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Abstract. The paper contains some theorems on the existence and uniqueness
of the solution of the equation

m
(*) o = fy(t, @, @, oy @)+ 3 p;(0)fil, @, 2, 22)
==l

in the claes of all distributions for which (n — 1) derivatives (n > 2) in the distribution
gense are functions of finite variation in the interval (a, b).

In (%) the funetion f, (¢, z5, ..., 2p—1) i8 known and Lebesgue locally integrable
in the set

D:a<i< b, —oco<ay...,%p_1< 00,

pi(t)fori = 1, 2, ..., m are given measures in (a, b) (see [1], [2]), and f; (¢, =y, ..., Tp—1)
are continuous functions in D. The derivatives are undersiocod in the distribution
sense.

The prineipal results of this paper generalize some theorems for linear dfferen-
tial equations (see [8], [7], [8]).

In this note ihe sequential theory of distributions is used (see [5], [2]).

1. Let p,.(t) for » =1, 2,' ..., m be given measures defined in an

interval (a, b), and fy (¢, o, ..., #,_;) @ locally integrable function in the set
D:a<t<b, —00< Byy.oiuyBp_y < 00.

Moreover, let f,(¢, @, ..., %,_;) be given continuous functions in D.

We put

i m
gty @, &'y ooy a™7Y) = fot, @, 8y L, @Y Zp,.(t)f,(t,m, @, ..., 5"9)
=1

for n > 2.
In this note the equation

(%) ™ = g(t, z, 2, ..., 2*D)

will be examined, where the derivatives are understood in the distri-
bution sense. We prove some theorems on the existence and uniqueness
of solution of equation () in the class of all distributions whose (n—1)
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derivatives in the distribution sense are functions of finite variation in
the interval (e, b). This class will be denoted by V{:;.;)”. The prinecipal
results of this paper generalize some results for linear differential equa-
tions (see [6], [7], [81])-

The sequential theory of the distributions (see [5], [9]) will be used.
All distributions in this paper are real distributions. Moreover, all distri-
butions of a single variable are defined in the interval (a, b). The measur-
ability and integrability of functions is understood in Lebesgue’s sense.

2. DEFINITION 1. We say that a function f(¢, @, ..., »,._,) defined
in the set D satisfies eondition C (Carathéodory’s condition) if

1° for every fixed {, f(¢, x,...,®,_;) Is continuous with respect
to (o +v oy L)

2° for fixed w2y, ...,%,_,, flt, @y, ..., ®,_,) is measurable with re-

spect to 1.
DirFINITION 2. A sequence of smiooth, non-negative and even funec-

tions {d;(?)} for which
1 [ 4. (t)dt =1;

2° there is a sequence of positive numbers {¢,} convergent to zero
such that
5.(t) =0 for I = a;

3° there arc numbers M,, 3,,... such that
oo
¢ [1wa< M,
holds for ' = 1,2, ... and every order g is called a delia sequence (see
(4], [10]).

DerinmmioN 3. We say that a distribution f(f) is a measure if there
exists a fundamental sequence {f,.(f)} for f such that, for each compact
interval I < (a,b), the sequence of numbers {[|f,(f)Id¢} is bounded
(see [1], [2]). !

DEFINITION 4. Under a regular sequence {f,(t)} of a given distri-
bution f(¢) we understand every sequence (see [10])

) = (f*8)(0) = [ flz—s)d,(s)ds.

DrriniTioNn 5. If for every regular sequence {f,(f)} of the distri-
bution f(¢) the sequence {f(4,)} is convergent to some finite limit as k— oo,
then the limit limf,(f,) is called the mean value of the distribution f(t)

T—s

in ¢, and denoted by f(t,) (see [4£]).
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The consistence of the definition follows from the fact that an inter-
laced sequence of two delta sequences is another delta sequence.

One may prove (see [4], [8]) the following

THuOREM 1. If distribution f(1) is a function of finite variation, them
it has a mean value at every point tye(a, b) and

ft) = 30f(E) +F ()],

where f(ty) and f(ty) denote, respectively the right- and the left-hand side
limits of the function f(%) in 1.

3. Now we shall prove the principal results. At first we assume the
following hypotheses:

HyroruEsis H,.

1° The function fy(t, @g, ..., #,_,) satisfies condition C.

2° The functions f,(t, @g, ...s@,_.) are continuous in D with respect
to (T, &gy .0y Tp_a).

n—-1
3% 1folty @y +eny @)l K 3 qos(8) |04l + goa (), where  gqoi(t) are non-
: =0
negative, locally integrable functions in (@, b) for ¢ = 0, 1, ..., n.

n-—2

4 1t s ooy o)l S 3 8O0+ s (8, where gi(8) are mon-
negative and continuous fu,*;;.ctz'ons in (a,b) for i =0,1,...,n—1 and
r=1,2,...,m.

Hryrorues:s H,.

1° Assumptions H,: 1°, 3° 4° are fulfilled.

2° The functions f.(t, @, ..., T, 2) have continuous partial derivatives
of the first order in D with respect to (1, &y, ..., @,_o) for r =1,2,..., m.

Hyporursis Hs.

