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Tsomorphism of spaces of bounded continuous functions
by '
ALAIN ETCHEBERRY (Berkeley, Calif)*

Abstract. Milutin proved in 1952 that all Banach spaces O(K), E compact
metrizable and uncountable, are isomorphic to O(4) (4 the Cantor set). Later, Pel-
czyfski and Ditor extended and simplified the methods. In this paper Milutin’s
theorem is extended to the setting of bounded continuous functions on certain metriz-
able topological spaces. In particular, when X is separable, the following is proved:
a) If X is polish, uncountable and not locally compact at any point, then the Banach
spaces BO(X) and BO(N*) are isomorphic; b) If X is polish, locally compact and
non-compact, and such that every non-empty open subset of X is uncountable, then
the Banach spaces BC(X) and BO(d4 x N) are isomorphic. Here N is the discrete
space of natural numbers and N® = N x N x ... i the polish space of irrational
numbers. The strict topology plays an important role in the proof. There are extensions
to the non-geparable case, as well as to other topologies. The cage of the spaces
BO(X)[0,(X), as well as several applications and open problems, are also considered.

The subject of this work is an extension of the isomorphism theorem
of Milutin to the setting of bounded continuous functions on metrizable
spaces. The methods, except for the use of the strict topology, are extensions
or variants of those used by Milutin ([13] and [147), Pelezynski [18] and
Ditor [5] (see also Bade [2] and Semadeni [20]).

If X is a Hausdorff topological space and ¥ is a Banach space, we
denote by C(X; H) the vector space of all continuous F-valued functions
on X, and by BC(X; E) the subspace of all bounded functions in C(X; E).

- 'We denote by ||f|| the uniform (supremum) norm. of a function fin BO(X; H).

Tt 8 is a subset of X, we cenote by |flls the norm of the restriction of
fto 8. When F is either the reals R or the complexes C, we write generically
C0(X)and BC(X). All our results will be valid in both the real and complex
case.

Remember that a polish space is a topological space homeomorphic
to a separable complete metric space. The symbol 4 will denote the Cantor
set {0, 1}~ with the product topology; the symbol N denotes the discrete
space of all natural numbers, and N the cartesian product of countably
many copies of N, with the product topology. The space N> is known

* Author partially supported by NSF Grant GP-29012.
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to be homeomorphic to the subspace of irrational numbers in R (see
Section 2 for a discussion of this point). The spaces A, 4 XN and N>
are polish spaces; the first one is compact and the second one locally
compact.

We state and prove first the separable version of the main result
of this paper, and leave the non-separable case for Section 5. We state
the theorem in a form slightly more general than the given in the abstract.
To save space we leave out the (known) compact case, although all cases
could be treated in parallel.

THEOREM A. Let X be a polish space.

(a) Let X contain an wncountable closéd subset which is not locally

compact ot amy point. Then the Banach spaces BC(X) and BC(N™) are

isomorphic.

(b) Let X be locally compact and coniain a closed non-compact subset,
every non-empty (relatively) open subset of which has at least two poinis
(4.e., is uncountable). Then the Banach spaces BO(X) and BC(4 xN) are
isomorphic.

Statement (b) implies that.the Banach spaces BC(4 xN), BC(R")
(n =1,2,...), BC(0) (0O a non-empty open subset of R") are igomorphie.
Statement (a) implies that the Banach spaces BC(N%), BC (1), BO(R®)
(R the countable product of lines), BC(0) (0 a non-empty open subset of
a separable, infinite rhmensmnal Banach space or Préchet space) are
isomorphie.

It will be shown in Section 5 that in the locally compact case the
isomorphisms can be chosen so that they respect functions vanishing at
infinity. Thig implies an isomorphism result for the corresponding quotient
spaces BO(X)/[C,(X), i.e., for the spaces 0(fX —X) (BX being the Stone—
Gech compactification of X).

The proof of the theorem uses the ideas in Ditor’s approach to the
Milutin theorem. However, in the case at hand it is slightly more efficient:
to use, for the extended “Milutin lemma”, a construction like that in,
Kuratowski [10], vol. I, p. 437, rather than the more elegant (but equiv-
alent) inverse limits used by Ditor.

The proof is based on Theorems B and C below and on a version of
the decomposition technique of Borsuk and Pelczynski.

TumoreM B. With X as in Theorem A. The Bamach space BC(X)
contains @ closed subspace isometric (i.e., isometrically isomorphic) to the:
space BO(Y), Y being N™ in case (a) and AXN case (b). This subspace:
18 the ramge of & contractive projection of norm one from BC(X).

This will be proved in Section 2, and is an immediate application of

the Borsuk-Dugundji linear extension theorem, in the form proved by
Michael [11]; as soon as we prove that under the stated conditions X
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contains a closed subset homeomorphic to N
(case (b)).

For the statement of Theorem O we need some terminology. Let X
and Y be Hausdorff topological spaces and =: X—Y a continuous sur-
jection. We define the linear injection of norm one n°: BO(Y)—BC(X)
by #°(g) = g=, for every g in BC(Y). A linear map L: BC(X)—=BC(Y)
is called an averaging opergtor for = (or z%), if Ln® = Idgey)- It follows
immediately that L is surjective and that L(lg) = 1. In general, for
o subset S of a set T, we denote by 1y the characteristic function of the
set 8. The map L is called regular if, in addition, [[L|<1 (so |Z|| =1,
and L is a positive operator).

THEOREM C (Extended Milutin lemma). Let X be a polish space.
Then there is a zero-dimensional polish space X, in fact a closed subspace
of N®, with the following properties: There is a continuous surjection
II: X—X admilting a morm continuous averaging operator. Moreover,
in case (a), X, can be taken to be N* and, in case (b), to be A xN.

The importance of this theorem lies in the fact that it implies that
BC(N*) (case (a)) or BC (4 xN) (case (b)) is isometric to a complemented
subspace of BC(X). Indeed, LII° is a projection onto the subspace II° BC(Y)
(with ¥ = N* or 4 xXN) of BC(X), as

(case (a)) or AxXN

(LIIY(LIT°) = L{II"L)[I° = LII°.

Theorem C is the heart of the whole argument and is based on an
extension of the Pelezyniski “localization lemma’’ [17]. This theorem will
be proved in Section 4. In the proof we will need, in case (a), a Stone—
Weierstrass-type theorem for the strict topology. This topology will be
discussed in Section 3.

In Section 5 we treat several extensions of the main theorem: (i) The
non-separable analogues; (ii) Isomorphism theorems for the strict, compact-
open and uniform topologws (the last two on C(X)); (iii) The case of
quotient spaces.

In Section 6 we give some applications of the main theorem: (i) To
the contractibility of the corresponding linear groups; (ii) To the existence
of fixed bounds on the norms of the isomorphisms; (iii) To an extension
of a theorem of Pelezyniski on complemented subspaces of O(K).

In Section 7 we state some open problems. In particular, it is left
open whether the Banach spaces BO(R) and BC(1?) (say) are isomorphic
(7* being a separable Hilbert space).

