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Products of group-valued measures

by
H. MILLINGTON (Mona, Jamaica)

Abstract. Limit theorems for group-valued integrals are established, and applied
to derive conditions guaranteeing the existence of a product of iwo group-valued
meagures. Fubini-type theorems for both sets and functions are given. Also presented
is a construction of a Radon product measure of two Radon measures. Applications
to the case of vector-valued measures yield results on the e- and projective tensor
products of such measures.

0. Preliminaries. Throughout this paper, & denotes the empty
set, o the set {0,1,...} and for any sets 4, B, ANB the set-theoretic
difference. For any family .7 of sets let

U= U4, and N&= (4.
Adesl Aest
For any set X let ¥ X denote the family of all non-empty subsets of X.
We shall often denote a sequence (%,),.. Simply by =.

Let. X be a commutative group, with addition represented by +.

For any subsets 4, B of X, and new, let

A+B ={x+y: ved,yeB},
nA =A+ ... +A, n times.

The identity will always be denoted by 0.

For any topological space X and #eX, nbhds ¢n X will be the family
of all neighbourhoods of #. Our topologies will be always Hausdorff.

0.1. DeriNiTioNs. Let X be a commutative, topological group,
and § an abstract space. For any X-valued funetion # on all subsets
of S:

A < 8 'is u-measurable iff w(B) = za(BnA5+u(B\A) for all B = 8.

A is w-null iff w(B) = 0 for all B < 4.

M, is the family of all u-measurable subsets of S. For any family </
of subsets of S, u is‘o-additive on =7 iff for each countable, disjoint P < o
with |JPe,

w(UP) = Y u(d),

AeP
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8 H. Millington

in the sense of unordered summation ([12], p. 120), w is monotonely con-
vergent on. o iff for any increas » g or decreasing sequence 4 in o7, lim;¢(4,,)
in X always exists (G. Fox, Can. J. Math. 20, M. Sion [13]).

w is an owter measure iff M, is a o-algebra on which u is o-additive,
and for any 4 < 8§, Venbhdu(4) in X, there exists an 4’e M, contain-
ing 4 such that

Acacd =ula)eV.

‘When 4 is an outer measure, u-null sets are u-measurable and any
- countable union of w-null sets is still w-null. Also true for outer measures
is the following, which we state without proof.

0.2. LemMa. Let X be a commatative topological group, S an abstract
space, and u an X-valued outer measure on S. For any decreasing sequence
B in M, with empty intersection, and Uenbhd0 in X, there ewists mew

such that
’ ac B, = u(a)eU,

1. Limit theorems. Our definition of the integral is essentially that
given by M. Sion in [14]. Let S be an abstract space, X, ¥, Z topo-
logical groups, and let - : (z,9)eX X Y—>x-ycZ be bi-additive.

Let » be a Y-valued outer measure on 8. P is a partition iff P is a

countable disjoint subfamily'of M,. For any 4 = §, #(4) is the‘family .

‘of all partitions covering 4, and
={(P, 4): PeP(A), A: Qe #(A)—>A(Q), a finite subset of Q}.
For any f: seS—~>f(s)es X, A
fl4] = Ui.f(S)y
8ed

and

DA, f) ={(P, 4,1): )~=>lieflal},
directed by (P, 4,1) 3 (P', 4°, 1) iff P’ is finer than P (ie. each o' eP’
is contained in some aeP), and 4(Q) = A'(Q) for all .

1.1. DEFINTITION.

ff-dv; = lim
A

(P4, e DAY o&F

(P, A)e@(A), and 1: aed(P

D

lev(a)eZ

)
whenever the limit exists.

For any Wenbhd0 in Z, @y (d,f) consists of those (P, A,h) in
2(4,f) for which (P, 4,1) -3 (Q, I'y») implies that

n(a)e ff do +W.

ae I‘(Q)

icm
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In the event that x-y is denoted by ¢(z, y) we shall write

f¢(f, dv)  for ffAdq;.
A

A

1.2. Remarks. For fixed 4 the integral is additive on the family
of functmnﬂ f for which [ f-dvis defined ([11], [15]). For fixed f, if f f-dv

is defined then f fdv lh defined for all subgets 4 of §, and
A 8- f fdveZ
A

is an outer measure ([15]).

1.3. DErINITIONS. With the above notation:

(1) ([14]) An & X-valued function f on S is v-partitionable iff for
each Uenbhd0 in X there exists a partition P such that §\|J P is v-null
and for every aeP,

fla]—=fla]l = U.
(2) A X is bounded w.r.t. (v, - ) iff for each Wenbhd0 in Z and

each partition P there exists a finite 4(P) = P such that for every finite
partition F finer than P\A4(P), -

/;‘A-v(a) cW.

