ANNALES POLONICI MATHEMATICI XXXI (1975)

On generalized solutions of some differential non-linear equations of order n

by J. LIGEZA (Katowice)

Abstract. The paper contains some theorems on the existence and uniqueness of the solution of the equation

(*)
$$x^{(n)} = f_0(t, x, x', \dots, x^{(n-1)}) + \sum_{i=1}^{m} p_i(t) f_i(t, x, x', \dots, x^{(n-2)})$$

in the class of all distributions for which (n-1) derivatives $(n \ge 2)$ in the distribution sense are functions of finite variation in the interval (a, b).

In (*) the function $f_0(t, x_0, ..., x_{n-1})$ is known and Lebesgue locally integrable in the set

$$D: a < t < b, -\infty < x_0, ..., x_{n-1} < \infty,$$

 $p_i(t)$ for i = 1, 2, ..., m are given measures in (a, b) (see [1], [2]), and $f_i(t, x_0, ..., x_{n-1})$ are continuous functions in D. The derivatives are understood in the distribution sense.

The principal results of this paper generalize some theorems for linear differential equations (see [6], [7], [8]).

In this note the sequential theory of distributions is used (see [5], [9]).

1. Let $p_r(t)$ for r=1,2,...,m be given measures defined in an interval (a,b), and $f_0(t,x_0,...,x_{n-1})$ a locally integrable function in the set

$$D: a < t < b, -\infty < x_0, \ldots, x_{n-1} < \infty.$$

Moreover, let $f_r(t, x_0, \ldots, x_{n-2})$ be given continuous functions in D. We put

$$g(t, x, x', \ldots, x^{(n-1)}) = f_0(t, x, x', \ldots, x^{(n-1)}) + \sum_{r=1}^m p_r(t) f_r(t, x, x', \ldots, x^{(n-2)})$$

for $n \geqslant 2$.

In this note the equation

$$(*) x^{(n)} = g(t, x, x', ..., x^{(n-1)})$$

will be examined, where the derivatives are understood in the distribution sense. We prove some theorems on the existence and uniqueness of solution of equation (*) in the class of all distributions whose (n-1)

116 J. Ligeza

derivatives in the distribution sense are functions of finite variation in the interval (a, b). This class will be denoted by $V_{(a,b)}^{(n-1)}$. The principal results of this paper generalize some results for linear differential equations (see [6], [7], [8]).

The sequential theory of the distributions (see [5], [9]) will be used. All distributions in this paper are real distributions. Moreover, all distributions of a single variable are defined in the interval (a, b). The measurability and integrability of functions is understood in Lebesgue's sense.

2. DEFINITION 1. We say that a function $f(t, x_0, ..., x_{n-1})$ defined in the set D satisfies condition C (Carathéodory's condition) if

1° for every fixed t, $f(t, x_0, ..., x_{n-1})$ is continuous with respect to $(x_0, ..., x_{n-1})$;

 2° for fixed $x_0, \ldots, x_{n-1}, f(t, x_0, \ldots, x_{n-1})$ is measurable with respect to t.

DEFINITION 2. A sequence of smooth, non-negative and even functions $\{\delta_k(t)\}$ for which

$$1^{0}\int_{-\infty}^{\infty}\delta_{k}(t)\,dt=1;$$

 $2^{\rm o}$ there is a sequence of positive numbers $\{a_k\}$ convergent to zero such that

$$\delta_k(t) = 0$$
 for $|t| \geqslant \alpha_k$;

3° there are numbers M_0, M_1, \ldots such that

$$a_k^s \int\limits_{-\infty}^{\infty} |\delta_k^{(s)}(t)| dt < M_s,$$

holds for k = 1, 2, ... and every order s is called a *delta sequence* (see [4], [10]).

DEFINITION 3. We say that a distribution f(t) is a measure if there exists a fundamental sequence $\{f_k(t)\}$ for f such that, for each compact interval $I \subset (a, b)$, the sequence of numbers $\{\int\limits_I |f_k(t)| \, dt\}$ is bounded (see [1], [2]).