The present work is essentially the author’s Ph.D. thegis, written at
the University of California (Berkeley) under the supervision of Professor
William G. Bade. The author wishes to state his deepest appreciation to
Professor Bade for his advice.
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1. The proof of Theorem A from Theorems B and C. If ¥ and I are
Banach spaces, we put on the product B xF the product topology and
the norm defined by |i(%, y)l| = max{[lz|, |y|}. The symbol ¢~ will
stand for isomorphism and ¢~ for isometry (i.e., isometric isomorphism).

The following relations are easy to wverify.

(1) If B ~F, then BC(X; B) ~BC(X; F).
(2) BO(X; B xF) ~BO(X; E)xBC(X; F).

For the sake of definitness let us deal with case (a) in the theorem.
In case (b) one simply replaces N* by N x 4. ‘

The compact case, which will not be repeated here, is very similar,

with N* (the one point compactification of N) replacing N in the arguments
(see references).

We have
(3) BCO(N; E) ~FE xBC(N; B).
Observing that N x N* is homeomorphic to N*®, we also have
(4) BO(N*) ~ BC(N xN*) ~BO(N; BC(Ny)),
and thus
(5) BO(N®) ~BC(¥*)xB0(N; BO(N™)).

By Theorem C, the space BO(X) is isomorphic to a complemented
subspace of BO(N®). Thus we have

(6) BO(N®) ~BO(X)x U,

for some closed subspace U of BO(N™).
On the other hand, by Theorem B, the space BC(N®) is isometric
to a complemented subspace of BO(X), that is,

(7) BO(X) ~ V xBO(N>).

The following decomposition argument then shows that BC(X)

~ BO(N*), and achieves the proof of the theorem.
BO(X) ~ V xBC(N*)] (by 7)
=~V xB0(N>) xBO(N; BO(N*)) (by b)
~ B0 (X) xBC(N; BO(N®)) (by 7)
~ BO(X)xBO(N; BO(X) % (9] (by 6)
= BO(X) xBC(N; BO(X)) xBO(N; U) (by 2)
~ BC(N; BC(X)) x BO(N; U) (by .3)
=~ BC(N; BO(X) x D) (by 2)
~ BO(N; BO(N*)) (by 6)]
=~ BC(N™). (by 4)
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2. Linear extensions and the proof of Theorem B. We quote the
statement of the linear extension theorem of Borsuk and Dugundji, in
the form proved by Michael [11].

2.1. TaEOREM. Let X be & melrizable space and ¥ o closed subset of X.
Then there s a linear map T: C(Y)->C(X) such that:

(@) T'(f), restricted to X, is f,

(b) T(1y) =1x.

(¢) the range of T'(f) is coniained in the closed conver hull of the range
of f.

The operator T is continuous if both spaces have the compact-open
topology or the topology of wuniform convergence.

The map T, vestricted to BO(X), is o linear map of norm one.

The compact-open topology on ((X) is the locally convex topology
induced by the seminorms px(f) = liflz, K a compact subset of X.

The space TBC(Y) is a subspace of BCO(X) isometric to BC(X).
The space TBC(Y) is, in fact, complemented in BC(X). The map P = TR,
R: BO(X)—+BC(Y), R the restriction map, is a projection of norm one:

P? =(TR)(TR) =T(RT)R =TR =P
since, clearly, BT = Idgqr-

To obtain Theorem B we have only to prove then that, under the
hypotheses of the theorem, X contains a closed subset homeomorphic
to N® or AXN. )

2.2. PROPOSITION. Let X be an uncountable polish space which is not
locally compact at any point. Then X contains o closed subset homeomorphic
to N,

Proof. Fix on X a complete metric. Since X is not compact, there
is a countable discrete subset {z,, #,, ...} of X. We can.then find mutually
disjoint closed balls B, (» =1,2,...), with -the following properties:
B, has center a,; each B, has diameter at most one; the diameters of
the balls B, tend to zero as n tends to infinity. With these properties,

the set (U B, is closed.
1

By hypothesis none of the B, is compact so, for each n, we can find

a countable discrete subset of X which we can assume (by shrinking
B,, a bit) to be contained in the interior of B, . We then construct mutually
disjoint closed balls B, (k =1, 2,...) with the following properties: B,
bas center w,,; B,; has diameter at most %; for fixed =, the diameter
of B, tends to zero as & tends to infinity.

Proceeding by induction we get at the nth stage, for each fixed choice
of indices 4(1), ..., ¢(n—1), the following: (a) a discrete countable set

{Zi)..itm—1,19 Bi1)...ifn—1),29 ***

} in X, contained in the interior of the

s
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closed balls By i,-y; (b) mutually disjoint closed balls Byy). iu-,s
(k =1,2,...) with the following properties: By in-y, has center
Bi)...im-1),%5 €ach of them ig contained in the interior of By,
each of these balls has diameter at most 1/n; the diameter of B
tends to zero as k tends to infinity.

‘We now define, for all ,

B(n) = U {Byy...m; (1), ..., (n)e N}.

This is, by construction, a closed get in. X. We assert that the closed set

A(n—1), 3

(1), i(n—-1),k

8 = A\ B

is homeomorphic to N°=.
Consider the map f: NS defined by

f{i(l),’i(Z), ) = n{Bi(l)...i(n): n=1,2,...}.

The above intersection reduces, by construction, to a single point, so f

is well defined. It is also clearly a bijection. Observe next that f (Ny...cn)
< Byg,..in) and. that the diameter of By ) is at most 1/n; this shows
that f is contmu9us. Finally, f is also an open .map (onto 8), because
F(¥iqy...sm) = Int Bygy gyN 8,
& relatively open set. This completes the proof of the proposition.
Remarks. ‘We have used in the proof the notation Nigy...iny- These
sets,. defined as {(ny, 0y, ...)e N: ny = 4i(1),...,n, =i(n)}, as # and
the (k) range over N, form the usual base of open and closed sets for
the zero-dimensional polish space N*. These sets have diameter 1 /(n —l—i)
for the complei;e compatible metric defined as follows: For m = (m,,m,,...)
and n = (0, Ny, ...) in N°, d(m, m) = 0 and d(m,n) = 1/n if » is the
first index 4 such that n; = m,.
In the locally compact case we have to wuse the following result.

2.3. PROPOSITION. Let X be a polish locally compact and NON-COMPact
space. If every non-empty open set in X has at least two points, then X contains
a closed subset homeomorphic to 4 xN.

Proof. Since X is not compact, it contains a countable discrete
subset {x;, #5, ...}. By discreteness we can find mutually disjoint compact
balls ¥, centered at these points, such that their diameteré tend to zero
when # tends to infinity. In every ome.of these balls V, we can find

n

a closed subset 4,, homeomorphie to the Cantor set. This ig possible because
each ¥V, is uncountable. By construction the set (JV, is closed, and so

. o0 Y . L
is LIJA,,. This last set is homeomorphic to 4 XN, ending the proof.
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Remark. A subset of a topological space is called discrete if every
point of the space has a neighborhood intersecting the subset in at most
one point. Such a subset is necessarily closed.

