (@)do.
Hence,
(2.6)

fw(m)dm< c 2™ fw(m)dw.
& 2

Cleaxly, R; contains one corner, ¢;, of R. Let R; = R(g;, ). In the same
manner as above

(2.7) fw Ydo < 02”" f'w dw.
By
o
Notice that 2R = |J R;. Therefore,
=]
(28)  my(2R) = [w(@ds = [ w(a)do
2R am
2,5
2™ b
=) [w@)ds< o2 Zf 2)ds = 09 m,,(R).
=g iRy ‘

If p =1, fix an R = R(z,t) in # and define R; and R, as before.

For each ¢, by the 4, condition,
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1
(2.9) f w(x)de < ¢-essinfw (o)

1R; weR,

’L
< ¢-essinfw (2
zeRy IR |
Since |R;| = 2"|R,|, from (2.9) we obtain
(2.10) fw (x)dx < 2™ fw
Rt

Hence, as in (2.8),
(2.11) m, (21?,) ¢2%my,(R).

The next result is Lebesgue’s Differentiation Theorem with respect to
a class of rectangles and a weight function which is identically one.

(2.12) THEOREM. Let fe L'(dz) and # be a collection of rectangles satis-
fying (1.1). Then, for almost every x,

da
!RM 7] ff (y)ay = fle
{R: zeR}
The theorem follows in a routine manner from the case du = dw

of Theorem (2.1). It is also a special case of Theorem 4 of [2].

3. A weak type result. We now prove a weak type result for the
Hardy-Littlewood maximal function and 4, functions, defined with
respect to a suitable class of rectangles. The proof is similar to the case
proved by Muckenhoupt, in [6], where the rectangles are cubes, using
a different covering lemma.

(3.1) TurorREM. Let Z satisfy (1.1) and 1< p < oo. There is a constant,
¢, independent of f, such that for all a> 0

w (@) de < ca™? flf )|Pw (%) do
{z: Ha)>a} En
if and only if we A,.
Suppose we 4, and let B = {: f*(¢) > a}. We may assume withous
loss of generality that f is non—neaafnwe a.nd that ¥ is bounded. TFor each

%€ B, there is an R, such that —— f fly)dy > «. By (2.1), since the
x Ry
R,’s cover H, there is a finite disjoint sequence, By, ..

constant, y, such that

., By, and a positive

1 r .
A J f®)de>a, for 1<<i<<N,
IR :
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and .
my(B) <y ) my(By).

=1

Thus,
St S [
Y P i, () [ ——— ) d ) .
(32)  my(H) < ap‘:_jfmu,(RJa S o )<1RI ff('r) "

If p>1, an application of Holder’s inequality to the integral of
fin (3.2) yields

% i’ [71;7 (1}[ () dw) (1%[ w ()=o) dm)"‘l] 1 J (@) w (o) de

Since we 4, and the R;’s are disjoint, we obtain

a7 [ Fl@yPw (@) de.

nn

My, () < ¢

7

If p =1, (3.2) hecomes
~

ma(B) <L

8 ff(w) (ﬁ 1?! w(t)dt) .

O Ld
1=1 Ry

The result is immediate since _IEI_ fw (t)ydt < w*(a) for almost every

z in R; and we 4,.
For the necessity, recall that, for 1 < p < oo, we 4, if and only if

(fw(w) da;) (fw(w)
R R

for all Re#. Let B be a fixed element of # and 4 = [w(z

. b
It A =0, (3.3) is true for any ¢. If 0 < A < oo, let f(@) = w (@)~ VE=V. yp ().
Then f*(@) > 4/|R| for all zc R, and we have

[ w(w)da
R

Since 4 < oo, w(2) > 0 almost everywhere on R and the integral on the

right side of (3.4) is 4. Multiplying both sides of (3.4) by 47" proves

(8.3). It 4 = oo, w(®)~" is not in Z*' on R, so there is a function, g(x),

whiclt is in Z* on R and 0 outside of R, such that [g(z)w(z) P do = .
R

Lot f(x) = g(@)w(x)™. Since f(z)"w(x) < g(@)?, f(#)?w(z) is integrable
on R while f* () = co. Therefore, we have fw Ydz = 0, so (3.8) is true
for any e.

(3.3) ~Hp-1) dm)””l < ¢|RP,

)‘1/(17*1)0143'

(3.4) < c|RPA™? ffw(m)‘“(““l)w(w)dw‘
&
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If p = 1, the proof is exactly the same as in [6]. It is interesting to
note that the necessity proof does not depend on the geometric shape
being considered. The only place the shape is important is in seleeting
a covering lemma to prove the sufficiency part of (3.1).