(3) A family & of & X-valued functions on 8 is uniformly bounded
w.r.t. (v,-) iff for each W enbhd0 in Z there exists a partition P covering §
and for each partition @ finer than P a finite 4(Q) = @, such that for
every finite partition ¥ finer than @\4(Q),

%: flal-o(a)
When & is a singleton {f} we say simply that f is bounded w.r.t. (v,-).
(4) ([14]) v is bounded w.r.t.- iff for each Wenbhd0 in Z there exists
a Uenbhd0 in X such that for all finite partitions 7,

2, U-ula)

ae

1.4, Remark. For any ¥ X-valued function f on S, if f[8] is bounded
w.r.t. (v,) then f is bounded w.r.t. (v,-).

Concerning existence of the integral we have ([11], [15]):

1.5. TurorEM. Let f be an & X-valued function on 8. If f is v-parti-
tionable and bounded w.r.t. (v,-), v is bounded w.r.t.-, and Z is complete,
then [f-dv ewists. :

8

o W for all fes.

= W.
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10 H. Millington

Proof. One shows directly tha.t the net
D hov(a)es
aed(P)
is Cauchy, and by the completeness of Z therefore converges to a unique
zeZ. .
- 'We shall use the following convergence notions.

1.6. DEFINITIONS, For 2 any net (k) ; of ¥ X-valued functions on S,
and an f: 8—¥X:

1. by—f quasi-uniformly w.r.t. (v,-) iff for eaeh Uenbhdd in X,
and Wenbhd 0 in Z, there exists an 4eI and a partition P such that

(a) for every finite partition F finer than P,

D, ylalw(e) = W

ael
(b) for all i < j,
f(s) = h(s)+ T, h(s)=f(s)+T tfor all seS\{JP.

2. hy—f uniformly iff for each Uenbhdo in X there exists an iel

such that for all ¢ <j and seS,
. 1
F8) S &)+ T,  Iy(s) < f(s)+U.

3. hy—f pointwise iff for each s¢8 and Uenbhd0 in X there exists

an tel such that for all ¢+ <j,
&) « bi($)+ U,  Iy(s) = fls)+ U

Remark. The convergence notions above utilize in fact the topology

induced on X by the uniformity in X x&X consisting of the sets
{4,B): AcX,BcX, A=cB+U, BcA+T},

for all possible Uenbhd0 in X..

The limit theorems below are of independent interest.

1.7. TueoREMS. Let h be a sequence of SX-valued functions on 8
converging pointwise to an f: S—+FX.

1. The uniform Wmit of any net of & X-valued, v-partitionable functions
on 8§ is again v-partitionable.

2. (Sion [14].) If h, is v-partitionable for each new then f is v-parti-
tionable. .

3. (Generalized Egoroff’s theorem.) If h, is-partitionable for each
new, then for each Uenbhd0 in X there exists a decreasing sequence B
in M, with v-null intersection and for every e w,

f(8)—h,(s) = U for all s¢B,.

(B, 4, 1) e (8, f)~

for all ge{flu{h;: i< j},

icm
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4. If h is a sequence of v-partilionable functions, uniformly bounded
w.r.t. (v,), and v is bounded w.r.t. -, then h,~f quasi-uniformly w.r.t. (v,-).
(Note: The boundedness condition on v can be dropped if continuity of -
is assumed; see proof 1.7.4.)

1.8. THEOREMS. Assume now that v is bounded w.x.t. -, and that Z
is complete.

1. Let (h;);er be a net of v-partitionable X-valued functions on S con-
verging to f: S—SX gquasi-uniformly w.r.t. (v,). If the integrals f hydv
all ewist, then l frdv exists, and for all A < 8,

ffdw—hmfh .

del

2. Let (hy)new be a sequence of SX-valued, v-partitionable functions
on 8, converging pointwise to f: S—~FX. If {h,: new} is uniformly bounded
w.r.t. (v,-), then the integrals f fdv, f by dv, new, all exist, and for every
A < 8§,

f frdv =1lim f hy~dv.

new

.

Remark. In the above theorems we mav replace pointwise conver-
gence by ‘a.e.’ pointwise convergence, i.e. pointwise convergence out-
gide some v-null subset of S. .

Proof of 1.7.1. Follows directly from the definitions.

Proof of 1.7.2. See M. Sion [14].

Proof of 1.7.3. Choose a symmetric U’enbhd0 in X such that
4U' < U. For each new, let

d, = {se8: f(s)—h,(s) & 2T'}.

By Theorem 1.7.2 the function f must be v-partitionable. Hence, for
each new there exists a partition P, such that S\{JP, is v-null, and
1) for all aeP,;,, hplal—hyla]l = U, flal—f[e]l =« U'.
Let :
B, = NN {U{aePy: a ¢ 4,}).

kezn
Then B is clearly a decreasing sequence in M,. Further, for any s
¢(LUJ (8N UP,)) there exists a kew such that for all j > k,
n
2) f(s) < hy(s)+ U ..

