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STUDIA MATHEMATICA, T. LIV, (1875)

Banach ideals on Hilbert spaces

by
Y. GORDON* and D. R. LEWIS (Baton Rouge, La.)

Abstract. We construct a compact non-weakly nuclear operator, and estimate
various constants derived from ideal norms on Hilbert spaces; for example, the 2-

summing norm of any quotieni map from an I,-space onto I, is Vx/2. Some operator
characterizations of I; are presented.

Introduction. The spaces of operators on Hilbert spaces are known
to lack many properties which are common to the classical Banach spaces
L,. In [7] it was shown that the common ideals of operators on I, lack
local unconditional structure. In this paper we present some more Tesults
on these spaces.

In Section 1 we construct a compact operator I' mapping the space
of all compact operators on I, to itself which is not weakly nuclear, that is,
T cannot be written as an uneconditional convergent series of rank-one
operators. This answers a problem by A. Pietsch. The construction is
related to the fact that the unconditional basis constants of all bounded
operators on the n-dimensional Hilbert space Iy tend to infinity with .
This result is also given another proof here.

In Section 2 we estimate some constants obtained from considerations
of the ideal norms y, and, more generally, i,, (L < ¢<<.p < o) and their
injective and projective envelopes. Some such constants were studied
in [8] and [7], e.g. the famous Grothendieck constant is none other than
/mi(Ly); by our notation. We prove, among other results, that /s (la)
= V=2 and the fact Sra\W) = mf2 of [8] is given a mew proof.

Operator characterizations of spaces isomorphic to I, and &, are
pregented in Section 3, generalizing similar results obtained in [11].

‘We now give some basic definitions. All Banach spaces F are taken
over the reals. B’ denotes the dual space of B. The space of all continuous

- linear operators from F into X' is denoted by L(E,F) and O(E, F) will

denote the subspace of all compact operators. A Banach ideal of operators
[4, a] i3 a method which associates with every pair (#, F) of Banach
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spaces an algebraic subspace A(E, F) of L(H,F) equipped with a norm
o such that the following requirements are fulfilled:

(a) A(E, F) is complete under o, and a(@ @Y) =
#' ®v is the rank-one operator from B to F defined by

2’ @y (@) = <&, 2y
) It we L(X,B), ve A(E,F) and we L(F,Y), then
woue A(X,Y) and

o'l llyll, where

lwll e (o) el

TFor convenience, we write for we L(H, '), a(u)<C co itf uwe A (H, I).
a(B) will denote a(I), where I is the identity operator on the space H.
The trace of a finite-rank operator we L(H, I) Wlﬂ’l a representation

u = Yo;@u is defined as trace (u) = 3'(m, agy. Given a sequence

in ign
{#}iz1 = B, we set

ex({) = sup] Y 1w, @15 o'l < 1},
i1

Asgsociated with any Banach ideal [4, o] is the adjoint ideal [A*, o]
defined as follows: A*(H, F) is the Banach space of all we L(H, F) in
which the norm a*(u) is the least ¢ > 0 such that for all finite-dimensional
Banach spaces X, ¥ and for all ve L(X, H), we L(F, ¥) and 2¢ L(Y, X)
the following inequality holds

a(wou) <

[trace (wuve)| < ellwll{vlla(z) (cf. [67).

[4, a] is called perfest if a** = a.
The classical Banach ideals are: [II,, m,] (1< p<C o), the ideal
of p-absolutely summing operators: we IL,(H, F) iff for any finite subset

{mi}'i<n < E7
( ) o)™ < 0 sup ( 3] 1<ar, o517)"
TN llalj=1 <n

with m,(%) = infC [15].

[Ly) 4] (L<p < oo), the ideal of p-integral operators: we I,(H, If)
iff there is a probability measure space (£2, u) and operators ve L (F, Ly (),
we L{L,(u), F') such that wjv = iu, where i: F->F"" iy the canonical
map, j: F(p)—>Ly(u) the formal inclusion. i,(u) = int|v||w], the in-
fimum is taken over all possible factorizations [14].

Ly 5] (L<p<oo), the ideal of IL,-factorizable
we I'y (B, F) iff there is a positive measure u and operators ’lJeL(
’MJ€L(L( ), F) with wo = du.  y,(u) =
factorizations [6], [9].