4. Relations among 4, classes. In this section we prove some theorems
relating different 4, classes. Though many of the proofs are routine
extensions of analogous facts in [1], they ave included for completeness.
The interesting result of this section is Lemma (4.3). Tts proof was neces-
sitated due to the fact that collections of rectangles-satisfying (1.1) may
not be rich enough to use something like the Calderén-Zygmund Covering
Lemma.

(4.1) THEOREM. Let 1< p < oo and we A,. Then, we A, for all 7> p.
For p > 1, the proof is an immediate consequence of Hélder’s ine- .

quality. If p =1 and » > p, then
’ 1 o r—1 1
(_ j /w(m)‘l/("”dw) A
Bl 4 , essinfew ()
zeR
and
w(w) de < cessinfw (z
P f S

The proof is now obvious.
The following four lemmas are used for the proof of Theorem (1.6).

(4.2) LenMA. Let 1<p < oo and we 4,,. Define
1

Mp(w) = —-

w(x)dz.
'

Then, there ewist o and B, 0 <a<1l and 0 < B <1, 'mdependmt of R,
such that

Hoe R: w(z) > BMg(w)

= {we R: w(x) < fMp(w)}.

" ‘ Y(p— p-1
¢= (T%]‘R‘ w(d:)dac) (—1%3*] Ef(w?w)) J(» l)dw)

1 1 ue-n \FTR1 (B
=l [ () %) =5

BMg(w

} > alRl.

Let B Since F is a subset of B, if p > 1

Hence, |B| < (¢f)""~V|R|. Let E' )}. Then, since

E' is the complement of ¥ in R,
B =1

= {we R: w(s)>

~ (B ILR).
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The result follows by ehoosing f < min(1l/e,1). If we 4;, then we 4,
for all » > 1 by (4.1). The proof is immediate.

(4.3) Levwa. Let # satisfy (1.1) and Ry = R(p;,t) and By = R(po, ty)
be elements of & such that R, is contained in the interior of Ri. Then, there
exist B(py, 1), 1o < £ < by, such that p, is a continuous function of 1, p, = p,,
Py = D1y and .

(4.4) Ry = R(py, t) = R,

For simplicity, assume p, = (0,0, ..., 0) in R". If it is possible to
continuously expand and shift B, to a rectangle R(p,, t), satisfying (4.4),
for which. p, is on one of the coordinate axes, then the proof is practically
completed. For, suppose there is a ¢, <<t <, such that R(p,, 1)
satisfies (4.4) and p, lies on the wx;-axis; ie. py = (%,0,...,0). Let
t* be such that ’

21 (%)
2

Loy —0| = Pu(ty) .

2

Continuously expand R(p,,t) to B(py, t*) by increasing #' to #*. Notice

that, since t* < ¢, and p, is on the a,-axis,

‘Pi(t*)
2

o+

Thus, E(py, t*) = R,. Keeping its center on the wx;-axis, continuously
slide R(py,t*) towards (0,0, ...,0) as much as possible so that each
translate contains B,. Let R(pu,t") be the translate whose center is
closest to the. origin. Repeat this process for B(p;., t*). This will eventually
make p; = 0 since R is always shifted by the same amount. At this point,
continuously expand ¢ to £, so that R (p,, t) will coincide with R,. Similarly,
the result follows if p, lies on any other axis.

Suppose p, does not lie on any axis. For simplicity, let p, be in the
first quadrant of R,; ie., p, = (¢, 2",...,2") where 0o for
each 4. For 1<i<m, since R, has boundaries |z = ¢;(4,)/2, let
¢; = @;(1,) /2 — 2 denote the distance from p, to the border of R, crossing
the @;-axis in the first quadrant. Recall that R, is contained in the interior
of R, so that ¢; > ¢;(%,)/2, for 1< i< n. By the continuity of the ¢,
there exist {,’s such that

123 (tq)

P) (3]

1<i<n.

Suppose, for the sake of argument, that ?, = min {fo,, ..oy o}
Continuously increase ? to %, , so that B(p,, t,) will extend to the hyper-
plane »;, = @, (#)/2. Clearly
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palte,) @i (b;) (1
a® + 5 L — 2__”* =a® 4o, =———%;‘) , for 1<i<gn.