Then, for each mef(s) and y<h;(s), since scaeP; for some a, we deduce
from (1) and (2) that

—y =o—y +y —y2U’,
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for some y'ehy(s). Thus f(s)—h(s) = 2T’ for all j > k. Hence
NB, = Lﬂ)(S\'U P,
Since {J(8NUJ P,) is v-null then so also is (1) B, (cf. §0).
"

n
Finally, it s¢Bn then there exists ¢, with sea and o ¢ d,. In which
case, for any s’ ea\d,

F(8) =R (8) = F()=F(8") +(8") = ho(s") 4Ty (8) = B (5) = 4T < T

Proof of 1.7.4. Let U, Wenbhd0 in X, Z, respectively. Choose
W enbhd0 in Z with 2W' < W. Let B be a decreasing sequence in M,
chosen w.x.t. U as in Theorem 1.7.3. Then {B,\B,.,: neo} is a parti-
tion. Since & is uniformly bounded w.r.t. (v,-); there exists a kew and
a refinement P of {B,\B,, : » > k} such Lha‘n for all finite ];)E\:I‘tlTlOnS F
finer than P,

for all jew.

D lylal-v(a) = W'

acF

If » is bounded w.r.t. -, or'- is continuous, then also

D flal-v(a) = 2W".
ael
P clearly satisfies the hypotheses of Definition 1.6.1.

Proot of 1.8.1. Lett Wenbhd0 in Z. Choose a closed symmetric Wy
from nbhd0 in Z such that 6W, = W. Since v is hounded w.r.t. -, there
exists Uenbhd0 in X such that for every finite partition F

D U-n(a)

aef

Since h—f quasi-uniformly w.r.t. (v,-), there exists a partition P, and
an foeI such that for every finite partition ¥ finer than P,

D ylal-v(a)

aeF
and for every i, <<j

F(8) = ii(8)+ U
Let A = 8. By the hypotheses and Remarks 1.2, f h;+dv existy for all j.

Given any 4,<j, choose (P; 4),1, U, such that P is Imer than {S\ U PJu
UP,; for each acP either a is o-null or hlal—hile] = U, (P, 4, 1) <D (4, f),
and (P, 4,V)eDy (4, h;). Then for each aeP with o = S\UP(.,

= W,.

=W for all ge{f}U{h;: 7, <3}

for all seS\NUP,.

1) either o is v-null or flal—Mla] = 2T.

icm
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Thus for any (@,.[,r)
7': ael(Q)->7 eh; [a],

2(4,f) such that (P, 4,1) -3(Q, I",r), and any

2 70 (a) — Z T v{a)e flol-v(a)—
aeI(Q) acI(@) ae '(Q),ac UP,
- D Iylal-v(a)+ (fla]l—R;[al) o (a)
aeI(G),ac UP, a€I(Q),a=S\UP,

< 2W,—W,+2W, =BW,.

Since (P, 4,1) -3(Q, I',#') and (P, 4, Z’)e@Wl(A, h;), we have

(2) D) rav(a)— [hy-dve6T, = W.
ae I(Q) A
Congsidering (2) for fixed j = 4,, we see that
7o v (a)
5T )(Q,P,T)E-@(A,f)

is a Cauchy net in Z, and therefore converges to f f dv since Z is complete.
Again using (2) it then follows that

‘ [ryavs [ f-av.
A ) .
Proot of 1.8.2. By Theorems 1.5, 1.7.2, 1.7.4 and 1.8.1.°
2. Product measures. Throughout this section let X, ¥, Z be commu-
tative, topological groups, with Z being complete,
 XxY—>Z
a separately continuous bi-additive map, § and T abstract spaces, u

an X-valued outer measure on §, and » a ¥-valued outer measure on 7.
For any A < SXT, se8, teT, let

A ={V'eT: (s,¥)ed}, Al ={s'ec8: (',%)eA}.
Let :

Rect (uv) = {axb: ae M,, be M,}.

We shall denote by R, S, respectively the smallest algebra and smallest
o-algebra containing Rect(uv), and by ¢ the unique finitely-additive
funetion on R such thatb

glaxDb) = u(a)-v(b)
for all & x beReet(wv) ([1], p. 57).

2.1. DERINITION. u i8 a product measure of w and v w.r.t. - iff 4 is
a Z-valued oufer measure on X X Y such that Rect(uv) < M,, and

w(exb) = u(a) v(b)
for all ¢ x beRect(uv).
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14 H. Millington
Hereafter we shall omit explicit reference to - when speaking about
product measures of u and v.
Using the monotone class theorem (Halmos [5]), one shows easily
2.2. PROPOSITION. If u,n are any two product megsures of u and o,
then w and 1 agree on .

2.3. Remarks. If there exists any product measure of » and v then g

is o-additive and monotonely convergent on R. Conversely, if g satisfies
these latter conditions then there exists a Z-valued outer measure u
on § x T which extends g ([13], Theorem 3.3). u is clearly a product
measure of u and o. The theorems below establish conditions under
which. g is ¢-additive and monotonely convergent.