There is a classical characterization of N%°, similar to that of the
Cantor set. This has been extended in the following way by A. H. Stone
in [22], p. 6. Let us write W for a countable product of copies of a discrete
space W of cardinality w, with the produect topology. This is a metrizable
topologically complete zero-dimensional space of weight w. A complete
metric and a bage of open and closed sets can be defined similarly to N*.
(The weight of a topological space is the least cardinality of an open base.)
Stone proved that a metrizable, zero-dimensional absolute G4 of weight w,
is homeomorphic to W* if every non-empty open subset contains a discrete
subset of cardinality w. One can replace the condition of being an absolute
@, by the equivalent one of having a complete metric (i.e., topological
completeness). The space N® is then the particular case of countable
weight with non-empty open subsets containing discrete sequences.
Observe also that it would be easy to give similar characterization of
AXN or AXW.

3. The strict topology. In this section we review without proofs
some results on the strict topology on BC(X) that will be needed in the
sequel. This topology, studied initially by Buck and others in the locally
compact case, has recently been extended to completely regular or more
general topological spaces by several authors; it is closely related to the
compact-open topology (the topology of uniform convergence on compact
sets). We mention only: Cooper [4]; Fremlin, Garling and Haydon [7];
Hoffmann—Jergensen [9]; Sentilles [21]; and Summers [23], and refer
to them for proofs an further papers on the subject. In particular, Sentilles
[21] has the best overview of the field. The topology we define below is
actually called the substrict topology by Sentilles. However, since we are
only interested in the case of metrizable X, where this topology coincides
with the topology Sentilles calls strict, we will keep the name.

Let X be a completely regular Hausdorff space. We define the strict
topology B on BC(X) in three equivalent ways (see [21] and references
there). We will write BC/(X), for the space BC(X) with this locally convex
Hausdorff topology.

(a) A base of neighborhoods at zero for 8 is given by the following
family of absolutely convex absorbent subsets U of BC(X). For every
positive integer n there is a compact-open neighborhhod V,, of zero such
that U nnB > V,nnB, B being the closed unit ball of BC(X). This is
the finest locally convex (in fact, the finest linear) topology on BC(X)
which coincides with the compact-open topology on the norm bounded
subsets of BC(X).
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(b) The mixed topology (in the sense of Wiweger, see [21] for refe-
rences) y(CO, |-} (CO the compaci-open topology). A base of neighborhoods
at zero is given as follows. For every sequence (U;) of CO-neighborhoods
of zero, let

U =TT, ..

G Uny = U(OfnB+ ... +UsnaB).
n=1
(¢) A base of neighborhoods at zero for § is the following. For any
sequence (K,) of compact subsets of X and any sequence 0 << a,—>co of
reals, let

W((E), (@) = Ul,{f= 1flle, < @}
=
Equivalently, consider the seminorms

2(f) = S1.1p {bn”f”Kn :
where 0 < b,—0 (e.g., b, = 1/a,).

For later purposes we need to extend the definition of the strict
topology to the vector valued case. Let B be a vector space provided
with a Banach space norm ||| and a second (weaker) loeally convex
Hausdorft topology . Let (a’) be the topology defined on BO(X 5 B)
exactly as in (a), but replacing the CO topology by the -CO topology,
that is, by the topology of v-uniform convergence on compact subsets of
X. In other words, in this case V, is a set of the form

{f: f(w)e W, for every ze¢ K},

with K compact in X and W a z-neighborhood of zero. Similarly, we
define (b’), making Uy an absolutely convex 7-neighborhood of zero.
The proof of the equality of these two topologies is exactly as before
(see [21] for details and references). We do not need, for our purposes,
to have an analogue of (¢). We designate the space B((X ; ) with the
strict topology by BC(X; B),.

It can be shown that the strict topology on BC (X) hag the same
bounded sets as the norm topology ([9] or [21]); that the strict topology
coincides, in the locally compact cage, with the topology originally defined
by Buck (e.g., [4]); and that the space dual to BO(X), is a Banach §pace
and can be idgntified with the space M (X) of all regular real or complex
valued measures defined on the Borel sets of X (total variation norm)
(see [7] or [9]). We will specifically need the following faets about this
topology.

3.1. TEROREM. 4 linear map T from BC(X)s into a locally conven
space F is strict continuous iff T, restricted io each nB (n a positive imleger,
B the unit ball of BO(X)), is CO-continuous. Ezactly the same thing is true
Jor BO(X; B), with- CO replaced by +-CO.

n= 1},
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See [4], the proof in the vector valued case is exactly the same.

3.2. TamorEM. Let A be a subalgebra of BC(X; R) which separates
the points of X and such that, for every % in X, there is @ function f in A
with f(x) # 0. Then A is strict dense in BO(X; R).

This is a theorem of Stone-Weierstrass type. The simplest proof
(using only the definition (c) of f) is that in [9]. If A is a self-adjoint
subalgebra of BO(X;C) with the above properties then, of course, A
iy also strict dense in BC(X; C). As in the classical norm case we have
as a consequence the following result.

3.3. COROLLARY. If X 4s separable and metrizable then BC(X) is
separable in both the CO and strict topologies.

See [23] for a more general result and related material. The space
B(C(X) need not, of course, be separable in the norm topology.

3.4. TuroreM. The locally conves space BC(X), is complete iff X
is & kr-space. In particular, this is the case if X is metrizable.

Recall that a topological space X is called a kq-space if every bounded
function, continuous on each compact subset of X, must be continuous
on X. Among the %-spaces are the first countable topological spaces
(e.g., Dugundji [6], p. 248), in particular the metrizable ones. For the
proof see [7], [9], or [21].

4. Averaging operators and Milutin’s lemma. In this section we
extend Milutin’s lemma to the setting of polish spaces and bounded
continuous functions on them. We begin with an extension of Pelezynhski’s
localization lemma [17].

4.1. PrOPOSITION (Localization lemma). Let X and Y be Hausdorff
topological spaces, with Y completely regular, and (X ,) a locally finite open
covering of ¥. Let w: X—Y be a continuous surjection, X, a closed subset
of X such that n{X,) = Y., and =, the resiriction of m to X,. Assume that
for each o we have a regular averaging operator L,: BO(X,)—~BC{¥XY;) for
7. Then there 18 a regular averaging operator L: BC(X)—BC(X) for m.
Moreover, if the L, are also assumed to be strictly continuous, L is then
strictly continuous.

Proof. Let (4,) be a partition of unity subordinated to the locally
finite open covering (¥,). Since A, is zero off Y,, defining the function
2. L, (fX,) to be zero off ¥, makes it continuous on ¥.

Define, for f in BO(X), '

L(f) = D AuLu(f1Xa).

Then L(f) is in BCO(Y) and Ln® is the ideﬁtity on BCO(Y). This lagt
statement follows from the following computation:

(L20)(g) = D' 3La(n0(9)1X) = X 2aLaln(g1 Y)) = [ D2alg1 ¥2)) = g-
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The following computation shows that L is regular if all the I, are,
L = sup| 3 2() Lol 1 X2 (9)]
ye kX "
< sulgzza(m \La(F1 X0} (9)]
ye
<' la . = .
sup( 3] 2] i) = Il

From the regularity of L we prove its strict continuity by showing (3.1)
that, for every net (f;) in BCO(X) with [fs| < 1 such that f, converges
to zero uniformly on compact sets of X, we have that L(fs;) converges
to zero uniformly on the compact sets of Y. Indeed, if X is a compact
set in ¥, only finitely many of the Y,, say X, ..., ¥, can intersect K.
Then, for every ¥ in K, we have

n(K)
(ZE)Y) = X Jaly) Lol £31 X) ()
=1
and the uniform convergence of this net on K follows from that of each
Li(fg| X;). This ends the proof of the proposition.

