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An algebra of finitely additive measures
by
J. S, PYM (Shoffield) and M. L. VASUDEVA (Chandigarh)

Abstract, The algebra of all finitely additive measures on a discrete semigroup
which i a totially ordered set with the multiplication max is studied. It is found that
all proper maximal left (or right) ideals are two-sided and that the radical is the smallest
closed idoal for which the quotient algebra is commutative. This quotient. algebra
is igomorphic with the measure algebra (in the usual sense) of a compact totally or-
dered totally disconnocted semigroup.

" In his paper [3], Olubummo studied the algebra of all finitely addi-
tive meayures on the additive semigroup of positive integers. He was
only partially successful in his aim of determining the maximal ideals
of the algebra. The most complete description of the full measure algebra
(in the usual sense) on a compact semigroup has been given by Hewitt
and Zuckermann [2] and Ross [6] who considered totally ordered semi-
groups with the multiplication max. We are motivated by the success
of these authors to investigate the algebra of finitely additive measures
on a semigroup of this kind.

Although the underlying semigroup is commutative, the convolution
of tinitely additive measures may not be. We are therefore led to seek
the form of maximal left and maximal right ideals. These we determine
completely, and they turn out to be two-sided (Theorem 2.3). The quo-
tient of the algebra by its radical is the (commutative) algebra of meas-
ures on the weakly almost periodic compactification of §—a compact,
tolally disconnectod, totally ordered semigroup (Theorem 2.8). Its struc- -
ture ean be found frony [2] or [6], but we indicate how our results can
he used to rodiscover some of the earlier work. Indeed, every algebra
of measures on a semigroup is & quotiont of an algebra of finitely addi-
tive moasures on the serigroup with the discrete topology, and we illus-
trate in our final section how this fact can be exploited.

1. Preliminaries. Lot & Dbe a totally ordered set with a minimal
element 0. An interval in. § is a subset U of § with the plop(,rty that 2, ye U
and < 2=y imply 2¢l. Among the intervals we find in particular
the sety ‘]al, bl = {w: o< @< b}, [0,8] = {#: e <2< b}, etc., and the


GUEST


30 J. 8. Pym and H. L0 Vasudeva

sets {#: »> a} which we shall denote by [a,.co] y for @, beS. A segment’

is an interval containing 0 (so that U is a segment if and only if ¢ U and .

¥ < @ imply yeU). We make § a semigroup by defining the product ay
of z and y in § by ’ ‘

@y = max{x, y}.

Clearly, 0 becomes an identity. We let #(8) denote the space of all (com-
plex-valued) bounded funections on §. When it is given the Huprmnuxﬁ.
norm, its Banach dual #(8) can be identified with the gpace of all Boun‘(led
finitely additive measures on the discrete set S, It '1"3 offen conyenient
to use an integral notation for the value of the funetional ned (S) ab
fe#(8), and we shall write

w(f) = [ fl)du(w).
s

Let yp denote the characteristic function of B < §. The restriction
#g of u to F is defined by :

ua(f) = wlzaf) = [ 1@f @ dp(@) = [ f(@)iu().
S i

If = py, we say u is.carried by . Xt u is carried by B, » is carried by ¥
a.nd. # <y whenever z<l and y<F, we shall express this fact looﬁe]yl by
saying carrier u < carrierv; of course, carriers are not unique, and the
relationship will not hold for all carrviers of wand ». ‘

Now let both peF(S) and feB(S) be non-negative. Then if » =y,

10,21 () < o ()

For each segmfsnt U, the n.et (,u[o,w] (f): @eU), with the ordering induced
by that of 8, is an increasing net of real numbers; it is hounded above
by 4 (f) and so it converges. We write

1) pi(f) = lilgﬂ[o,m] (f).

(Notice that if U has a greatest element, uy. (f) = py,(f).) It in cleay
1131113413 Hy_ fxtends to a linear functional on #(8) which, iy positive and
ence continuous (ie. in &(8)). Moreover, it mel, uyr w1 i i~
tive too and therefore ' ’ Ao e T DO

o — bl = (py_ — M[o.nz])(]-)“>0

since the constant function 1 is in Z(8). Now #(8) is a vector lattice
apd 80 each of its elements iy a simple linear combination of four posi-
tive elements. Thus we may use formula (1) to define uy._ for bajny ,us% (9)
and moreover ‘the convergence of Hiog 60 up_ is in th-e norm“ of «;“(S)-
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Similar arguments can be used to justify the definition
@ pr (f) = Hm g q(f)
xeS\U

for weF (8) and fe#(8) (the limit is, of course, taken for decreasing ®).
Again, pgg, g pr.-in thé norm of & (8). If S\NTU has a minimal element,