2.4. THEOREMS. 1. For all Ae@S: teT—>u(d
and Al is u-measurable for all teT.

2. For all AcR,

NeX i3 v-partitionable,

9(4) = [u(d)-dv(s).
7
If range w is bounded w.r.t. (v,-) and v is bounded w.r.t. -, then
3. g is o-additive and monotonely convergent on R.
4. The Z-valued outer measure u on 8§ x T generated by g ([13]) is a
product measure of w and v. Further, for every 4G,

p(d) = [u(d’)-dv(t).

B. If, also, range v is bounded w.r.t. (u,-) and w is bounded w.rt. -
then for all 4 <@,
f du(s)

Proof of 2.4.1. Let s consist of those subsets 4 of 8 x T for which
A! is w-measurable. for all ¢e7, and teT->u(d"eX is v-partitionable.
Then o is a monotone class containing R. In particular, the smallest
monotone class containing R must be a subfamily of #. Since RN iy a ring,
the smallest monotone class containing it must coincide with &, i.e. S< #
(cf. Halmos [b], Monotone class theorem).

Proof of 2.4.2. By 2.4.1, 1.2, and 1.5

u(d qu‘ )edo(t

. hi AeR—~> [u(dl)-dv(t)ez

. T
is well-defined and is additive. One shows readily that for each axb
eRect(uv) we have h(axd) = u(a)-v(b). Hence, by the uniqueness
of g,h =g.

icm
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Proof of 2.4.3. Let 4 be a monotone sequence in R. Then for all
teT, using 2.4.1,

limu (A}) = u(lim4b) = w(lim4,).

new new neaw

Hence, by the hypotheses, and theorems 1.8.2, 2.4.1, 2.4.2,

(1) limg(4,) = hm] w(AL)-do(t) = fu((limAn)‘j-d'u(t)
new new
which equals g(lim.4,) if limA4,eR.

nea new

In particular, g is monotonely convergent on R. The finite additivity
of ¢ taken together with (1) implies that g is s-additive.

Proof of 2.4.4. By Theorem 3.3 of [13] and Theorem 2.4.3 we ha,ve
that uis a product measure of « and ». Let # be as in the proof of 2
and let. #’ be the family of all A e 5# for which

p(d) = [u(dh)-do().
Fd
Then by Theorems 1.8.2, 2.4.1, and 2.4.2, #' is a monotone clags con-
taining R. Thus, as in the proof of 2.41, G = #".
Proof of 2.4.5. Immediate from 2.4.4.

3. Fubini’s Theorem. Together with the notation of the previous
section: X,,Z,,Z, are commutative topological groups,

¢ Xox X2y, 11 5y x Y—+Zy, i Xy XZ—Z,,
are bi-additive such that for each (2!, %, y)eX; X X X Y

m (et @y) = (e ), y).
Let x4 be some product measure of u and v.

3.1. TuroreMm. Suppose that Z,, Z, are complete, and thet u,v,u,
are bounded w.r.t., respectively, vy, n, . Let f: SXT—>SX, be the uni-
form Uimit of a net of X -valued functions on 8 x T, (h;);er, 80 that for all
iel:

1. by is p-partitionable, teT— [@(h;(s, 1), du(s))eZ, is v-partitionable,
for each tel' the function S‘GAS’—-)-IZ‘(S& t)e X, is u-partitionable, and

2. [ alhey dw) = [ (f (h 8, 1), du(s)), dq;(t)).

skr . Ay
Then f is u-partitionable, teT-—>S[ o (f(s, 1), du(s))eZ, is well- defwed

and v-partitionable, for each teT the function seS—f(s,t)eX; is u-parti-
tionable, and

[ m(f, dw)

sxa

= [ ([ elf6s,0), du(s)), ().
iy s
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Proof of Theorem 3.1. Let W'enbhd0 in %, be closed. Since u is
bounded w.r.t. ¢, there exists U'enbhd0 in X; such that for all finite
partitions F < M,,

D o(U uia) = W
ael?

Choose tel such that for all 7 <j ‘
' F(s,1) @ hys, t)+ O,
For each ¢ < j and teT there existy a partition P, < M, such that S\,
is u-null and for every aeP,
Bila, t]—h;[e, t] = U
Then for each se|{ )P, wé have sea for some aeP;, and therefore
T8, ) —hy(s, 1) = Iy(s, §)—Ry(s, )+ U* = 2T
Thus ’for any finite partition F finer than P,u{§\{J P}
(1) D o({fls, t)—hy(s, 1): sea}, u(a)) = 2W".

ackF
By Theorem 1.8.1 [ ¢(f(s, t), du(s)) is defined. Then by (1) and Remarks
1.2 8

[olfts, 1), du(s))— [ p(h(s,1), du(s)
8 8

= [(f(s, ) —hy(s, ), du(s))<Cl2W* = 2W".