The ideals defined above are all pertect, and 7»1, = e (L[p -1/’
For more results on various ideals see [6]

opm ators:

(l" )a

inf |w| (v}, taken over all posmblo

o= 1),
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Finally, a basis B = {b;},;; for a Banach space ¥ is called wncondi-
tional iff there is a constant ¢ such that for every norm one vector
= > u;b; in B and every choice of signs & = -1 (ie I), with ¢ =1 for

el

”Z g < O
iel

The smallest possible O is called the wunconditional constant of B and
denoted by #(B). The wunconditional constant of E is x(H) = infa(B),
taken over all possible bases.

24
all but finitely many 4,

§ 1. Weakly nuclear operators. We recall the following definition
of Pietsch [16].

DrrrNrrioN 1.1. An operator w: E—F is called weakly nudlear if
% has a series representation

w= Yo

{=1
which converges unconditionally to « in L(#, ). The weakly nuclear norm
of w is defined as
7(u) =infe, ((m;_‘g?/i)ial)y

where the infimum is taken over all representations of u. For convenience
we ‘shall write n(u) = co iff ¥ is not weakly nuclear.

ProrosrtioN 1.2. Let w: E—TF. Then n(u) = inflel|la(T) B, where
the infimum is taken over all factorizations wu = fa, with aeC(E, U),
pe L(U, F) and spaces U.

Proof. Suppose n{u)<< 1, and choose & representation

W = 2”;(8%5

DES)

each y; # 0,
with.
8y (o ®Ysdiza) < 1.

Let U be the space of all scalar sequences & = (a;);; for which (@;9;)i1
is unconditionally convergent in ¥, and set |a] =& ((aiy,‘)i;,l). Clearly,
o(U) = L. Define a and # by

= Z *Ys-

4=1

Ca(@) = (B, BV

((#; ® ¥:)ina) a0d o is compact. This proves

int lall@ (T) 1811 < n(u),

Then 8] < 1, llall < &

and the other ineguality is obvious.
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The w*-closure of the extreme points of the closed unit ball of a space
F' iy written Ky -
PROPOSITION 1.3. Let v: B—F. Then n*(v) is the smallest constant

b with the following property:
There is a probability measure u on Kg X Ky s0 that

[o(@), y' o1 < bu(I<e, 1KY 1)
for all we B, y' < I,
Proof. Suppose first that v satisfies the integral inequality, and
consider a composition

Py LNy LNy TN

with & and M finite-dimensional spaces and »(u) < 1. Choose an uncon-
ditionally convergent representation

U = Zw1®y‘t

fm==]
50 that & ((#%®¥i)i»1) < 1. Then

0

[trace (wfva)| 12 ’ (%))’

bf5’|<a<yi )y /<8 (), 43l )

\<\b s iy - 1 1 N
S §1<y o' (@) <wiy B (y'")]
< bl I8,

thus 7* (v) < b.
For the other direction, let § be the set of functions in O (K X Kpw)
of the form

Fl, ") = D) Kway @ <Y '),
PN
where
D) 1<o(@), ¥l = n*(v)
dwal

We claim that the closed convex hull of § does not intersect the open
convex subset O of funetions f satisfying f(a',9"') < 1 everywhere on
Kg X Epo. To see this, let fe § with @; 5 0, and write §; = sgn v (m;), ¥;>
Consider the composition of the sequence

vSps s vy,

iem
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where Uis R" equippe(l with the norm |a| = & ((6;%:);<n), ¢(y) =
and B(a Z @; 8,%; .

2|<v

i=s]

(Y ¥ )icn
Then

)s Yool = [trace(lyavp)| < Iln*(2) leln(ly).
But 7n(ly) = 1, as the unit vector basis for U has unconditional constant
1, IBl<1 and llall < [Ifll, so that 1< f}.
By the well-known geparation theorem and the Riesz theorem there
is @ measure u on Kz X Kpv with u(g) KL< u(f), fe S, ge 0. It is easily
seen that u is a probability measure, and setting

J@'yy") = n*() Ko@), y 517 Ko, 25y, ¥l

egtablishes the integral formula.
For F < F let jp be the inclusion of F into B. By definition (cf. [7])
F has local unconditional structure iff

wu(E) = 31;1”7 (]F) < oo,

where the supremum ig taken over all finite-dimensional subspaces of F.
Notice that if F is finite-dimensional, ©,(E) = n(F) = the weakly nuclear
norm of the identity on E. We now give a new, more direct, proof of the
following vesult of [7] (Theorem 3.5).