Mgy = s
Weo shall need two other functionals derived from ue#(S). They are

(3) por = pu—py-  md - ppo = gy —pys

Axn element of & (8) of either of these forms will be called a limit functional.
Note that for each @, pp (resp. up.) is carried by lo, co[nTU (vesp.
[0, s[N(SNT)). -

The convolution product pxy of y and » in £ (8) is defined by

(4) pev(f) = [+ [ flay)dv(y) du(@)  (FeB(S)
§ 8 .
(see [71). It is important to recognize that the order of integration cannot
be interchanged so that convolution is not commutative (except in the
trivial case when § is finite); this can be seen from results in [7], and
below. Under convolution & (§) becomes a Banach algebra.

If U is a segment, then yy(®)yy(y) = yy(2y). It is thus easy to
see from (4) that (uxv)y = uy*vy and so that ui uy is an algebra homo-
morphism. Continuity of convolution and of the limit, operations in (1)
and (2) shows that prpy_ and pe>up, are also homomorphisms. It
is again immediate from (4) that u*»(1) = u(1)»(1) and we deduce that
each of the maps

(5) wup(L); popgo (1) weppy (1)

is a complex-valued homomorphism of & (8).
'We can rewrite (4) in a way which is often useful. Since my = # when-

ever y < @, we have

((;) s *q:(f) E] f (f(f(;‘) 1’[0,;4;] (1) -+ f f(?/) d'u (?/)) dlu (50) .

8 Yo

Wo shall derive three useful formulae from (6). Suppese first that

carriery < carrier g, say that » is carvied by the segment U and that every «

in some carrier V of u satisties # > g for all ye U. If then we V, and y > x,

we have yeS\U so that [ fdv = 0. Moreover, U < [0, #], whence
P,y == 7. Thus y=w

pxr(f) = [ @) due) = »(Vplf),
v
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ie. wiv = v(1)u. Using similar arguments we can prove the rest of
(7) Iuakv xly.{:‘u..—_.'v(L)/u

Newt suppose that u is carried by the segment U and that v = Yoy
Then for each #eU,v is carried by lr, co[ N U. We therefore fin

per(f) = [(F@)on(V)+ [ F@)av(y))du (o)

v vha
= [{0+v(Mdp(e) = wL)p(),
s v
so that ‘
(8) Mowy == [u(l)y,

Again if ,d‘is carried by S\ U whers U is & segment and v = vy wo can use
similar arguments to show that

) wr = (1)

‘We can see from these formulae that convolution is not commutative.
For if in formula (8) we choose algo M= p,y, we have uxy = y(l)»
while »#p = »(1)p and it is easy (using the Hahn-Banach theorem) to
infer the existence of functionals x and » for which these are distinet.

‘We need two final formulae. Tf M= pyo, v o=y, then by (7)

Hioa) ¥V = ¥ o 01 == po,1(1)y. ' We may take limits because of the norm-
continuity of convolution to find

(10) L opkw =k = u(l)r.
Similarly, if uy, =0 (le. = p—pyy) and v = v, then
(11) uky =9yru =y(L)y.

2. Ideals. Let U Dbe 2 segment, and write

Ju = {u: p is carvied by U and (1) =0},

2.1. LeMMA. For each segment U, Jy is a two-sided idea,

Proof. Let uedy and let » e arbitrary. Then (using formuls (7)
and the fact that u— #o 18 & homomorphism)

VEM =Yg b vg g = vkpotul)viGe = (V)

which is caxried by U. Algo from (B)y vxp(Ll) =9(L)u(l) = 0.’ This proves
that Jy; is & left ideal, but it is now clear that it ig also a right ideadl.
Now let I be any maximal proper left (vesp. rvight) ideal. We pub

U(I) = {w: 6,¢I}
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where 0, is, as usual, defined by &,(f) = fim) (fe#(8)). Then U(I) is
a segment, for the identity 4, does not belong to I, and if 5,¢I and y > @,
then ¢, = 0,% d,el.

2.2. LmmwA. Let I be o mawimal proper left (resp. right) ideal. Put
U = U(I).

(i) If pyy =0, then pel.

(1) If p = py.., then pel if and only if (1) = 0.

Proof. We give the proofs for left ideals only.