Remarks. Observe that, if »: XY i3 a continuous surjection,
the map z° has norm one, in particular it is norm continuous and its
range is horm closed. It is also strictly continuous: By (3.1) it suffices to
<check that, if (f,) is a net in BC(X) with [|f,| <1 and f, converging to
zero uniformly on compact sets in ¥, then #°f, converges to zero uniformly
on compact sets in X (since also ||#°f,]| < 1). Indeed, if K is a compact
set in X, »(K) is compact in ¥ and, since f, converges to zero uniformly
on #(K), we have that =°f, = fx converges to zero uniformly on XK.
Also the image of = is strictly closed because strict convergence of f,
implies pointwise eonvergence of f,, and consequently, if each f.is constant
on each fiber #~'(y), so is the limit function. If L is a strictly continuous
averaging. operator for z, then #°B0(Y) is a complemented subspace
of BO(X);. The map P =n°L being a strietly continuous projection
from BO(X) onto n°BC(X).

We are now in a position to prove Theorem C, and thus complete
‘the proof of Theorem A.

Proof of Theorem C. The proof of this theorem will be divided

into several parts.

(a) Construction of the space X,. Fix a complete metric on X. Then
there is a family {4.: ae N} of (possibly empty) open subsets of X of
diameter at most ‘one, forming a locally finite covering of X. Let 4, be
the closure of 4, in X. Define a new topological space X, to be the disjoint
union (topological sum) of the 4,. ’
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Cover each A4, in the same way by a family {4,s: e N} of open
subsets of 4, of diameter at most 4, forming a locally finite covering of 4,.
We think of the A, as being open sets in X,; a suitable complete metric
is obtained on X, by defining d(x, y) to be the distance induced from X
if » and y are in the same 4., and equal to one otherwise. Let 4,5 be the
closure of A (in A4, or Xy).

Proceeding by induction, we define at the nth stage closed subsets
Auqay...apny OF Aoqy...an—1p Of diameter at most 1/n, these sets being the closures
of the sets of a locally finite open covering of 4,y .om—1)- Then define X,
to bé the disjoint union of the 4.  omy, With » fixed and a(1), ..., a(n}
in N. ‘

Observe now that for every sequence of elements of N, that is, for
every element a = (a(1), a(2),...) of ¥N*, we have that

Aoy 2 Aa(l)a(z) = Aa(l)a(ﬂ)a(a) 2 ey

and that the diameters of these tend to zero. By completeness of X,
whenever all the sets in one such chain are non-empty, the corresponding
element o« of N™ defines a unique point of X which we denote by n(a),

namely, n(a) is the point (M) 4.y .am)- Similarly, for fixed g(1),..., (n)
’ n=1

in ¥ and for any « = (B(1),..., f(n), a(n+1),...) in N* such that all
the corresponding sets are non-empty, we obtain a unique element of
X, (in fact, of Ay .pm) Which we denote by m,(a).

Let X, be the. subset of N> for which all the sets 4,yy...qq 2re non-
empty. The above construction then gives functions n: X—>X and m,:
X—X,; these funétions are clearly surjective. We also have

(*) (X NN opny...s0m) < Appry...om

for every n (in fact we have equality here). Indeed, if o = (a(1), ...} is in
X, then m(a) is In Ay, .o for every n; if also a is in Ny, g then (1)
= B(1), ..., B(n) = B(n) and n(e) is in Az am-

(b) The set X, is closed in N, in particular zero-dimensional. If a
is in N*— X, then 4,y on i8 emply for some n. Then by (%), #(X,N
N Noy...am) 18 also empty, hence X, NNy ogr) MUSH be empty. Since each
one of the sets Nyuy..qm) 18 open and containg a, every point of N°— X
belongs to some open set disjoint from X, thus X, is closed in N=.
It is then automatically zero-dimensional.

(¢) The maps n: Xo—X and m,: X ,—X, are continuous. Let a
be in X, and fix a positive e. There is an integer » such that the diameter
of A amy 18 less than e. Then, by (*), the diameters of (X NN ... am)
must also be less than s. Since Ny . o) 18 2 neighborhood of a,_it follows
that # is continuous at «. The case of s, is similar.
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(4) If K’ is & compact set in X, so is o~ (K') in X,,. Similarly for =,
In particular, the fibers ™' (») of = are compact. Let K’ he a compact
set in X and K = «~'(K’). There is a natural continuous surjection :
X,—~X defined through the covering. There are similar maps a_,:
X,—~X,_, and, by composition, ay,: X,—>X,, (n = m).

Now (mg)~"(K’) ean intersect only finitely many of the 4, (because
K’ is compact and the 4, form a locally finite covering), say for « in I,,
a finite subset of V. Similarly,

(7)™ (E") = ()™ [(owg) ™ (K)]

is & compact subset of X,. Thus, this set can intersect only finitely many
of the sets 4,5 for « in I, say only for those § in I,, I, a finite subset
of N. Proceeding by induction, we obtain for each » a finite set I, of ele-
ments of N, with properties-similar to those described for I, and I,.
The set K = z~'(K')is a closed subset of X, and the fact that it is compact

follows from the fact that K is a subset of the compact set ﬁ I, in N<.
Pym=]

(e) The map =° from BC(X) into BO(X,) is a strict isomorphism
onto 4ts range. Similarly for (m,)°. We already know that 0 iy striet contin-
uwous and has striet closed range. It remains to he proved that (=°)~*
i strict continuous. Since ()~ is an isometry (from the range of a’),
it suffices to prove that if a net =’f, converges to zero uniformly on
compact sets, the same thing is true for the net f, in B(O(X). This is now
clear because of the previously proved fact that, if K’ is a compact seb
in X, then #~*(K’) is a compact set in X,,. .

(£) The map n: X ,—~X admils an averaging operator. This operator
s both strict and norm continuous. The localization lemma, applied to
the funetions z;_,; X,—X,_; and the sets Aqy...am) gives regular averaging
operators Ly_,: BC(X,)+B(C(X,_;). The hypotheses of the lemma are
trivially verified. Then, by composition, one obtains regular averaging
operators

Lyn: BO(X,)»BC(X), and ILJ: BO(X,)~>BO(X,) (m3>n).

Define a subset M of BC(X,,) by
M = U (n,) BO(X,).
1

We f:onstruct a linear map L: M~BC(X) as follows: if fis in M then
[ is in some (7,)°BC(X,) and we write
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It is clear that L is linear as soon as it is well defined. That it is well defined
follows from the following self-explanatory computation:

Lo (7)) ()] = Ln L () ((30)) 7 (7)) 7 F
= Lm((ngz)o)ﬂl((nn)n)*lf = Lm((ﬂm)u)_1f7
where # > m and L, = LmL;",,,‘ ‘We have used here the fact that

(7)) ™" = (o)) (o))
and that L7, (a})" is the identity on BC(X,,).

By the localization lemma, all the maps L}, and L, are strict con-
tinuous and hawve norm one. The same thing is then true for L, by definition.
Also Ln® is the identity map on BC(X).