Therefore, gince p, is in the first quadrant of Ry, R(p,, t,) = B;.
The method of translating R(p,, ¢, ) towards (0,0, ...,0) is as fol-

lows. Continuously slide p, = (20, 2, ..., a®) to (af,2Q,...,2®),
where
2 = g® [(p1(t°1) ?1(%)
1 =8 =\ |
2 2
Setting

, ?illy) gt ’
m,,;=m§°)—[l—;1~~%—;°)—], for 2<i<n,

the shifting is completed by continuously sliding (i, ..., 2i_;, 2", %, ...
o) to (B, ..., @g, @, 8, ..., 29), that is, first slide along the
#,-axis, then the x,-axis, ete. Let p’ = (@1, @3, ..., #,). Observe that

for each p =", @, ..., T,)e Ry,

ooy — 3] < Javy— | + 1) — o

?ille) [%(tel) N q:,-(to)] _ o)

<
=9 2 2 P

Hence R, = R(p', t,,). Since 1, <t;, 0 <4< 4, and

@i (t,) (t
m?)-i-—-;l g%r()‘)), for 1<i<n,

we have that E(p', ) < R,. Now, either the center of the translate of
EB(py, 1,,) crosses an axis, in which case we are done, or at least two co-
ordinates of the center of the translate remain greater than 0. If necessary,
repeat the process using R(p’,%,). Since the center will be moved by
one of » fixed positive constants, there will only be a finite number of
such shifts possible before the center crosses an axis.

If po is in any other quadrant of R,, the argument follows by symmaetry.

(4.5) LEMMA, Let 1< p < oo, we 4, and

1

TIE[—wa(w)dw< A.

Then, there exist positive constanls ¢ and B, independent of B and A,
such that

) w(w)de < cAl{ve B: w(x) > 1}].
{xeR: w(z)>4} X
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Let B = {z<R: w(z) > 4}. By (2.12), for almost evely we I which

lies in the mterlor of R there is an R < R such that —— ] R l f w(y)dy > 2.
x

Thus, by the absolute continuity of the integral and Lemma (4.3), since

1
f w(y)dy = A. Since the R,'s
|R:c| Ry
cover B, by (2.1) there is a disjoint sequence, By, ..., Ry, and a positive
congtant, y, such that

R, = R, there is an R, c R such that

fw(mdm_z for 1<e< and. mwlf/)f'yvmw (L)

iwl

IRI

By (4.2), since m,(R) = Mg,(w) |Ri| = 2[R,

% _2/ H{ae B;: w(@) > p1}| <%—Z|{weR: w(a) > p)].

Therefore,
w(z)de < o' Al{we B: w(x) > pA}|.

{weR: w(z)>1}

(4.6) LEMMA. Let 1< p < co. Qiven we A,, there are positive contants ¢
and &, mdependent of R, such that

1/(1+8) 1!
(!RI fw m)uﬁdm) <c(~’R—Iwa(m)dw).

Before proving (4.6), a proposition is stated and proved.
(4.7) PROPOSITION. Suppose 1< p < oo and we A,. Define wy by

w(@) if  w) <N,

Ual®) =1y if w@)>N.

Then wye Ay, with an A, constant dependent only on p and the A, constant
Jor w. *

Suppose 1 < p < co. Since wy(w) < min (w (), ),

1 1
1) WIJWN(ﬁ)d$§TﬂJW(W)dw,

(4.8) 1
2) Tﬂfﬂw( z)de < N.
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In addition,

(4.9) L fwv( o)~V g

IR
== __1.__ j w(z)~ 1w~ l)dm+ { N-Up=-1) go
IRI {reR: w(x)<N} I {reR: u(.c)‘ N}
1

5 J w (@)~ 40D ggp 4. N1
"R

Hence, by (4.9), we obtain

=1
(4.10) (IRI fwv(x)dw)(!R! fw —ie- ”(Z.Jc)
1 1, o1 gy o -0 |
< (I—ﬂhf wN(x)dm) [Tﬁzjwm) (-1 do+N i ’)]

o '1 ~ : Fl ~ e p—=1 _ -
<o [ s ]

The application of the two conditions of (4.8) to (4.10) yields

1 1 ~1f(n—1 o1
w1 (g [owtoras) (37 [rostere—rae
- ! ‘ 1 —1/(n-1 - ' w1
(i toraa) (g [ oo re-raafvx0]

S 2P O]

i
A

Thus w\ ed,

= w( ) S0 ﬂmt mN(A )"‘ :'w(m)"‘ < grw(w) = ¢-wy(®). Condition 2 of
(4.8) shows that the desired result is obtained if wy(s) = N.

We niay now prove (4.6). Assume that w is a bounded A, function.
By (£.8), theve arve constants ¢ and g such that

TR L j -w(m)dm)dz <o J P lwe B: w(w) > pA}aA
M ]'lg(z(*) e Its w(r)>2 Mp{w)

¢ 148
179 ﬂfw(w) da.