(i) Let ¢ U, so that 8,el. They

Mz o0 = 63;(1)/‘[30,00[ = ﬂ[z,m[*amEI

“

using (7). Since I is closed,
B =gy = p— UM = Hm g el
TeS\U zeS\U

(ii) Pirst let ¢ U and suppose that vwel is carried by [0, ], Then
v(1) 0, = Sy avel

by (7). Since 6,¢1, »(1) = 0.

Now consider I+ Jp . Using Lemma 2.1 we see that it is a left
ideal. Moreover, it is proper; for if 6 = v+ where vel and Aedygy
then » must be carried by [0, #] since both §, and 2 are, and then by what
we have just proved, d,(1) =»(1)+ A1) =0-+0 =0, which is false.
The maximality of I now implies that Jp, < I. Thus, if v is carried by
[0,2] and »(1) =0, then vel.

Nowlet i = gy ' Write b, .= pirg 41 (1). As mincreases in U, k,— piyy._ ()
== u(l) = k (sayy), by (1). The functional uy ,—k,J, is carried by [0, x]
and vanishes at 1; it ig therefore in I. Since I is closed, its limit u— kd,
== iy = K6y 18 algo in I. Therefore, uel if and only if & = 0, i.e. u(1) = 0.
This completes the proof. . :

Lemma 2.2 deals with all except the limit funectionals. We treat
these in the proof of ouv first theorem.

2.3 Tunorum. Let U be a segment. Then
{p: (1) =0} {u: pp(1) =0}, {u: py, (1) =0}

are mavimal two-sided ideals. Each mawimal proper left ideal and each
manimal proper right ideal is two-sided amd has one of the above forms.
Proof. By (b) each of the given sets is a maximal two-sided ideal.
Lot I be a maximal proper left ideal and let U = U (I) as in Lgmma.
2.2. Naturally, we must distinguish three cases.

3 — Studia Mathematica LIV.1


GUEST


34 J. 8. Pym and H. L. Vagsudeva

- (i) Suppose for some Ael, Ag\p¢l. Since by Lemma 2.2(i), 21— Ay, €1,
we see that

pe = dpy—Ay = =(A—ly)+(A—Ay) = —(2—Ay) + Ag el

Now let wel. Since u— pp. eI, again by 2.2(i), we see that uy.. <I. Then,
using formulas (7) and (9),

But this is impossible unless wy, (1) = 0. Thus I < {u: pyy (1) = 0},
and since I iy a maximal left ideal and the other set is a proper ideal
the inclusion must be an equality.

(ii) We now suppose that for all 2el, both Ag pel and Ayl Since
# o= pyo+ oyt pe\y; We see that pel implies uyy. el. But now Liemma
2.2(ii) applies to show that when uel, uy_(1) = 0, and the proof is com-
pleted as before.

(iii) The firial case is when Ag el for all Ael but v, ¢I for some

!

vel. Bince » = vy 41,5+ ve y, We see that vy,_¢I so that - (1) 5% 0,

using Lemma 2.2(ii).
Now let uel and let o = oy. A8 pg pyel, pyel. By formulae (10)
and (8) : )

pu—(Lyo+o (L) poy = o (py_ -+ py) = ok ugel.

Applying this formula in particular with g = » shows that oel if and
only if o(1) = 0. But it also shows that o*uy = (o fyr)y, and hence
(using (3)) o(1)pyy(1) = oxup(1) = 0. Sinee o is arbitrary, we may take
o¢l, i.e. o(1) 5 0. This shows that uel implies up(1) = 0. Again, the
maximality of I ensures the conclusion.

The situation is not quite symmetrical between lett and right ideals,
but the proofs are sufficiently similar for us to simply sketch the methods.
Let I be a maximal right ideal. First suppose that for all Ael, Ag\pel,
but that for some vel, »_;¢I; then an argument similar to that of (i)
above shows that I = {u: py(1) = 0}. Secondly, suppose that for all
Ael, both Ag el and A,pyel; then an argument identical with (if) above
shows that I = {u: uy_(1) = 0}. Finally, suppose that for some Ael,
Agnwtl; an argument similar to that of (iil) above shows that I = {p:
pos (1) = 0. -

‘We see from Theorem 2.3 that the radical % of & (8), which, is defined
to be the intersection of the maximal proper left (or right) ideals, is in
fact the intersection of kermels of complex homemorphisms. The quo-
tient & (S) |# i therefore commutative. Now & (8)/% can he viewed a8
the restriction of #(8) to the polar #° of % in #(8), and so it fez°,
prv(f) = v pu(f) for all u,» in F(8).

icm
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‘We write
W o= {feB(8): for all p,veF(8), pxv(f) = veu(f)}.