DEFINITION 4. Under a regular sequence $\{f_k(t)\}$ of a given distribution f(t) we understand every sequence (see [10])

$$f_k(t) = (f * \delta_k)(t) = \int_{-\infty}^{\infty} f(t-s) \, \delta_k(s) \, ds.$$

DEFINITION 5. If for every regular sequence $\{f_k(t)\}$ of the distribution f(t) the sequence $\{f_k(t_0)\}$ is convergent to some finite limit as $k \to \infty$, then the limit $\lim_{k \to \infty} f_k(t_0)$ is called the *mean value of the distribution* f(t) in t_0 and denoted by $f(t_0)$ (see [4]).

The consistence of the definition follows from the fact that an interlaced sequence of two delta sequences is another delta sequence.

One may prove (see [4], [8]) the following

THEOREM 1. If distribution f(t) is a function of finite variation, then it has a mean value at every point $t_0 \epsilon(a, b)$ and

$$f(t_0) = \frac{1}{2} [f(t_0^+) + f(t_0^-)],$$

where $f(t_0^+)$ and $f(t_0^-)$ denote, respectively the right- and the left-hand side limits of the function f(t) in t_0 .

3. Now we shall prove the principal results. At first we assume the following hypotheses:

Hypothesis H_1 .

1° The function $f_0(t, x_0, \ldots, x_{n-1})$ satisfies condition C.

 2° The functions $f_r(t, x_0, ..., x_{n-2})$ are continuous in D with respect to $(t, x_0, ..., x_{n-2})$.

 $3^{\circ} |f_0(t, x_0, \ldots, x_{n-1})| \leqslant \sum_{i=0}^{n-1} q_{0i}(t) |x_i| + q_{0n}(t), \quad where \quad q_{0i}(t) \quad are \quad non-negative, locally integrable functions in <math>(a, b)$ for $i = 0, 1, \ldots, n$.

 $|q_i| |f_r(t,x_0,\ldots,x_{n-2})| \leqslant \sum_{i=0}^{n-2} q_{ri}(t) |x_i| + q_{rn-1}(t)$, where $q_{ri}(t)$ are non-negative and continuous functions in (a,b) for $i=0,1,\ldots,n-1$ and $r=1,2,\ldots,m$.

Hypothesis H.

1º Assumptions H1: 1º, 3º, 4º are fulfilled.

2° The functions $f_r(t, x_0, ..., x_{n-2})$ have continuous partial derivatives of the first order in D with respect to $(t, x_0, ..., x_{n-2})$ for r = 1, 2, ..., m. Hypothesis H_2 .

1º Assumptions H1: 1º, H2: 2º are satisfied.

 $2^{\mathbf{o}} ||f_0(t, x_0, \ldots, x_{n-1}) - f_0(t, \overline{x}_0, \ldots, \overline{x}_{n-1})| \leqslant \sum_{i=0}^{n-1} q_{0i}(t) |x_i - \overline{x}_i|, \text{where } q_{0i}(t)$ or enon-negative, locally integrable functions in (a, b) for $i = 0, 1, \ldots, n-1$.

 $3^{\circ} |f_r(t, x_0, \ldots, x_{n-2}) - f_r(t, \overline{x}_0, \ldots, \overline{x}_{n-2})| \leqslant \sum_{i=0}^{n-2} q_{ri}(t) |x_i - \overline{x}_i|, \text{ where } q_{$

 $4^{\circ} |f_0(t, 0, ..., 0)| \leq u(t)$, where u(t) is a locally integrable function in (a, b).

We put

$$W_{n-1}(t) = \sum_{\mu=0}^{n-1} \frac{\kappa_{\mu}(t-t_0)^{\mu}}{\mu!}$$

118 J. Ligęza

for arbitrary $\varkappa_{\mu} \in R^1$ and $t_0 \in (a, b)$,

$$g_k(t, x, x', \ldots, x^{(n-1)})$$

$$= f_0(t, x, x', \ldots, x^{(n-1)}) + \sum_{r=1}^m p_{rk}(t) f_r(t, x, x', \ldots, x^{(n-2)}),$$

where

$$p_{rk}(t) = (p_r * \delta_k)(t)$$
 for $k = 1, 2, ...$

THEOREM 2. Let Hypothesis H₂ be fulfilled. Then the problem

has at least one solution in the class $V_{(a,b)}^{(n-1)}$.