We would like to extend now L from M to BC(X,). The subset
M of BO(X,,) is a self-adjoint subalgebra which contains the constants
and separates the points of X: if o and # are two different points in X,
there is a first # such that «(n) s f(n). Consider a function f in BC(X,)
which i equal to one on 4. . 2and equal to zero on A,uy  om-1)5m- Then
the function (#,)°f is equal to one on o and equal to on zero on j.

Now we are faced with some problems in extending I to BC(X,)
because the Stone~Weierstrass theorem is not valid for the norm topology
on BO(X,) (M may not be norm dense in BC(X,,), see the example after
the end of the proof). In any case, we can apply the Stone—Weierstrass
theorem (3.2) for the strict topology, to conclude that M is strict dense
in BC(X,,). Since the strict topology is complete (3.4), L has then a unique
strictly continuous linear extension to BC(X,); we also denote this map
by L. By the strict continuity of all three maps in the relation Lz® = Tdpgx,
this relation also holds for the extended L. There is no reason to expect
that L is an operator of norm one (i.e.,regular). However, the extended
map turns out to be norm continuous. This last point is a consequence
of the following very general fact about linear operators.

Levma. Let B and I be Banach (or Fréchet) spaces; lot a and B be
weaker Hausdorff topologies on B and F, respectively. If o linear map L:
BT is continuous when E (resp. F) has the topology « (resp. ), then L
8 also norm continuous (continuous in the metric topologies in the Fréchet
situation).

Proof. Since f.is weaker than the norm topology on H, L is also
norm-to-f continuous. To prove that L is norm continuous, it is enough
to verify that the graph of L is closed in the (product) norm topology
of B xF. Assume that (x,) is & sequence in ¥, converging to zero in norm
and such that Lz, converges in norm to some element 4 in #. Then also
@, converges to zero for the topology a and, by the «-to-g continuity
of L, Lz, converges to both 0 and y. Since 8 is a Hausdorff topology, ¥
must be equal to zero. This completes the proof of the lemma.
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(g) In case (a) in the theorem X, can be taken to be N°. We are not
claiming that X, is N* or even homeomorphic to it, due to the possible
presence of isolated points in X,. However, if we replace X, by the
topological space X, xN*, this new space satisfies the hypotheses of
the previously-mentioned characterization of N%°; that is, X, xN* is
homeomorphic to ¥. Finally, it is enough to define an averaging operator
from BO(X,, xN®) onto BC(X,), since then we can obtain the desired
averaging operator by composition.

Let p: X, XN®—X_, be the natural projection onto the first factor.
Let s: X ,—X,, X N® be any continuous section for p; then it is immediate
that ¢ BO(X, xN*)—BO(X,) is a (regular) averaging operator for P..
(This argument is adapted from Ditor [5].)

Observe that this argument can be avoided, since all we need at the .

end is the fact that the space BC(X) is isomorphie to a complemented
subspace of BC(N*). Indeed, the theorem proves that BC(X,) is isomor-
phic to a complemented subspace of B((X,), and, X., being a closed
subset of N>, BC(X,) itself is isometric to a complemented subspace.
of BC(N®), by the linear extension theorem.

(h) In case (b) in the theorem X, can be taken to be 4 xN. Observe.
first that if X is compact, then so is X, so, using 4 x X insbead of Kooy
we can assume as in the last section that X, is the Oantor set.

In the locally compact case we can assume that the sets 4, of the
covering are compact. Observe that we have, by the localization lemma,
an intermediate regular averaging operator ((X,)—C(X) for 7. Now,
on each of the compact sets 4, we do as in the first paragraph to get
& regular averaging operator 0(4,)->C(4,). This gives a well-defined
map from the space of bounded continuous functions on the disjoint.
union of the Cantor sets 4, onto BC(X,). This is also a regular averaging
operator. We now obtain the desired regular averaging operator from
BO(X,) onto BO(X) by composition. Observe, finally, that the collection
of indices o for which A4, is non-empty is countable, so X ig indeed the.
countable disjoint union of Cantor sets.

. ‘We remark that in this case, as in the compact case, the use of the
strlefc topology is not necessary because the Stone—~Weierstrass theorem
applies to the norm topology for compact gpaces (or the strict topology

coincides with the norm topology in the compact case). This ends the
proof of Theorem. C.

Remarks. 1. Tf, ip casse (a) in the theorem, all the sets Aoyy...ommy 16
non-empty, then X, coincides with N ®, without having to take products.

2..If X is not compact, then the subset M will not, in general, be norm
dense in BO(X ). For example, if X is N itself then this is the case.
The characteristic function of the subset NUNpUNgU ... is cleaxly
not in the norm closure of M.
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.5. Some varianis of the main theorem.

(A) The non-separable case. We consider the case of metrizable
topologically complete (but not necessarily separable) X. All the proofs
remain essentially unchanged; however, we need a slight strenghtening of
the hypotheses.

A gsubset ¥ of a metric space (X, d) is called metrically diserete if
there is a positive ¢ such that d(x, y) > ¢, for every pair of distinet points.
of Y. Clearly, such a set is also discrete. A metrizable, topologically com-
plete space X is called w-fotally unbounded (w being an infinite cardinal),
if X is non-empty and each non-empty open subset of X has a subset
of cardinality w which is metrically discrete in X, for some choice of a com-
plete compatible metric on X. (Both the ¢ and the metric depending on.
the open set.) In case w is countable, we say that X is fofally unbounded.
Observe that this condition is slightly stronger than the one used in Propo-
gition 2.2. Examples of spaces satisfying these conditions are following:
The space N= is totally unbounded. Indeed, in the basic open set Noyy. o>
the sequence of points x(m) = (a(l),..., a(n),m, ),m =1,2,...,
forms a metrically discrete countable subset (with the usual metric on N°
and e = 1/(n-1)). Similarly, W, W a discrete space of infinite cardinality

" w, is w-totally unbounded. The space R®, the countable product of lines,

is totally unbounded. Every infinite dimensional separable Banach space:
is totally unbounded, and so is every non-empty open subset of such
a space. This is also true for separable, infinite dimensional Fréchet
spaces. We mention that it is known (see Anderson and Bing [1] for part
of the proof and further references) that all separable infinite dimensional
Fréchet spaces are homeomorphic; this makes the corresponding BC:
spaces isometric. All separable topological manifolds modeled on the.
above spaces are also totally unbounded. The Banach space I*° is ¢c-totally
unbounded (¢ the cardinal of the reals), and so is the Hilbert space I*(R).

With these definitions we can give modified versions of propositions:
(2.2) and (2.3). In proposition (2.2) assume that X is a w-totally unbounded
topologically complete metrizable space. Then X has a closed subset:
homeomorphic to W™, W a diserete space of cardinality w. In (2.3) assume
that X is locally compact, metrizable and topologically complete. Assume
that every open non-empty subset of X has at least two points, and that
X has a metrically discrete subset of cardinality w. Then X contains.
a clogsed subset homeomorphic to 4 X W, with W a discrete space of
cardinality w.