TurorEM 1.4.  7{L(%, )} > 2n'? [3x.

Proof. Let G be the group of isometries of 17, dg be the normalized
Haar measure on @, § the unit sphere of Iy and dm the normalized (n —1)-
dimensional rotational invariant measure on §. Define x on the product
of the closed unit balls of L(Iy, ) and L(I}, 1) = 1,(13, &) by

= [ [ [1lg, s@y)dgdm(@)dm (y).
s 8 &
Then for weL(ly, ®) and ve L(ly, 1),

(f [trace (guw Id!])(!
)"

= 37 (1) 2 (n

p(ICuy 5 <0, J Ko (@), yldm@)dm (y))
s

7y (0),
(b) of [7]. By [14]

1y () < 7wg (1) w2 (0),

by the inequulities of Theorem 5.2 and 2.2

[{ty 0] == |trace(uv)| <
which gives
[<u, v3| < (37/2) n? /"( oty ><”; 1)
By Proposition 1.3 this implies that

(L, B) < (3r/2)n"",
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and it is clear that
m2 < n* (L, 1) (L, B))-

TurorEM 1.5. There is a diagonal operator w on 1y with the following
property: The map s defined on C(ly, 1;) by s(v) = wowv is compact but not
weakly nuclear.

Proof. Write the usual basis of I, as a doubly indexed sequonce
(6., 1<i<nd™, n=1,2,..., and let wu(e,,) =27"6,;. For each
n, denote by H, the span of e, ;, 1< 1< n2™, let j, be the inclusion of B,
into I, and p, the orthogonal projection onto B,. Define s, on L{H,, B,)
by s,(v) =pns(jn/upn)jn' Since

oo

s(0) = Djus(v)p,

n=1

for all ve 0(l,, ly),

§ is compact and 7(8) = n(s,) for each n. By Theorem 1.4
N(ss) = 27" (L(By, By)) >27"(2[3m) (dim By)"* = 204 37

for each n > 1. Therefore, 7(s) = oo.

Remark. The sequence defining the operator w is in I, for all p > 2
but is not in 7,, i.e. » is not Hilbert-Schmidt. Note that for « Elilbert-
Schmidt the map s defined above factors through a Hilbert space, so
that #**(s) < oc. The problem of the existence of a compact, non-weakly
nuclear operator was raised by A. Pietsch [16].

§ 2. Ideal norms on Hilbert spaces. Let 1 < ¢ < < oo and u: E—TF,
leb ipg(u) = inflall||8ll, where the infimum is taken over all probability
measures 4 and pairs of operators ae L (B, Ly(u)), Be L(Ly(u), F”) for
which i = fja, i is the canonical map from F into F* and j is the inclusion
of L,(u) into Ly(u). The ideal norm 4,, has been studied in [6] and [10],
‘and Lapreste has shown 4,, to be perfect. The values ipq(13)y Gpg(ls) were
calculated in [6].

_For a an ideal norm and u: B—F, write [a(u) = a(un), where n:
Ly (u)—~E is any quotient map. The norm. /a so defined is called the left
injective envelope of o. Similarly, the right injective of a, a\ is defined ay
a\(u) = a(pu), where p: F—L(u) is any isometric embedding. The
injestive envelope of a is /a\ = /(a\) = (/a)\,

The lefi projective envelope of a, \a, is defined as \a(u) = a(v),
where jp: F->T" is the canonical map, vp = jpu and : B->Lg(w)
is any isometric embedding. Similarly, the right projective envelope of
a, o\, is defined as a/(u) = a(w), where jpu = 7"w and #: Ly (u)~>F
is any quotient map. The projective envelope of a is \a/ = (\a) /= \(a/).