: S
Since the closed neighbourhoods of 0 in Z, constitute a base for nbhd0
in Z,, it is now clear that

[ o(hats, 0), au(@)— [ o(f(s, 1), du(s))
.8 s .

uniformly for ¢e7. Hence, by Theorem 1.8.1 and the hypotheses on the hgy
all integrals below are defined and

I omlfy aw) =tim [ 5y (g, du) .
sxa el gym ,
=1lim [ ¢ ( [ o (hils, 1), du(s)), dw(i))
iel &
= [tima ([ p(hys, 1), du(s)), o)
qp del § .
= [n([o(f(s, 0, au(s)), av().
T s

The assertions on partitionability are a consequence of Theorem I1.7.1.

icm
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By imposing enough conditions on f and the functions %, we can
obtain theorems similar to the above, using quasi-uniform or pointwise
convergence instead of wuniform convergence. However, the technique
used below is also of interest — we approximate the integrals under
discussion by finite sums, and impose conditions which insure that these
finite sums can in turn be made cloge.

3.2, DEFINITION. An &X,-valued function fon 8XT is approwi-
mately product partitionable iff for each Uyenbhd0 in X, and each W,e
nbhd 0 in Z, there exist a countable disjoint P, = M, covering 8, & count-
able disjoint P, = M, covering T, and a finite B < {axb: aeP,, beP,},
such that

1. for each acH®, fla]l—fla] = U,

2. for every finite disjoint F < Rect(w») and finer than {axb¢H:
aecP,, beP,} we have that

D) mlfled, pla)) < W,.
ae ¥
3.3. TerOREM. Suppose that u is bounded w.r.t. Ny ond that 9y, n
are continuous in each variable. If f is an & X-valued function on 8 x T
which is approzimately product partitionable, then the equality below holds
whenever the imtegrals all ewist,

[ mifsawy = [ ([ o(76, 0, du(s), do ).
Sxa T &
Proof. We shall show that given any closed symmetrie W.enbhd 0
in Z, . :
(1) S m(sdw) = [0 [ o(fis, 1), au(s), do(s) 8T,
SxT T

Let mg, my denote the canonical projections from S x T onto S and T
respectively. Define

s tel— [ g(f(s,1), duls))eZ,.
N .

Bince u is bounded w.r.t. 7, choose Uyenbhd0 in X, such that

2771([717 M(a)> =W,

ae fi'
for every finite disjoint ¥ < M ,. Since f is approximately product parti-
tionable, theve exist P, P,, B as in Definition 3.2. Choose z,ef[a] for
each ael. It i clear that

n(f, dg) e W
Sxa'“\{un‘ ,%S\ )

2 — Studia Mathematiea LIV.1
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Hence, defining
2, it reack,

treSXT
gz re - 0 otherwise,

then by the continuity property of 7,,
\ !

[ g, aw) = 3 n(we, p(a)).
sxa aelf

Further, f(r)—g(r) e Uy, for all reJH. Hence

@ [ mlf d) = D) mlo, plw)
Sxr v ekl
= f’?l F—9,dp)+ f N (f, dp) e2Ws.
SxINUH
Since f 7 (h, dv) exists, we can find a finite digjoint 4, < Mq, finer
than P, suc]l that
(3) fn (hy do)— D) 7(h[b], dv) = W,

be1v

Mozreover, by the continuity property of n,, the finiteness of ¥, and Lemma

0.2, we may assume that
(4) D) 11 @0y 4(8a) = W
aeld

for every {f,: aeB} = M, with B, = axaz'[U4,]. For each bed,
choose a 1, eb. Similarly, thew exists a finite disjoint 4, = M, fmer than P,

guch that
(5) X (mit) -
bed,

and for every {Bo: e} = M, with B, = o\ng'[U4,],

(6) D1 (@ 4(Ba) < W

aeld

Let z,yefla, t,] for each (a,b)ed, x A,,
I={axbc UB: (a,b)ed,x 4},
= {aXb: (a,b)ed, X AINI.
Then J is finer than {a X b¢B: (a, b)eP, X P,}, and for each aclf]

Ul < a\ngl[UAul JUlanazt U 4,)).

From the commutativity of the maps, the choices of U, and H, (4) and
(6), we now deduce that

S pl7Te, b, v(@), 0 (0)) < sy

aedy,

Products of group-valued measures 19

2 771(%: /A(a))—‘

ael

1(9 (20,05 (), v(D))

(@,b) ey x4,

= Maloay (@) —

71 (%05, (6 % D))
wel .

pX

ueE,axbel,axbea

— D n(Bap, u(aXb)) = BWy+W,y—W, = BW,.
axbeJ
Taken together with (2), (3) and (5), the above implies that (1) holds.

3.4. Remarks. Symmetrization of the hypotheses (e.g. if 71,  and. @
all coincide with the multiplication in a topological algebra) clearly yields
‘symmetric’ Fubini theorems, i.e. sufficient conditions for both iterated
integrals to be equal to that w.r.t. the product measure. Of further inter-
est would be a study of functions f whose sections £, (f*) are v-partitionable
(vesp. u-partitionable) for all se8 (vesp. all teT).