The proofs of these propositions need only minor modifications.
with respect to the separable case. For example, in the modified version
of (2.3), we now take a family {V J.ar of compact balls of diameters ab.
most ¢/3 (the ¢ of the metrically discrete subset), to assure that the seb
U{V.: ac W} is closed. These balls are centered at the points of the
metrically diserete set assumed in the hypotheses.
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Observe that, applied to the separable case, these modified propo-
sitions have stronger hypotheses than the previous ones. This is due to
the fact that in the original propositions we made strong use of the count-
ability of the discrete sets.

The following is now the final theorem in the non-separable case.
The rest of the proof is the same as in the separable case, replacing N
by W.

5.1. THEOREM. Let X be metrizable, topologically complete and of
infinite weight w.

(a) Let X contain a closed subset which is w-totally- unbounded. Then
the Bamach spaces BC(X) and BC(W®) are isomorphic.

(b) Let X be locally compact and contain a closed subset which has o met-
rically discrete subset of cardinality w, every mon-empty open subset of
which has at least two points. Then the Banach spaces BO(X) and BO (4 x W)
are isomorphic. . .

(B) The case of the strict topology. Theorems A and (5.1) also hold
for the strict topology. That is, the corresponding BC spaces are-also
strict isomorphie. This, in fact, implies isomorphism in the norm topologies.

It has already been observed that Theorem O is true for the strict
topology, we had to prove this to do the norm topology case. The fact
that Theorem B also holds for the strict topology is an immediate conse-
quence of the fact that the linear extension operator in the linear extension
theorem is both an isometry and continuous in the compact-open topology
(see 2.1and 3.1). It remains to see how to modify the argument in Section 1.
For simplicity we deal only with the separable ¥*-case. Let B be a Banach
space with a weaker locally convex topology ». We put on BC(N; H)
the norm topology and also the (weaker) strict topology B defined in
Section 8. This was the finest locally convex topology on BO(N; B)
coinciding, on norm bounded sets of BO(N; ), with the topology =-CO.
The topology 7-CO is, in this particular case, just the topology of pointwise
7-convergence on N. The symbol “ ~” will stand here for strict isomorphism.

I (B, |I]l, v) and (F, ||}, =') are as above and I: H—F is an isomor-
phism, both in the norm and »-+' sense, then relation (1) in the proof
becomes

(1) s
Indeed, define a map L: BO(N; I)—BC(N; F) by
[L(s; €3y ...) = (Uer), b(ew), .. .)].

By symmetry, and because I is a norm bounded linear bijection, it suffices
to 01.160]: that: if B(a) is a net in BO(N; B), with | B(a)} < 1 and B(a)-0
7-pointwise (i.e., if each e,(a)~0 with respect to = in ), then LA (a)~>0

BO(N; E), ~BO(N; F),.

icm

Isomorphism of spaces of functions 119

z-pointwise. This is now clear. Relation (2) becomes

(2 . BO(N; B x¥), ~BO(N; E)y x BC(N; F),.

This is again clear since both sides are isometric (when the right-hand
side has the max norm). Relation (3) becomes ’

(3") BO(N; )y ~, x BO(N ; B), .

Again this follows ags above (i.e., by an application of (8.1)), by considering
the map

(61 65y ...)> (61, (65, 65, )

Writing P = BC(N®) and v = B, and observing that N xN* ig
homeomorphic to N°, we have

(4') BO(N®); ~ BO(N X N*), ~ BO(N; BO(N=)),.

Indeed, let L: BO(N x N*)->B((N; BO(N*)) be the natural map, which
ig clearly an isomefry. We again use (3.1) to prove that T is strict contin-
uous. Let [f,]<1 and let f, converge uniformly on compact subsets
of ¥ X N, It suffices to show that, for each m in N, f,(m, -)—0in BO(N™),,
For this, in turn, it suffices to show convergence in the CO-topology
of BO(N™); but this is clear by hypothesis. Similarly, L! is strict con-
tinuous,
From (3') and (4') we get

(5" BO(N™); ~ BO(N™), x BO(N; BO(N™)),

{product topology).
As before we have

(6" BO(N®); ~BC(X), % Uy,
(7" ' BO(X);~ V,x BO(N™),,

where U and V have the relative § topology. In (5) and (6’) we have
used the easy to check fact that, if & and F are closed subspaces of a topo- -
logical vector space ¢, with ¢ = H®F a topological direct sum (i.e.,
there is a continuous projection from @ onto F, which annihilates F),
then G ~ H xXF.

The decomposition process now runs as before, except that we must
change all symbols o~ to ~. This completes the argument' in the strict
cage.

(€) Other topologies. We mention briefly the cases of the compact-
open and uniform topologies. In both of these cases we have to con-
sider unbounded functions to have completeness, that is, we work with
the space C(X) instead of BC(X).

2 — Studla Mathematica LIIL2
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The main theorem is true for the space C(X) with the compact-open
topology. The proof of this is just a streamlined version of the‘ argumf?nts
already given, with obvious changes. Obgerve oply t'WO points: First,
the locally convex space (C(X), CO) is complete if X is a Ic!-spaee; the
proof of this iy similar to that of (3.4), but simpler. Second, in the proof
of Milutin’s lemma we define the subalgebra M of BC(X) exaectly as
before; since M is strictly dense in BC(X), it is also denge in .1;he CO-top—
ology (which is weaker), and then observe that BC(X) in dense in
(0(x), CO). _ '

A similar conclusion can be stated for B(X) with the uniform topology
(the topology of uniform convergence on all of X). However, this is only
a metrizable topologically complete abelian group, and the isomorphism
result is only for this topological group structure. Secondly, we have
to restrict ourselves to the case of separable X. The reason for this ig
that then we can apply, in the proof of the corresponding Milutin lemma,
the following theorem of Stone~Weierstrass type: Let X be a Hausdorff
Tindeldf space. Let A be o subalgebra of C (X ; R) which contains the constants,
separates points. and closed sets, and is closed under wniform convergence
and tnversion im C(X; R) (that is, if fisin A and does not vanish at any
point, then 1/f is also in A). Then A is uniformly dense in C(X; R).

This result is due to Henriksen and Johnson [8] and Mréwka [16].

In relation to the proof, we observe the following points: (i) The
localization lemma fails, in general, in this setting. However, all we need
is the case where each operator L, is the identity operator and, in this
case the proof of that lemma works. To prove the uniform continuity
of L, write Lf, —Lf instead of Lf in the inequality for | Lf|. Observe that
IIf — gl makes sense in C(X) as soon as f is uniformly near g. (ii) In the

oo
proof of the Milutin lemma define M = (J 2l 0(X,) and use the Stone—

n=1
‘Weierstrass theorem discussed above.

(D) Quotient spaces. We consider here the Banach spaces BO(X)/04(X).
Only the locally compact case is of interest since, for example, Cy(N*)
= {0}. Observe also that in the locally compact polish case all the spaces
Cy(X) are isomorphic to C(4). Indeed, the one point compactification
of 4 x ¥, for example, is homeomorphic to 4. Since Cy(4 x N) is isometric
to a closed hyperplane in 0(4), 0y(4 X N) is isomorphic to C(4) (see,
e.g., Semadeni [20], 21. 5.8, p. 378).