-
=

4 — Studia Mathematica LIIL1
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In addition,
(4.13) f 221 w(w)dm)dz
M p(w) {zeR w(x)>A}
d M p(w)
> f -1 w(aa)om)dmw f 571 | B\ M g (w) d
0 {weR: W(z)>2} b

>3 [ an— RIMnwf .
B

[

The combination of (4.12) and (4.13) yields

1 1+8d
(E 1+6)fw(m 0 <

The desired result for such a w gfollows by making & so small that

1 ¢

(4.14) MR(w)”" |R|.

—— 0.
3T I
Tf w is an arbitrary 4, function, define a sequence of functions {wy} by
w(x) it w(@) <N,
wy (%) = .
N if w@=N.

Then, {wy} is & monotone, non-decreasing sequence of bounded functions
having w as its limit. The result follows by the Monotone Convergence
Theorem, (4.7), and (4.14).

We can now prove (1.6). Let we 4, for some p, 1 < p < co. Then,
w eV 4 ,. By (4.6), there are positive constants ¢ and ¢ such that

17 —n 1145 )WM . © f —1ip—1)
— @ an L - | w(x)” de.
(@ J totere ST

Since we 4,, we obfain

1 1 RN RSV CER)
el 3 (1) d et )12 1) e e,
(IRI f'zo(:r)dm)(]Rl Rffw(m) r) (\

Setting » —p—~+l we A, for some r < p.

146
5. The major theorem. Theorem (1.5) can now be deduced from (3.1),
(4.1), and (1.6) by using the Marcinkiewicz interpolation theorvem, as
shown by Muckenhoupt in [6]. Let 1 <p < oo and we d,. By (1.6),

icm

Weighted norm_inequalities for the Hardy—Littlewood function 51

there is an ¢ > 0 such that WsA By (3.1) and (4.1),

"Poeb
my{w: f*(@)> o} < ea™® [ |f(2)%w(a)de
"
for ¢ = p-—e¢ or p+e. The result follows from the Marcinkiewicz inter-
polation theorem, [8], p. 111.

6. Generalizations. Let ¢: B XE”»[O ; 00) be a translation in-
variant metric in E™. Define

B(0, 7") ={zecB"™ ¢ < r}

and suppose that the bally B(0,r), r > O, are convex, compact bodies
symmetric with respect to the coordinate hyperplanes, expand continuously
to B" as 7 tends to oo, and contract continuously to (0, ..., 0) as » tends
t0 0. Let # be the collection of all balls of the form B(z, r) = z--B(0, ),
for 7> 0 and z< B, and suppose o is so defined that for all B(w, r)e 4,
there iy a b such that

(6.1) [B(@, 2r)| < b|B(z, 7)|.

Then, it is possible to generalize all the results for one parameter rectangles
to such a class of metric balls. As for rectangles, B(r) or B will be used
to represent B(x,r) whenever it would cause no confusion.

Let B(0,r) be a fixed metric ball. The non-zero coordinates of the

points of intersection of B(0,r) with the coordinate axes ,, ..., =, are
{Zl:“i5 (RS ] Il:a’n} = {iwl(f)y ERRS ] i“n(r)}i
respectively. Define a rectangle ’
EB(0,7r) ={zeF™: |m|< e, i =1,2,...,0}.

Such an R is a one parameter rectangle which, by symmetry and con-
vexity, contains B(0,r). Furthermore, R(0, r) is contained in B(0, fnr)
To see this, notice that each « in R(0,r) is of the form (Byay, faay, -.

.y Puty,), Where —1 < §; < 1 for each ¢. Therefore,

Q(w =9(ﬂl"’1a"'7ﬂna~n
< 0(Bats; 0,0y )+ o +0(0, ..., 0, Boay) < mr
since 0(0,..., 0, f;4;, 0, ..., 0) < for L<i< e

Let R(w,r) :m-}-R(O 7), for »> 0 and we B, Then, given such
a collection of balls, #, a collection of rectangles, #, satisfying (1.1), is
naturally generated such that for each B(w,r)c # there is an R(z,r)e &
with the properties that

1) B(z,r) = R(», r) = B(x, w,"r*),

6.2
©2) 2) |B(=z, r)| < |B(@, nr)| < B1B(a, 7)],
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where g is dependent only on the constant, b, of (6.1) and . This second
sgondition is a consequence of condition 1 and (6.1).