3.5. Exampres. Tet §,T be topological spaces, , v be such that
the corresponding open sets are measurable, and assume that the maps
71, 1, ¢ are continuous in each variable. Let f be an X,-valued function
on 8x T continuous w.r.t. the product topology.

- 1. If f has eompact support then it satisfies the hypotheses of The-
orem 3.1.

2. If open sets of 8 x T are in &, range % is bounded w.r.t. (v,-), v
is bounded w.r.t. -, and f has precompact range (i.e. for each U,enbhd0
in X, finitely many translates of U, cover f[8 x T']), then f satisfies the
hypotheses of Theorem 3.1. (Use Theorem 2.4.4.)

3. If 8 x T is Lindelst and f[8 x T7 is bounded w.r.t. ¥z then f satis-
fies the hypotheses of Theorem 3.3.

4. If 8, T are Lindelof, the families {f*: teT}, {f,: s<S} are equi-
continuous, and g is bounded w.r.t. 5, then f is approximately product
partitionable.

(asb)ed,, x A,

= D mf@s pa\UD) +

N1 (Ba— Bap, p(@ X b)) -
pry)

4. Radon product measures. Let X be a commutative, topological
group, # a family of subsets of a space §, and y an X-valued function
on .

For any subfamilies <7, & of o, y is oZ-inner (-outer) regular on &
iff for each Be# and Uenbhd0 in X there exists A« with A « B
(B = 4) such that

ae s, AcacB(Bcac:.A) = 'yB)’ y(a)e

‘When § is a topological space, denoting by %(8), o' (8) the famﬂies of
open, respectively compact, subsets of S, we call y a Radon measure iff y
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is defined on all subsets of 8, M, is a o-field on which y Iy ma:ddl:.tive\,,
g(8) = M, y is %(8)-outer regular on its domain and %" (S8)-inner
regular on %(8).

A family o7 of subsets is w-compact iff ea,eh countable subfamily
of i with empty intersection necessarily contains a finite subfamily with
empty intersection.

The first lemma below extends a result of H. Marczowski [8]. We
state the second without proof.

4.1. Lmwa. Let # be am algebra and y be finitely additive. If y is o/-
inmer regular on A for some w-compact o < A which is dlosed under finile

umions, then y is o-additive. If y is also monotonely convergent on X then *

the outer measure & generated by y (Sion [13]) is o y-inner vegqular on M.

4.2, LevmA. For any X-valued outer measure & on 8, Ae My iff for
each Uenbhd0 in X, there emist a, B in M, with a c A c f and A’
< fNa = E(A)eT.

Proof of 4.1. Let I be a sequence of mutually disjoint elements
in #. Let Uenbhd0 in X, and let V be a sequence of closed symmetric
elements from nbhd 0 in X with 2V,,, = ¥, < U for each kew. In patr-
ticular, for each kew, ‘

Vot oo + V= U.
Choose Age o with A, = ) H, such that for all 4'c .o
n
A < UH',L\A0 = p(4)eV,.
for each new choose AnTle&I with 4., = A, NH, such that for all
A'e s,
A’E(An\Hn)\Anfl = '}’(A’)GVII:—H'

Since (4,) is & decreasing sequence in &7 with empty intersection, there
exists mew with 4,, =d. Now, since y is «-inner regular on &, for any
Bes# and new we have
B = (4, NH,)N4
(Similarly for B < (JH,\A4,).
n
Further, for any Be # with B < {J H,,

n>m

= (BN{UENA)) U (BN 4)

i1 P(B)e Vi,

= (Bn(U HN A UU BA(4,NA, ).
n n<n
Since BN(4,\4,.,) = (A NHy) N4y for each n< m, we bave

Y(B)eVot . + ¥y < U.
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Thus y is o-additive on #. A similar technique is used.in proving the
second assertion.

For the rest of thls section, X, ¥, Z are commutative topological
groups with Z being complete, -: X x Y = Z is bi-additive, 8, T are
regular topological spaces, SxT carries the product topology (which
is then also regular), 4 is an X-valued Radon measure on §, and » is a
Y-valued Radon measure on 7.

Rect(u, v), R, g: R—Z are as defined in §2, and o, is the family
of all finite unions of compact rectangles.

4.3. Trmorems. 1. Ay is an o- compact Jomily.

2. If u, v are both bounded with respect to - y then g is A g-inner regular
on R.

3. If u, v are both bounded with respect to -, and g is mo%otoneby con-
vergent on R then there ewists o product measwre u of w and v which is

‘R-outer regular on its domain, and a Radon product measure £ of u and v

with M, = M, such that
M, = u/M, and EH(SxT) = p[a(8XT).

Proofs 4.3. 1. See Meyer [9], a fortiori, by Tychonoff’s theorem.