5.2, THEOREM. Let X be a locally compact polish space. If X has
@ non-compact closed subset with the property that every non-empty (relatively)
open subset of it has at least two points. Then there is an isomorphism from.
BO(X) onto BC(4 xXN) (norm topology) such that its restriction to Co(X)
s an isomorphism from Cy(X) onto Cy(4 X N).
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5.3. COROLLARY. With the same hypotheses as in the theorem, the Banach
spaces C(PX —X) and C(B(A X N)— A xN) are isomorphic. ‘

Remarks. 1. Since X is sigma-compaet, the topological spaces
BX—X and B(AXN)—AxXN are compact (and non-metrizable). This
corollary thus gives an isomorphism result for some (very special) compact
non-separable spaces.

2. All the above extends to the locally compact non-separable case
by the structure theorem for paracompact locally compact spaces (see
Dugundji [6]). This says that such a space is the topological disjoint
union of a family of sigma-compact spaces.

3. One could do something similar for BC(X) and Co(X) with the
strict and compact-open topologies. ‘

We describe below the modifications in the proof of the norm topology
case that are needed to obtain this theorem.

(a) In the linear emiension theorem (2.1). The following modification
in the proof will give a map T from BC(¥) into B(C(X), which is still
of norm one and such that TC,(Y) is contained in Co(X). We will only
lose the property T'(1) = 1. Let (K,) be an increasing sequence of compact
subsets of ¥, whose union is ¥. For every point in K, choose a relatively
compact open ball with center at this point and radius at most 1. Select
a finite subcovering of K, from. these balls, and write ¥, for the (finite)
union of them. Then V, is an open, relatively compact, neighborhood
of K, consisting of points at distance at most one from K,. Do the same
thing for K,, with balls of radii at most 4, to get an open relatively compact
neighborhood V, of K,, consisting of points ab distance at most % from K,.

Proceed by induction. Then ¥V = (JV,, is an open neighborhood of Y.
1

There is a continuous function F,, with 0 < Fy < 1 on X, Fy=1o0onY
and Fy, =0 on X— V. In the proof of (2.1) replace then Tf by Fo-Tf;
this will be the new linear extension map 7.

To conclude that I"f is in €y(X) whenever f is in Cy(Y), it is enough
to prove that if f is in Cy(Y) then (the old) 7T, restricted to the clogure

-V~ of ¥, is in C4(V™). For this it suffices in turn to prove that if (say)

2" is a point in V-—¥ for n =1,2,..., and ¢ V., then Tf(2")->0
for f in Oy (Y).

The proof of the linear extension theorem 2.1 gives the following
(see [11] or [20]): For each point #¢ X — ¥, an open ball V. with center
% and radius d(z, ¥)/3; a locally finite open refinement {W;: te T}
of this covering of X — ¥; points w,¢ W, and points 5 ¥ with a(vg, wy)
< 3d(wy, Y). Further, Tf(x) is some convex combination of the VICAN
for those ¢ such that » is in W,. Specializing all this to the #* and changing
the notation slightly, we obtain corresponding W2, wf, of, for ¢ = 1,...
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., %(n) and » =1, 2, ... Also choose, for each n and 4, a ball V} such
that W7 < V7, and let o} be its center. Then V7 has radius d(af, ¥)/3,
and d(v?, w?) < 3d(w}, ¥). The scalar Tf(2™) is a convex combination
of the f(+f),4 =1,...,k(n), and we want to prove that Tf(a") tends
to zero.

To prove that Tf(#") tends to zero, it suffices to verify that, given
an integer N, there is an integer n, such that, for all n = n, and ¢ =1, ..,

.oy k(n), we have v} ¢ Ky.

To see this, observe first that, by hypothesis, a, = d(z", ¥)—-0
Then we prove that, for ¢ =1, ..., k(n), we have

(%) d{v, a™) < Tay,.
Indeed, )
) < d(v, wi) +a{wi, o)
< 3d(w}, ¥)+d(w;,a")
< 3[d(wf, a") +a(a", X)]1+d(uf, ")
= 4d(uff, 2") +8d(a", ¥)
< 4-2/3-d(x}, ¥)43a,,

o}, o

(because &" and w} are in W7, which is contained in V7). Now
V d(at, ¥) < 3a,/2.

Putting these inequalities together we get inequality (+). The import-
ance of () is that, for all 4, d(+f, ™) is close to zero for large ». From this,
letting d(a™, V¥) = & > 0 and using Ky < Vy, we have the main claim.
Indeed, choose m, such that a, < e/14 for all # > n,. Then d(+f, K,)
>g[2 for i =1, ..., k(n) and all n > n,. In particular, o7 ¢ K for n = n,
and ¢ =1, ..., k(n).

Even if T'(1) = F, #'1, T is still an isometry into B(O(X). Thus,
both T'BC(Y) and T'Co(Y) are still norm closed. This shows that the
corresponding version (for BC and C,) of Theorem B (cagé b) is still true.

(b) It is not true in general that n°0y(Y) is contained in O, (X).
However, in the case at hand we proved that the fibers n~*(y) of = are
compact, and this implies the above stability property.

(¢) In the localization lemma. In the present situation we may assume
that the sets X, and Y, arve compact. Then, if f is a function in Cy(X),
given ¢ > 0, choose a compact subset K of X, in such a way that |f] is
less than ¢ off K. Then only finitely many of the X, intersect X, say
{X,: ae I}, I a finite subset of the index set in the localization lemma.

We can write
-3+

ael agl

= 1L, (fI X.)
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The first summand is a 0, function, being a finite linear combination
of such functions. The second summand is a function which vanishes on K
and is at most ¢ off K. This proves the C, version of the localization lemma
in the case of compact X,.

(d) In the Milutin lemma. In general the maps L, (see part (f)
the proof) do not preserve Uy, as is easily seen by example. However, we
can again assume here that all the sets 4,y o are compact. The modiﬁed
version of the localization lemma then gives maps L, that preserve (.
There is no problem at the level of the subalgebra M of BC (X the map

U ()" Xa)
onto (y(X), Another application of the modified. loea,hza’clon lemma
then gives an extension of I to a map from BC(X,) onto BC(X) such
that the image of (y(X,,) is Cy(X) (as in part (h) of the proof).

(e) In Theorem B we use the modified version of the linear extension
theorem.

(f) In the Milutin theorem. We are only dealing with the locally
compact case here. The subspace Cy(X; E) of BC(X; E) hag the obvious
definition. The O, versions of formulas (1) through (7) follow through
restriction and using the previous modifications. The decomposition
argament that ends the proof also follows by restricting everything to
the corresponding O, subspaces.

L defined in part (f) of the proof sends the subalgebra M, =

6. Applications of the main theorem. In this section we discuss a few
applications of the isomorphism theorem. We begin with a result on
bounds for the norms of the isomorphisms.