icm

WS The Ha,rdy—thtlewood maximal function with respect to & is deﬁned ’
as &

3 (@) = sup——- f If(y
(6.3) fa(@) P 1B

when the supremum is taken over all Be # which contain . As a conse-
quence of (6.2), notice that

64 fate) = sy [ 170010y < sup gy i J i =1

 The 4, condition with respect to # is analogous to the condition
for reetangles. Tf 1 < p < oo, we A,(F) if

(T%Tf o (@ )d””)(uﬂ | "(””)_1/(%%).“_1'\{0

for all Be &, where ¢ is independent of B. A function, w, will be in 4,(4) if

(6.5)

(6.6) Wiy (@) < ow(w)

for almost every we E", where ¢ is independent of w.

(6.7) LEMMA. Let 1< p < co. we A, (B) if and only if we A,(R)-
Suppose we 4,(%). If p =1, the proof follows from (6.4). Therefore,

let 1 < p < oo, For each Be %,

(Tll?l!w(w)dm)(IBl fw ) l)dw)

< (T%f (= )dw)(lm [ wtar - Mw) T

Hence, we 4,(%F) for 1< p < oo,
Now, suppose we 4,(2). If p .= 1, by (6.1) and (6.2)

f wlo
Thus, we 4,(R).
If 1 < p < oo, using (6.1), we obtain

w*(w) =

{‘ w(w)dw = fwly(v).

@) dw < sup ——— p
)| B(nr)

S’ll];) Bn

~-1)

f w(z)de < o(
B(nr)

f aw (@)~ M@= dm)

1 1
|.B(nr)| | B (nr)] B
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ey gy
it o]
~(p-1)
~1j(m-1)
<o(5amy B(f) o4 -2aa)
1
< of?~ [B(r) f'w(w)dm.
Therefore, by (6.1) and (6.2),
- Vdo < e w () dw
BN SCB , '

Similarly, sinee w™Y®~Ve 4 .(F), where 1 < p’ < oo,

RO 1)

Thus, we 4,(2#), for 1< p < oo.

The results previously obtained for rectangles can be extended to
balls because of (6.4) and (6.6). If we 4,(%), then we 4,(#) so that m,,,
with respect to 2, satisties (2.2). Therefore, for 1 < p < oo and we 4,
by (1.5),

[ 115(@) 1P 0() de
pg

w ()M gy G” f,w ()~ H2=1 g

B()

(6.8) <o f [f* (@ ]”ww <d¢ f 1f(@)Po0 (@

If we Ay, using (3.1) and (6.6),

(6.9) my,{@: fa() > o} <my{o: of* (@) >} < 'a [ |f(@)lw(@)do
g
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Self-decomposable probabilit); measures
on Banach spaces

by .
A. KUMAR* and B, M. SCHREIBER** (Detxoit, Mich.)

Abstract. Self-decomposable probability measures (laws) on a real, separable
Banach space E are defined and identified as the limit laws of certain normed sums
of independent, uniformly infinitesimal, F-valued random wvariables. It is shown
that self-decomposable measures are infinitely divisible, and a characterization of
such measures in terms of their Lévy—Khinchine representations is given on the spaces
for which such a representation is known to exist. Finally, a representation theorem
due to K. Urbanik for certain measures agsociated with self-decomposable probability
measures on finite-dimensional spaces is generalized to separable Banach spaces.

In §1 we introduce the notion of a self-decomposable probability
measure and obtain a necessary and sufficient condition for a self-decom-
posable law to be stable in terms of its “component”. In § 2 we first show
the class of self-decomposable measures on a real, separable Banach space
can be identified with the class L ([2], p. 145) on the space. It is then shown
that a self-decomposable measure and its “components” are infinitely
divisible. This result is of interest since it is not known whether the limit
laws of uniformly infinitesimal triangular arrays of random variables with
values in a separable Banach gpace are always infinitely divisible (see [9]).
§ 3 is devoted to characterizing self-decomposable probability measures
on certain Orlicz sequence spaces in terms of their Lévy-Khinchine
representations as given in [7]. The paper ends with the extension to
the present context of the work of K. Urbanik ([13], [14]) on the represen-
tation of self-decomposable probability measures 131 § 4.

1. Notation and preliminaries. We shall denote by E a real separable
Banach space and by R and R* the space of real numbers and strictly
positive real numbers, respectively, with the wsual topology. E* will

T+ Some of the results in this paper appear in the doctoral dissertation of this
author. He wishes to thank his thesis advisor, Professor V. 8. Mandrekar, for his
constant encouragement and valuable suggestions during the writing of that disser-
tation. .
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