2. It is enough to show that g is -inner regular on Rect(u, v).
Let Wenbhd 0 in Z. By the hypotheses on » and v, there exist neighbour-
hoods U, V of the identities in, respectively, X, ¥ with

"> U-v(a) = W for all finite disjoint P = I,

ael’

E w(a):V =« W for all finite disjoint F = M,,.

ael’

Let A x BeRect(u,v). Choose ae ' (8), be A (I) such that & c 4,
b = Band ; ) :
aeM,, a« = ANa = u(e)eU.

ae M,, a = B\b = v(a)eV.

'l‘hen for any finite disjoint # < ]{ect (u,2), JF < A ><B\a><b we
have for each ax Sel that

ac ANa - or < B\b.

'JT.(m.ée, letting
0= U{axﬁelﬂ o< A\(X:}
by Theorem 2.4 we have
g(UF) = g(C)+g(D)
= fu Y- dw(t) + f du(s)-v(

and D= UJFI\C,

D)e2(C1W) <« 3W
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gince
O < A\a

D, =« B\b

Ole M,
D,e M,

3. Letting u be the outer measure on § x I' generated by ¢ (by 4.1,
4.3.1, 4.3.2, and Theorem 3.3 of [13]), then. x has the required propertics.
Now let x consist of all open rectangles in § x 7', and let , be the family
of all unions of finite subfamilies from x. Arguing as in Proof 4.3.2 above
one can show readily that

for all 1T,
for all sef.

1) t 18 x-outer regular on its domain
and therefore that

®

2) w 18 x,-outer regular on A4 (Sx ).

Using (2), and Theorem 3.2 of [13], we can easily check that
uloA (8 x Ty satisfies the hypotheses of Definition 6.1.3 of [13]. Tiet & he
the Radon measure on 8 X T generated by u/o# (8 xT) (Theorem 6.3 of
[13]). Then :

3) E)H (8 XT) = ) (8 T).

It remains for us to show that M, = M, and that & u coincide on I,.
Let Ae M,. For any closed, symmetric Wenbhd0 in Z, by 4.8.1, 4.3.2,
Lemma 4.}, and (1) above, there exist Ke(Ay), and Gex, such that
KcAdc@and '

ael,, a < \E = u(a)eW.
By (1) and %, = M, it follows that ‘
(4) ac N\K = pla)e W.

Since G\K is open and £ is Radon, (3) now implies that
(5) ac NK = &a)eW.

Since W was arbitrary and K, G are both §~1nea.‘surayb1<a, then 4 e Mwe
(Lemma 4.2). Then using (4) and (5),

w(A)—E(A)= pd) —u(I) + £(K) — £(4) = u(ANK)—E(ANT) 2 W,

It follows that w(d) = £(4).

Remarks. By Theorem 2.4.3, boundedness conditions on the range
of % or the range of v will guarantee that ¢ is monotonely convergent.
The monotone convergence of g is also guaranted when the range of ¢
is @ subset of the pogitive elements of a suitable partially-ordered group
(e.g. L"(Q, ), L <9 < oo, with the usual topology).
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5. Applications. Products of vector-valued measures. Let X, ¥ be
(separated) locally convex spaces over C, u (resp. v) an X (resp. ¥)-valued
outer measure on S (resp. 7).

Let Z = X® Y, the stensor product of X and ¥, and : X x ¥
—+X®Y be the canonical injection (Schaetfer [12]). 'We note that the
ranges of w, v, are bounded subsets of respectively X and ¥ (Dunford-
Schwartz [4]). We then have (see also [3]):

5.1. TuroreM. Range u is bounded with respect to (v,-), and range v

. with respect to (u,"), u is bounded with respect to -, and v is bounded with

respect to . Hence
1w and v have a product measure y on 8 X T, and for each A,

pla) = fu(a‘)-dv(t) = fdu(s)-v(as).
i § ‘

2. When 8 and T are regular topological spaces and w,v are Radon
measures, then u and v have o product measure & on S x T which is Radon
with respect to the product topology.

Proof. Given the truth of the boundedness assertions, the other
statements are consequences of Theorems 2.4 and 4.3. We prove only
that range « is bounded with respect to (v,+). The other proofs are anal-
ogous. .

Let A be any bounded subset of X, P = M, a partition, and W enbhd 0
in Z. There exists an absolutely convex Uenbhd0 in X and an absolutely
convex Venbhd0 in Z such that for any z<Z,

&= Zwa®ya7

ael
and

" sup{| 3 <@ 0 D] 9T, gV <1
ael’
imply
ze W,
Choose 4 > 0 such that 4 < AT. By Proposition 0.2 there exists a finite
A(P) € P such that for each finite disjoint F < M, with (¥
< U(.l’\A(,P)),
‘ D o(a)e(d2) V.
. aell
Then for any ey < 4,2 ¢U° and y'<4AV°, we have that

| > <@y @ <ola), yd| <2 ) IKo(a), ']
ael

aell'

<4isup| ) (@), )] <1,

B<F &3
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ie.

N Aw(a) c W.

&
Let Z = X ® Y be the projective tensor product of X and ¥ and -:
XxY->X®Y the canonical injection.