According to Theorem 4.2 of [5] (using also 2.2(iii) of [4]) fe# if and
only if f is weakly almost periodic on 8; this means that fe % if and only
if there do not exist sequences (s,), (¥,,) in § such that the two iterated
limits limlimf(»,y,) and limlimf(z,y,) both exist and arve distinct.

n m m n '

However, there is a more convenient characterization in this cage.
2.4. LEMMA. # = {f: for cach segment U, limf(z) (v increasing) and
e U

lim f(w) (& deoreasing) exist}. ®
zeS\U

Proof. First, suppose limf(x) does not exist. Then the limit for
welU

either the real or the imaginary part of f does not exist, and so we may
assume f to be real. Suppose
Liminff(s) = b < @ = limsupf(x).
wel xeU

‘We construct sequences (w,), (y,) by induction as follows. If o<y,
<...<w®,<9y, ave already chosen, take ®,,;¢U with #,,, >y, and
F(@o) > a—1{(n-+1), and Ypr1eTU With 9, > 2, and F(Y,..)
< b+41/(n+1). It is easy to see then that‘one of the iterated limits is b
and the other is a. Thus f¢ #".

To prove the opposite inclusion, .we take a sequence (#,). Since
each sequence contains a monotone subsequence, we may take (m,)
to be monotone, and we choose to consider the case when (,) is in-
creasing. Write U = (J [0, ©,]. Then if there is M such that ¥, e U for
m > M, we find "

limlim f(2,y,,) = limlinf(®,y,) = linf(z)
noom mon xel
when the third limit exists. If (y,,) is increasing but y,,¢ U for some m,
we interchange the roles of (,) and (v,,). If (y,) is decreasing, we put
V = {o: &<y, for all m} and find (when y,¢ U for some m) that each

iterated limit has the value lim f(x).
. zeSN

It ig obvious from. this lemma that #° is a C*-subalgebra of #(8),
and so ¥ is naturally isomorphic with the space @ (W) of all continuous
functions on some compact space W. Moreover, W can be identified
with the set of non-trivial complex-valued homomorphisms of #.

2.5. LuMmA ., If he W, there is a segment U such that etther h(f) = limjf(x)
or h(f) = Lmf(@) (fe #). zeU

Pro oa'EE.S]\SZgin by observing that if B < § is a set for which ggze #,
then. g% == gz, 80 that h(yy) is either 0 or 1. Also, it B = I, ypxr = Xu,
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" whence h(yg) < h(xy). Obviously, if U is a segment, yye¥'. We write
U = UJ{V: Vis a segment and h(yy) = 0}. It ze U, then h(y ) =

Suppose h(xy) = 1. Sincefor ve U, wehave U = [0,a[ U([x, co[nT),

and % is linear, we see that (xc~v) = 1. Therefore, for fe#”, h(f)

= h(f¥1sminv). The continuity of I now enables us to prove that k(f)

= limf(¢). In a similar way if R(U) = 0 we find A(f) = lim f(x).
well we NN T
This lemma enables us to describe the space W. From. each segment

U = 8 we form two elements of W, U; corresponding to limf(s) and U,
wely

corresponding to lim f(»); when U = 8, only U, exists. These two ave

e S\T
always distinet elements of W. However, it is possible that U, ==V,

for some U, ¥; this occurs precisely when, for all fe#”, lim. f(x)
weS\U
= [0, 2] and V == [0, #]. The
weV

ordering of S can be transferred naturally to W: we put U, < U, for
every U,and it U < V, U = V we put U, < V;. Then W has a mlmmwl

= lim f(»), and so when, for some z, U

element {0}; and a maximal element §;; we shall write simply 0 for {0},

and 1 for 8.
We write f for the function in (W) corresponding to fe #" under
the natural isomorphism. If U is a segment, gy e#, and 74 is 1 on [0, U;)
and 0 on [U,, 1]. We conclude that both these intervals are open in W.
We can deduce that every open interval in W is open. Indeed, for
any U, we already have that [0, U,[ = [0, U;] and (U, 1] = [T,, 1]
are open. If we write V, == [0, 2] then

- [o, Ul[ = U |;0y (Vx)l]7

~where the union is taken over those we U different from the maximal
element of U, if it has one. Similarly,

10,, 1] = U{[(Va, 11: 2e8N\T, 4 % min(S\U)}.