1° Assumptions H,: 1°, H,: 2° are satisfied.

n—1

2° |folly @y ooy @) —Jo(By Toy ooy Tpoy)| Z Go: (8)|; — %], where qy; (1)

_ i=0
are non-negative, locally integrable functions in (a, b) fori =0,1,...,n—1,

n—2
30 If)(ti Loy «eny wn—?.) _fr(t7 550! IS ‘fu—i’.)l < Zol Qri(t) Fmi _Eil ) 'where gra'(t)
1=
are non-negative and contintuous functions in (a, b) for ¢ = 0,1, ...,2—2
and 1 =1,2,...,m.
4° 1fo(8, 0, ..., 0) << u(t), where u(t) is a locally integrable function
n (a, b).
We put
n-1
% l(t —1 )”
“rn—l(t) = Z‘ e

!
u=0 lu'



118 J. Ligeza

for arbitrary <R and f,¢(a, b),

gty By @y ooy @)
m

= fo(t, €, m” cevy a;("—l)) + ZPTK(t)fr(t) x, mr, oo m(n.—z))’
r=1

where
prk(t) = (.’Pr*alc)(t) for % =1’2)
TUROREM 2. Let Hypothesis H, be fulfilled. Then the problem
o = g(t, @, 0, ..., 8"V,
(%) 3
() = %3, toela,b), d =0,1,...,n—1

has at least one solution in the class V{71,

Proof. Let #,(t) be a solution of the equation

t
_ [Tt r (n—1)
(2.0) 2() = zof 1)t (s, 2(8), @' (8), ..., s D(s))ds + W, _, (2).

Then t t
21 ITmI< [lrk(to>1+|t! |Bk.(s)lds|]exp|tof A (s) 1 ds],
where

BACIE dE 22, 1Bt = o () +2 1Bt (8)] o1 (8)
and

n—2 m

@ = (0 =1)+ Gouos (O + D) (20:(D) + D) 12,0 (1))
i=0 r=1

Thus the sequences {#{¥} are locally equibounded in (a, b) for suffi-
ciently large % and d =0,1,...,n—1. Let I be an arbitrary compact
interval such that I < (a, b) and z,eI. From Helly’s theorem it follows
that a subsequence {#{’} of {z{’} is convergent to a function of finite
variation in I for 4 =0,1,...,n—1, respectively. Hence we infer (see
[81) that there exists a subsequence {z{})} of {2{"} distributionally conver-
gent to a function #¥ of finite variation in (&, b). In view of [1] and [3]
(p. 642) we conclude that there exists a distributional limit

Ll_l}:a(d) i (ts T (8) B (8), oy B570(8) = g(t, ®(2), " (B), ..., s~V (2)).
Hence the function z(?) is & solution of equation (x).
We shall prove that #(¥({) = »,. In fact, from the almost uniform

convergence of the sequences {2()} for 2 =0,1, ..., n—2 we have
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#(t,) = #;. Moreover, by (2.0), Hypothesis H,, we obtain

¢
22)  alh) = j G (85 Ty (8), 2y (8), -y A7V (8)) ds 26,y

= ffﬂ(s’ {l?“k(s)_, ‘v;lk(s)y : (1:; 1)('5))(13 5

m

[ZP“‘L(S)J"“L(S)] | - f [Z’Pfl‘,‘( ) gru],] ds+ Hp—19

where
Pil' = Dry Pruk(t) = (Pr*auk)(t)
and  g,,(1) = fr(t7 By, (8) m:lk(.t)ﬂ ey wg;c—z) (t))

From (2.2), Definition 5, Theorem 1 and {3] (p. 642) we infer that
2"~Y(t) = x,_,. This ends the proof of Theorem 2.

Similarly one may prove the following

THEOREM 3. Let Hypothesis H, be fulfilled. Then equation (x) has
at least one solution in the class Vi)

THEOREM 4. Let Hypothesis H, be fulfilled. Then problem (%x) has
exactly one solution in the class Vil

.Proof. Suppose that , and %, are solutions of problem (*#) such
that &, # z, and :vl, woeV(,, 7). We denote by {@y,}, {&,} arbitrary reg-’
ular sequences of #, and Z, respectively. We consider the sequences { Y%}
defined as follows:

) F0D (8)) ds +TW,_; (5)]@

L] Gz (s @), lo), - (#)) ds + 7,1 ()]
0

for d =0,1,...,2—1 and 7 =1, 2.

From Helly’q theorem it follows that a subsequence {l’iﬁi} of {Y{}
is convergent to a function Y of finite variation in (a, d) for 7 =1, 2,
d=0,1,...,n—1 and w—oo. Moreover, Y¥(#)) = »,. Hence by (4.0)
we get
(4.1) Y (t) =) fori=1,2.

We put

(42)  Zy, (1) = Yy () — Vo (1), By (8) = [IE0, (1) — 20, ()1 — 125 0]
In view of (4.0), (4.1), (4.2) and Hypot-hems H, we have

I

(£.0) YE)

4 £
(4.3) 1T, 01 < | [ 1By ()1ds|exp| [ 14, (5)lids],
& 1y
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where
n—1
17, (O = D) 128,
d=0
1n—2 m n—1
1By = ' (3 Pris 016 (0) Brng, 0+ > i) B, (0)-
i=0 r=1 i=0

Hence lim(d)Z,,
U=> 02
tion is ended.

= 0. By Theorem 3 and (4.1) the proof of our asser-
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