5.2. TurorEM. If v is of bounded variation it is bounded with respect

to -+, and further, range u is bounded with respect to (v,+). Hence u and » have
@ product measure w on 8 X 1" and for each A e

wd) = [u(d)-dot).
. i
Proof. Saying that v is of bounded variation implies that for each,
continuous seminorm ¢ on ¥, the set function

lolg: be Mysup{ ¥ g(o(w): F < M, finite, disjoint, I = b} =0
ael
is o-additive on the o-field M, ([1], p. 41, Prop. 10). In particular,
1) [l () < oo.

2) For each partition P < M, and ¢ > 0, there exists finite 4 (P) < P

such that for every finite, disjoint ¥ = M, with {JZF < U (PN A (P)),‘

D) Iolly(a) < s

ael’
Using (1) and the characterization of the projeetive topology in terms
of seminorms (Schaeffer [12], IIL. 6.3), we deduce that v is bounded with,
respect to -. Using (2) we check that any bounded subset of X is bounded
with respect to (v, -). The first assertions of the theorem. are thus estab-
lished, and the existence of the product measure is now guaranteed by
Theorem 2.4.3. g

We close now with a counter example which shows that for the
projective tensor .product topology the product of two vector-valued
measures may not exist. Another such example has been given by Kluy-
anek [6]. Our example further suggests an error in [2]. Notation and
definitions on perfect sequence spaces ave as given in Koethoe (7.

5.3. PROPOSITION. Let ¥ he a perfect sequence space, with s normal
topology. If there emists a sequence {y,} in ¥ which is summable but not
absolutely summable (Schaeffer [127) then there emists Y-valued measure
v on w, and an 1°-valued measure uw on o such that w and v do ot have
o product measure on: w X.w with respect do the camonical bilinear map
PxY->I& Y. ; ‘

Proof. We can identify 1”@ ¥ with the space Z of all sequences @
in I such that for each fe¥*, .
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Iye) = D |fal lealle < o0,

new
endowed with the locally convex topology generated by the seminorms
I, [10].
By hypothesis there exists a sequence y in ¥ which is summable
but not absolutely summable. In particular, for some fe ¥'%,

EZ ]fnym,nl = 22 |fnym,n| = ©o.
m o m

n m

Choose & sequence A4 with lim4i, = 0 such that

new

(1) Dt D faYmal = oo
k)

m

Let e;.€1™ e such that e,(i) = 1 for k = ¢, and 0 otherwise. Then (1,e;)
is & summable sequence in I”. For each 4 < w© let

v(d) = 3 Yy u(4) = Y Iyey,
mes ked
% and v are then respectively I*- and Y-valued outer measures on o,
both having unbounded variation (for » by choice of y above).
Further, M, and M, coincide with the family of all subsets of w. For any
4 < w, B <o let . ‘
g(A X B) = u(d)®v(B).

few

In particular, for any (k, m)ew X o,
(2) ‘ .(/ ({(k: m)}) = Akglc®ym = (}'Icym,neh)nsw~

We extend g (uniquely) to a finitely additive set function on the ring R
generated by Rect(uv) (§2). We shall now show that ¢ is not monotone
convergent and therefore cannot be .extended to a ¢-additive function
on &, the o-algebra generated by R. First we mnote that for any finite
family T « € (A. Pietsch, Nukleare lokalkonvexe Riume, p. 18)

(3) ‘ Z ] < dsup 2 1|

el Fel Gep

Since ¥ is & summable sequence in Y, there exists non-negative ¢ < oo
such that for every finite ¥ < o

— . .
DIl | D) ) < €
n me “ .
Therefore. for each new,
£r=1 B
‘Eym,n <If'n[ 07

inel
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and thus by (3),
D Yl < 4151710

me I
Hence
(4) SUD D' |l <40 < 00.
new MEW

Let & > 0. By (4), for each new there existy & finite 4, = o, and by (3)

o finite B, < 4, such that

®) D falmnd = D Uamal <2727

mew medy,
and
(6) | Y Y 247 D Wl

meBy, medy,
Now for each N ewlet
BY = ) {n} x B,.
nEN

Then for each New, BY c BY *1 Also, using the additivity of g on R
and the representation (2),

nf(g(BN)) = Z IfnfsuP1 Z }'k/ym,nek(i)l

new VEO RN, meBy,
T -1
> Z Ifnl‘ 2 }‘Icynt,qlelc(q"’)‘ = 2_/ U‘nﬂnl Z ym,n'
. new k<N, meBy, ngN tomeBy,

>4~ Z I 2 !f"yms"[ >4 2 )”n Z Ifn?/m,nl“’ée

n<N medy, nEN mew

—~o0 a8 N->oco.

Remark. The norm topology of I coincides with its normal topol-

ogy (Koethe [7]) and by the Theorem of Dvoretsky-Rogers there exists

. & summable sequence in I* which is not absolutely summable. Proposition

5.3 then implies that I* is not an “admissible factor”, in the terminology
of [2].
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