Thus, these intervaly are open. It follows quite easily that W has tho
interval topology.

We now show that W is totally diseconnected. Let U < nund sup-
pose that U and V correspond to different points of W, so that U, = V.
1hen (see above) there is w<V~\TU such that V - [0, »]. Thmefme if

=[0,2], ;< U, <Tyand T, < V; < V,. Because [0, 1}] and [T, 1]
are open, the result follows.

The general theory of weakly almost penodm compactifications
(e.g. [B]) asserts that W is a compact separately continuous semigroup
containing a dense homomorphic image of §. In this case the homomor-
phism is given by x—[0, «];; and separate continuity then shows that
multiplication in W is given by the operation max. It is easy to see then

icm
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that multiplication in W is in fact (jointly) continuous. We sum up in
the following statement.

2.6. LeMMA. The. space W is & compact totally disconnected ordered
semigroup with multiplication max and the order topology.

Write (W) = @(W)*; it is, of course, the space of (bounded)
regular measures on W. The natural map p—p of F(§) onto .# (W)
given by

() = p(f)
is an algebra homomorphism [5].

2.7. LemmA. The algebra 4 (W) is semisimple, The complen homo-
morphisms are given by the mappings

,, ([0, T, amallo, ),

for U a segmen of 8.

Proof. The linear span of the functions {yy: U is a segment} is
obviously an algebra containing 1 (viz. 7g) and separating points (see
the proof that W is tomlly disconnected above). Hence if ue#(8) and
f(Zy) =0 for all %y, i = 0. Bub i(7y) = u(ry) = uy(l), and since
p—pyr(l) I8 a homomorphism on Fg, i—i(%y) is a homomorphism
on 4 (W). Thus (W) is semisimple. :

Every complex homomorphism on (W) gives rise to a homomor-
phism on F(8) via the homomorphism & (8)—.# (W). We have already
found one family of these: for each segment U,

(10, T1)) = iFw) = po(1).

If we let V, = [0, #] for zeS, then as [0, (
L0, (Vo) 7 [0, Ui, we find

w0, Uf) = Zu_gﬁ(EO, (Va)l)

(fe#)

[2!—)/‘;«([0, U1,

V)] is compact in W and

= SUP fiyo,q (1) = pp- (1},
‘welU

80 that fmp([0, U[) is also a homomorphism (see (5)), In a similar
way we find that
ﬁ([‘); Ur]) = /“U+(1)-

Sinee each homomorphism on & (8) is. of one of these kinds, we see that
we have found all the complex homomorphisms of .4 (W).

(The result of Liemma 2.7 is also an immediate consequence of
Theorem. 3.3 of [2].)

2.8, TusoreM. The quotient of F(8) by its radical R is isomorphic
with 4 (W).
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Proof. We saw above (before 2.4) that B° < #°. Since & (8)/#"°
o M (W) is semisimple, we have B < #7°, or as #" is a closed subspace
# < R°. Thus # = R°, and the result follows.

Tor the further harmonic analysis of .#(W) we refer readers to
Hewitt and Zuckermann [2] and Ross [6].

3. Other algebras on S. (i) Let % be a space of functions on § with
W < u < B(8) for which %" is a convolution algebra. Theré are then
natural quotient homomorphisms & (8)—>*—#™ o M (W), Since %*
must have an identity, each maximal proper left ideal corresponds to
a maximal proper left ideal in #(8), and hence is two-sided and also
corresponds to a maximal ideal in . (W). The theory for @* can there-
fore be deduced from that for & (8) and . (W).

One such algebra is given by the following proposition.

3.1. TuEoREM. Let S be compact in the order topology and let % be
the space of bounded measurable functions. Then U* is a convolution algebre
and W < U = A(S).

Proof. Since each fe#  has one-sided limits at each point, #" < #.

Now let » e (8) and let fe%. To show that #* is a convolution algebra
we need only prove that m—asf fley)dv(y) is in % (i.e. is measurable; sce

[B] esp. (1.4)). By standard arguments, we need consider only the case
in which both » and. f are positive. Now (cf. formula (6))

[ flay)iv(y) = f@rpgM)+ [ fH)dv ).
S

y>z

Since v is positive, &> (1) is increasing and

o [ fy)an(y)

y>a

is decreasing, so that both these functions are monotone. The conclusion
follows.

(ii) Let ¥ be a space of functions on & with ¥ < ¥ for which #™
is a comvolution algebra. Then ¥™ is a quotient of #™ o (W) and
so0 i3 abelan. It is not difficult to see that ¥™ is semi-simple and thatb
its complex homomorphisms can be derived from Lemmg 2.7.