It is easy to see that (a\)* = \a*, (/a)* = a*/, and that if a is perfect,
80 are all the envelopes of a [9].
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Lovva 2.1, For 1< g<p< o0, 4: BT, v: F—G,

T ((00)') < fig (1) g (W)
and :
7y ((v)) <[5 () 3 () -

Proof. For the first inequality, let ¢ be an isometric embedding
of B' into an L (u)-space and let w be a p-absolutely summing operator
into &'. Pirst notice

By (o) w) = iy (W' 0" U ') < g (W' 0" ) g (W' ).
Since ¢' is 'a, quotient map from L, (u)’ onto B,
'51041(""""7’/) = /";ﬂa('”'”) = /ipq(u)y
and, by Theorem 2.15 of [6], Co
g (W' V') K 7y (0 ) i (W) = 710 (0) 70 ()
Since w ‘was a.rbit?a;ry, combining inequalities yields

i (plou)) = m (p(ou))} < fipg(W)mg (v),
and finally
e ((0m)') = i\ ((v0)') = i (@ (v)').

The second inequality of the lemma follows similarly, using the fact
that the integral and absolutely summing norms coincide for operators
into L,-8paces. .

THEOREM 2.2. Let 1 < ¢ < p < oo and H be a real Hilbert space.

() For dim(H) = n,

SinalB2) = 7 ()7 ()™
Sig18) = 7y (1) g ()™

and
[ (18) = 0™ g () 7, (1)
(b) For H infinite-dimensionat and 1< g,
fisal ) = nﬂ/«~-1m>/2r(l‘il;i)“””'r(ﬂizil_)w :
and. g\
JigH) = nllﬂar(q—;i—) :

(c) For H mﬁmta-dimema‘,onal,

1\~1p
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Proof. To show the first equality in (a), let ¢ be an isometric embedding
of ¥ into an L, (u)-space O, and let dm be the normalized (n—1)-dimen-

sional rational invariant measure on the unit sphere S of 1. Let « be the.

isometric embedding of I intio L, (8) given by a(#) = m, () <z, > ([4]),
- and let ¢ be a norm one extension of ¢ to L, (8). Consider the factorization
of ¢ . .
5 Iy (8) 2> Ly ()™ 0,

where y is the inclusion and yf = a. Then

/ipq(l?) = iq’y'\(l;l) == iq’:n'(&a) < Hﬂ”
Again by [4]

161l = sup (%) (J 1<, B am ()™ = 0 () i (1)
Zllg= B

The other inequality follows by applying Lemma 2.1 with both « and »
the identity operators on 1. » ‘
_ The second equality of (a) follows from the first by taking p =
and the third estimate follows from the lemma.
Since iy, is perfect, 4,,(H) =1im i,, (1) for any infinite-dimensional H.

From the results of [4] and Stirling’s formula, n**m, (1)~ has Limit

gll2 128 (1’(8 +1 ))1/3
2

for each s, 1< s< oo, 50 the infinite-dimensional results (b) and (c)
follow from (a). ’

Remarks. (1) The constant [i,,(H) has a geometrical interpretation.
For p a probability measure and B < Ly(u) a closed infinite- dlmensmn(ul
subspace, the same proof as above shows that

fig (B) < sup{lifllp 177" fe B}

for each p, ¢<p< 0. But also by Dvoretzky’s theovem [2], B hay
quotients (1+e)-isometric to I for each n, 50 that /iy, (l) < fig, (@)
for infinite-dimensional B. Thus /iy, (,) is a universal lower bound for
the ratio of the I,-norm and L,norm on infinite-dimensional subspaces
of L,.

(2) The constants /i (H) and /[m,(H) represent, respectively, the
p-integral and p-absolutely summing norms of any quotient map from
an L, (u)-space onto H. By the lifting property of operators on J-ypaces
it follows thab iy () < i, (H) lh|] for all we L(Ly(u), H), and further the
constant is the best posuble The constant /=, (H), for H infinite-dimen-
sional, is known as the Grothendieck constant Kg [8], ity exact value is
unknown, but (¢) gives the well-known inequality [m,(H) > =/2 of [8]..
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(3) It is proved in [B] that a(lf)a*(ly) = n for any ideal norm a,
thus Theorem 2.2 gives information on ([iy,)* = iyf, (/ip)* =53] = mg/
and (Jm,)" = mp| = ipe/.