(A) Uniform bound for the norms of the isomorphisms. We could
obtain a numerical estimate, except that, by using the striet topology
in the proof the Milutin lemma, we have lost control of the norms of the
operators (see [17] for a numerical bound in the compact case). '

For the sake of concreteness we discuss only the N* case. We claim.
that there is a positive number M such that, if X is any polish space’
with an uncountable closed subset which is not locally compact at any
point, then there is an isomorphism 7' between BC(X) and BC(N™) with
1T T~ < M. Otherwise there would be polish spaces X, as above
such that, for any isomerphism 7T, between BC(X,) and BO(N%), w
would have ||T,|-I7;7*| > n. Obgerve now that the space

(BO(X1) X BO(Xy) X +v.)eo

is isometric to BO(X), X being the topological disjoint union of the X
But X is of the same type as the X,,, so BC(X) is isomorphic to BC(N™).
Let T': BC(X)—>BC(N*) be an isomorphism; let also 4, be the natural
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injection of BC(X,)in BC(X) and P, the natural projection from BC(X)
onto BC(X,), both of these maps have norm one. The map T4, is an embed-
ding of BC(X,,) into BO(N*), and the map 7%,P,T~* is a projection onto
its image, of norm at most |7)-|T < M (independent of ). Since N>
is homeomorphic to a clogsed subset of X, the decomposition method,
as in the proof of the main theorem, gives an isomorphism from BC(X,)
onto BO(N®) of norm independent of n. This is a contradiction.

(B) Contractibility of the corresponding linear groups. In Mityagin

[15] it is proved that if X is an uncountable compact metrizable space
and B = C(X), then GL(E), the general linear group of the Banach space
B, is contractible to a point. We observe that the same result holds for
the Banach spaces Bl = BC(4 xN) and F = BC(N™), the proof being
a trivial adaptation of that in. [15]. The same thing is true for the non-
separable cases.

(C) Extension of a theorem of Pelezyiski. In [18], Pelezytiski proved
that if X is compact and metrizable and if ¥ is a complemented subspace
of 0(X), containing & further subspace isomorphic to (X )y then B itself
is isomorphic to €'(X). There is a somewhat simpler proof of this result
in the 1972 Berkeley thesis of James. Hagler. We extend this theorem
and slightly simplify the argument given by Hagler, by using the Bartle-
Graves selection theorem. For simplicity we state the theorem in the
polish case only. Also, since we have simple criteria for a poligsh space
to contain a closed copy of 4, 4 x N or N, we do not include these con-
ditions in the statement of the theorems.

The result is based on the following.

6.1. TEHBOREM. Let X be a polish space and B a Banach space. Let T
be an isomorphism from the Bamach space BC(X) into the Banach space
E such that [T|-| T < A. Assume that X is either countable or contains
a dlosed subset homeomorphic to either 4, A XN or N, Then there is a closed
subspace I of BC(X), ¥ isometric to BG (X), such that the subspace TF
48 A-complemented in B.

Proof. The adjoint map T* E*~BO(X)* iz surjective 80, by the
Bartle-Graves selection theorem (see, e.g., Michael [12]) there is-a con-
~ tinuous (not necessarily linear) function §; BC (X)*->P* such that T*§
= Idpgx)e; the map § is then a homeomorphism of BC(X)* with a closed
subset of I*.

Letus identify X with the corresponding set of point magsses in BO(X)".
Let now Y be a closed subset of X (or its image in BC (X)*) which is all
of X if X is countable, and 4, 4 x XN, or N®, in the other cases. Let Z
= §(X). Let also L: BO(Y )—>BC(X) be a linear extension; ;8¢ the mayp fi-f8;
(T*|Z)* the map g—=9(T*|Z); R’ the restriction map o—(Jo)|Z from B

into the restriction of B** to Z (J being the canonical map from F into,
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the second conjugate E** of E); R the restriction map from BC(X) onto
BO(Y) (i.e., 4% with 4 the injection of ¥ into X). It is then easy to check

that the following diagram commutes (i.e., R'T = (T*|Z)°R).
BO(X) z b
Ll}r R R
| (T2
BC(Y) BC(%)
SO

Then P = TLS8°R'is a projection from ¥ onto T'F, where F' = LBC(Y).
Indeed, P? = TLS"(R'T)LS°R', which is the same as

TLS(T* | Z)%(RL) S°R’,

which collapses to TLS°((T*|Z)'8°) R’, which in turn eollapses to TLS°R'
= P. Also this projection has the correct image and the correct estimate
on the norm. This ends the proof of the theorem.

The next result is the extension of Pelczyriski’s theorem. It is obtalned
from the corresponding isomorphism theorem and a decomposition argu-
ment. The countable compact case follows from an isomorphism theorem
of Bessaga and Pelezyhiski [3] for this case. We leave out the countable
non-compact cases because they would need an extension of the above-
mentioned result in [3], an extension we do not have.

6.2. COROLLARY. Let X be a polish space which is either countable.
and compact, or locally compact and contains a closed subset homeomorphic
to AXXN, or contains a closed subset homeomorphic to N®. If B is a closed
complemented subspace of BO(X), containing a further subspace isomorphic
to BC(X); then F dtself is isomorphic to BC(X).

7. Some open problems. It remains to be shown whether there are
further isomorphisms between the classes of spaces considered in the
previous sections. The most interesting problem left open in this direction
seems to be the following one.

ProBLEM 1. Are the Banach spaces BO (A x N) and BO(N®) isomorphic?
Equivalently, are the Banach spaces BC(R) and BC(1%) isomorphic?

The usual invariants coincide. For example (Rosenthal [19], Remark 3,
p. 242), these spaces have (up to isometry) the same dual, namely (I°)*,
On the other hand, these two classes are indeed non-isomorphic for the
strict topology. This is so because the minimal number of seminorms
necessary to describe the topology is an isomerphie invariant; and this
cardinal numbers is easily seen to be countable for the first class and
uncountable for the second. Similarly, other cases can be distinguished
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by this or similar techniques (like I and the above Banach spaces, and
cases of different weights).

Bessaga and Pelezydski [3] have classified all the Banach spaces
C0(X), with X compact metrizable and countable: Such an X is homeo-
morphic to a countable compact ordinal by a classical theorem of Mazur-
kiewicz and Sierpifgki (see, e.g., Semadeni [20], 8.6.10). If, now, X is
a countable polish space, a theorem of Knaster and Urbanik (cf. Kura-
towski, vol. IT, [10], p. 25) implies that X is homeomorphic to a subset
of the countable ordinals. Thus the situation is rather similar, if more
complicated, to the case considered in [3].

ProBLEM 2. Classify up to isomorphism all the Banach spaces BC(X),
with X countable and polish.

Typical spaces arising here are I, ¢ and I°@®e.

In the proof of the Milutin lemma we do not get, at least in principle,
a regular averaging operator in the N* case.

ProBrEM 3. Is the averaging operator in the proof of the Milutin lemma
always of norm one? If not, is there always an averaging operator of morm
one?

One can also consider some related questions. For example: (a) Are
the Banach spaces BC(BN®—N*) and BC(pX—X) isomorphic, for X
polish uncountable and not locally compact at any point? (b) Are the Banach
spaces BO(BN*—N®) and O(BR—R) isomorphict (c) Is O(BN —N)
isomorphic to O(fR—R)? (The first space iy just 1®fc, and the second
is BC(R)/C4(R).) One could also try to deal with other compactifications,
besides the Stone—Uech compactification. Equivalently, one could congsider
other subalgebras of BC(X) besides the full algebra. For example, the
bounded uniformly continuous functions on some (uniform) spaces X,

In general there are; however, problems with partition of unity arguments
and with the linear extension theorem.
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