In particular, if § has a compact topology for which its multipli-
cation iy separately continuous, we may take ¥ = #(8), the space of
continuous functions on §. The inclusion #(8) € ¥ =~ ¥ (W) provides
a surjective homomorphism W—§, and it can be seen that the homonor-
phisms of (2.7) are of the form wisu([0, 2[) or ws u([0,x]) for vel,
and ' <%(8)". Thus we recover the results of [2].

&
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(iii) Suppose that § has no identity. Then we can adjoin one in the
usual way: form SU{0} and define multiplication by 0z = 20 = # for
all #. Then the order also extends — 0 < # for all # — and mulbiplication
is still max. We may therefore deduce results in this situation from those
we already have.

However, it may be of interest to point out that new proper maximal
right ideals  (naturally not modular in general) arise in this situation.
We write

Fo(8) ={u: p = pg.}.

(Where pg.. = g— g, =u— 1;3{1 Hiz,e0r, the limit being taken for # decreasing.

If § has an identity 0, this definition simply yields the multiples of §,.)
Let k be any continuous linear functional on #,(8), and write

In = {p: Mpg.) = 0}.
Let wel, and let »e& (8). Then using formulae (9) and (11)

pxy = o (g, +(r—rg.))

= v (D at+ul)(r—r5.),
whence

h((#*’”))ﬁ« = vg, (1)1 () = 0,

and wuxvel,. Because Ij, has codimension 1, it must be a maximal
proper right ideal.

The asymmetry between left and right ideals is clearly apparent
here, for there are no corresponding maximal left ideals; the arguments
of Theorem 2.3 still apply to cover all cases. The reason is that the meas-
ures u.p do not exist. A parallel construction to the one we have just
made using the measures p.,g will provide minimal left ideals for which
there is no right analogue.
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Isometrien in metrischen Vektorriumen

von

REJNHARD WOBST (Dresden)

Zusammenfassung. Wir untersuchen, ob eine gurjelctive Isometrie zwischen
metrischen Vektorriumen linear gein muB. Insbesondere wird ein Satz von Cha-
rzyhiski (1953) verallgemeinert und wosentlich kiirzer bewiesen. Ein Satz von Role-
wicz (1968) wird etwas verallgomeinert. Es wird gezeigt, daB jede Isometrie einer
lokalkompalkten metrischen Gruppe mit endlich vielen Komponenten in sich suar-
jektiv sein muB. Die Gestalten aller surjelktiven Isometrien der Riaume B(S) und
1(py) in sich werden bestimms, und es wird eine gpezielle Aussage iiber isometrische
Einbettungen in I, (pe(0, 1)) bewiesen. :

§ 1. Einfihrung. Bs seien (B, d); (F,}) reelle metrische Vektor-
riume (mit translationsinvarianter Metrik). Bine Abbildung T: E—~F mit

d(x,y) = (T, Ty) (w, ye B)

heilt Isometrie von B in T. .

Da fir jede Isometrie auch die Abbildung a—>Te—To eine Iso-
metrie ist, diirfen wir T = o annehmen (mit o bezeichnen wir das Null-
element eines Vektorraumes).

Tine bekannte Fragestellung ist, wann eine Isometrie T mit To = o
linear sein muB.

8. Mazur und §. M. Ulam [24] bewiesen, daB fir den Fall normierter
Rijume jede surjektive Isometrie mit To = o linear ist (vgl. 8. Banach [4],
8. 166). Mit analogen Fragen beschiftigten sich N. Aronszajn 21, J. A.
Baker [37, Z. Charzyhiski [6], M M. Day [8], 8. Rolewicz [31] und A. Vogt
[36]. Insbesondere bewies Charzytiski folgendes Theorem:

Sind 1 und B melrische Veltorrdume gleicher endlicher Dimension,
wnd ist 1" eine Tsometrie von 1 auf T mit To = o, so ist T linear.

Rolewicz ([30], 8. 242) (vgl. Rolewiez [317]) zeigte:

Bs seien X und Y 2wei reclle lokalbeschrdnkie Raume mit den F-Nor-
men |[olx bew. |@lty. AuBerdem seien fiir alle we X und y <X die Funktionen
Izl wnd ltyly konlkav fir positive 1. k

Damn ist jede Isometrie U, die X auf Y mit Uo = o abbildet, ein line-
arer Operator.
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