CorOLLARY 2.3. For each n

[ () = w (0™, and  [my(ly) = (w/2)".

Proot. This follows from part (a) as m, = i,.

From the calculations of /m, we easily derive the following result
of Grothendieck [8]. '

COROLLARY 2.4. For each n,

/')’:\(7"1;) = (Wl(lg))z'y'/—l; and /Vz*\(la) =
Proof. For #: L,(u)~1} quotient map and ¢: Ij—>C an isometric
embedding,
/\B) = 73 (gn) < ma(n) malg') = ()0,
the inequality by [9]. For the reverse inequality, factor the identity of
1 as wv, where ve L(IY, O), ue L(C,1}) satisty [ullv]l = yo(}), the pro-
jection constant of IF. But y,(B)m () =n, so
0 o= 4y () = i (uvr' u') < Htu;kl(w') [lae |}
< frull o' ol "1l /73 \ () -
This establishes the first equality, and the second follows as /¥5\(%s)
= sup ).

Remarks. Using the equality a(lf)a*(ly) =n for a.ny’idc.al norm

a, we obtain
\ry/8) = (/i)
is the norm yp,(u) in the factorization 1: l”» 0% L1
Polezyniski [13] first proved that all of the p-absolutely summing
norms coineide for operators between Hilbert spaces. The best constant
relating the absolutely summing norm and Hilbert-Schmidt norm has
Deen ealeulated by Grothendieck [87, and Garling [3] has done the same
for the p-absolutely summing and Hilbert-Schmidt norms.
COROLLARY 2.5, Let Hy and H, be infinite-dimensional Hilberi spaces
and s g ~p<: oo, For w: Hy-—H,
g (1) K Jigpr (Ta) mp (0},
and the constant [ipy(la) 18 the best possible.
Proof. By Lemma 2.1, my(#) << [igp (Hy) o, (%), Also H,is a quotient

of an Ly-space, so by [6], Theorem 3.3, g () < nq(u) To see that the
1116(111;1:111.37 is shavp, take % to be an operator which is the identity on I,

and apply Theorem 2.2,
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§ 3. Operator characterizations of I,. We show here that @ theorem
of Lindenstrauss—Pelezytiski is a consequence of the following resuls.
TueorEM 3.1. Let 1< p < 2 and m be the positive integer with m 1
< p' <m. If B is an n-dimensional space and A is the novrm of the natural
map from L%, B) into I,(l;, B), then
A, 1) < (o (B)™.

Proof. There is no loss in generality in assuming p’= m. Let B
= (by)sen be & normalized basis for B with coefficient functionals {biic,.

We claim that for k =1,2,...,m,
K
e < (R (B)F|| ) ted
gl
for all m-tuples ¢ = (§;);c, Of scalars.
To gee this for & = 1, choose #e B, 1< 1< n, o that oyl = 1 and

(b, #;y = 1. For n-tuples of sealavs, t and s, define ve L(l, B) and
we L(H, 1) by

n

v(a) = Za,,-tibi and

4=l

u(x) = (8;{w, w;))tngn-

Whrite w for the inclusion of I} into I3,. Then

[Ks, ] = [trace (uvw)] < iy (wow) < Alu] |lv]

< Il 0 (B) | S
=1

Maximizing for [s|,, =1 gives the claim for & = 1.

Now assume the claim is true for some & < m. For ¢ and ¢ n-tuples
of sealars, define v and w as above, and let we L(E, I7) be given by u(x)
= ((#, B)8:)in- As the claim is true for k, |lull < |sl, (An(B))*, where
1/r = 1/p—Fk/p’, so that proceeding as above gives

s, 1 < Il (o (B 3 40
dmal

Taking the supremum over {s|, = 1 gives the claim for k1. Finally, as
p'<m and by = 1 for each ¢, the estimates

1\2 tby) < ik < (1o (B)" }j b))

hold for all n-tuples ¢, which completes the proof.
The projection constant of a space B is y(E).
< Yo(B) 7, (v) for each operator » defined on E. Thus
COROLLARY 8.2 [11]. There is a constant , 2 < & < ¢, such that @ (H, 1)
<k (@(B) v (B))* for each n-dimensional space B.

Recall that i, (v)

o

icm

Banach ideals on Hilbert spaces 171

Proof. Let w be the inclusion of I into I%,. For uwe L(, B')
Gy (uw) = 6y (W' W) < yoo (B my (' ') < 701 (') o0 (B) ] -

It is well known and easy to show from Khintchin’s inequalities that
@y (w') is uniformly bounded, 2" < m,(w') < €%, the last by [17].

One infinite-dimensional version of Theorem 3.1 may be phrased
ag follows:

COROLLARY 8.3, Let 1 <p <2 and let B b o space with an uncondi-
tional basis. If every continuous operator from o, into B naturally induces
an integral operator from 1, to B, then B is isomorphic to 1,.

Proof. The closed graph theorem gives a constant A such that 4, (uw)
< Alull tor all we L(e,, B), where w is the inclusion of I, into ¢,. The corol-
lary follows by normalizing the basis and applying the inequalities of Theo-
rem. 3.1 to the span of the first n basis elements, n =1,2, ...

Remarks. Hvery space H satisfies the hypothesis of Corollary 3.3
for p ==1, as the inclusion of I, into ¢, is integral. However, no infinite-
dimengional space W hag the above property for p» > 2 for the following
reason: If 4, (uw) < Alu) for all we L(c,, B), then taking an arbitrary
finite sequence {Whe, = B, lot aje B with |n] = (o, vy, and de-
fine we L(ey, B) and ve L(H,1,) by:

n
wia) = X aw;  and  v(0) = (8@, T}

el
Then
" )
3 syl = trace (vuw) < iy (vuw) < o]l 4 {ul
gwal
E /1]|suﬂma.xHZ iw,iH,
= =1

80 that

(g:’ IIMII”')””/ < Jmax “1..2"1 +ay,

that ig, the identity operator on F iy (p', 1) summing, and according to
the Dvoretzky-Rogers lemma (ef. [1], Lemma 1, p. 61), this is impossible
for 2 > 9’ 2 1 and ¥ infinite-dimensional.

An clementary localization argument, using Khintchin’s inequality
a8 in Corollary 3.2, shows that each %,-space has the stated property
for 1 < p < 2, 80 that Corollary 8.3 is a partial converse of this fact. Actual-
Iy, a formally stronger converse follows from the same proof: If E has
sutficiently many Boolean algebras of projections (in the sense of [12])
and if every operator from ¢, into ¥ induces an integral operator on lps
1< p=2, then # is an Z,-space.
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A vunified approach to Riesz type representation thecrems

by

DAVID POLLARD* (Copenhagen, Denmark and Canberra, Australia)
and
FLEMMING TOPS@E** (Copenhagen, Denmark)

Abstract. 'We establish abstract versions of the Riesz representation theorem.

Necessary -and sufficient condifions for the existence of regular finitely additive,
g-additive and r-additive representing measures are found. A methodological simplifi-
cation is obtained by constructing the measures directly, rather than via a preliminary
extension of the linear functional. Thus our approach is in agreement with the view-
pointy of Alexandroff rather than with those of Bourbaki. We are able to easily deduce
the Daniell extengion theorem as well as numerous topological representation theorems
such as those developed by Radon, Markoff, Alexandroff, Hewitt, LeCam, Maffk
and Varadarajan. Indeed, these results are sometimes strengthened. Our method is
baged on the theory developed by the second author; hopefully, our results demon-
strate the uselulness of this theory.

1. A common problem in Functional Analysis is whether a given

bounded linear functional defined on & vector lattice of real valued functions
iy representable ay an integral with respect to some suitable regular mea-
sure. By well-known techniques this problem can be reduced to the fol-
lowing situation:

On a set X there is given a convex cone % of non-negative real functions,

closed under the finite lattice operations and containing the zero function.
A non-negative, monotone, linear functional 7' is defined on %. That is,
our basic assumptions are:

Al
A2,

% is a (0, \f, Af) conven' cone in [0, oo[¥;

T: [0, oof,

T (ayhy + aghy) = 0, Thy +agThy for ay, ag> 0 and by, hye €, hy < by
and hy, hye € implies that Thy < Thy.
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