Proof. Let $x_k(t)$ be a solution of the equation

Then

$$(2.1) |Y_k(t)| \leqslant \left[|Y_k(t_0)| + \left| \int_{t_0}^t |B_k(s)| \, ds \, \right| \right] \exp \left| \int_{t_0}^t ||A_k(s)|| \, ds \right|,$$

where

$$|Y_k(t)| = \sum_{d=0}^{n-1} |x_k^{(d)}(t)|, \qquad |B_k(t)| = q_{0n}(t) + \sum_{r=1}^m |p_{rk}(t)| \, q_{rn-1}(t)$$

and

$$||A_k(t)|| = (n-1) + q_{0n-1}(t) + \sum_{i=0}^{n-2} \left(q_{0i}(t) + \sum_{r=1}^{m} |p_{rk}(t)| \, q_{ri}(t) \right).$$

Thus the sequences $\{x_k^{(d)}\}$ are locally equibounded in (a, b) for sufficiently large k and $d=0,1,\ldots,n-1$. Let I be an arbitrary compact interval such that $I\subset (a,b)$ and $x_0\in I$. From Helly's theorem it follows that a subsequence $\{x_{v_k}^{(d)}\}$ of $\{x_k^{(d)}\}$ is convergent to a function of finite variation in I for $d=0,1,\ldots,n-1$, respectively. Hence we infer (see [8]) that there exists a subsequence $\{x_{u_k}^{(d)}\}$ of $\{x_k^{(d)}\}$ distributionally convergent to a function $x^{(d)}$ of finite variation in (a,b). In view of [1] and [3] (p.642) we conclude that there exists a distributional limit

$$\lim_{u\to\infty} (d) g_{u_k}(t, x_{u_k}(t), x'_{u_k}(t), \dots, x_{u_k}^{(n-1)}(t)) = g(t, x(t), x'(t), \dots, x^{(n-1)}(t)).$$

Hence the function x(t) is a solution of equation (*).

We shall prove that $x^{(d)}(t_0) = \kappa_d$. In fact, from the almost uniform convergence of the sequences $\{x_{u_k}^{(\lambda)}\}$ for $\lambda = 0, 1, \ldots, n-2$ we have

 $x^{(\lambda)}(t_0) = \varkappa_{\lambda}$. Moreover, by (2.0), Hypothesis H₂, we obtain

$$(2.2) x_{u_k}^{(n-1)}(t) = \int_{t_0}^t g_{u_k}(s, x_{u_k}(s), x'_{u_k}(s), \dots, x_{u_k}^{(n-1)}(s)) ds + \varkappa_{n-1}$$

$$= \int_{t_0}^t f_0(s, x_{u_k}(s), x'_{u_k}(s), \dots, x_{u_k}^{(n-1)}(s)) ds +$$

$$+ \left[\sum_{r=1}^m P_{ru_k}(s) g_{ru_k}(s) \right]_{t_0}^t - \int_{t_0}^t \left[\sum_{r=1}^m P_{ru_k}(s) \cdot \frac{dg_{ru_k}}{ds} \right] ds + \varkappa_{n-1},$$

where

$$\begin{split} P'_r &= p_r, \quad P_{ru_k}(t) = (P_r * \delta_{u_k})(t) \\ &\text{and} \quad g_{ru_k}(t) = f_r(t, x_{u_k}(t), x'_{u_k}(t), \dots, x_{u_k}^{(n-2)}(t)). \end{split}$$

From (2.2), Definition 5, Theorem 1 and [3] (p. 642) we infer that $x^{(n-1)}(t_0) = \varkappa_{n-1}$. This ends the proof of Theorem 2.

Similarly one may prove the following

THEOREM 3. Let Hypothesis H_1 be fulfilled. Then equation (*) has at least one solution in the class $V_{(a,b)}^{(n-1)}$.

THEOREM 4. Let Hypothesis H_3 be fulfilled. Then problem (**) has exactly one solution in the class $V_{(a,b)}^{(n-1)}$.

Proof. Suppose that \tilde{x}_1 and \tilde{x}_2 are solutions of problem (**) such that $\tilde{x}_1 \neq \tilde{x}_2$ and \tilde{x}_1 , $\tilde{x}_2 \in V_{(a,b)}^{(n-1)}$. We denote by $\{\tilde{x}_{1k}\}$, $\{\tilde{x}_{2k}\}$ arbitrary regular sequences of \tilde{x}_1 and \tilde{x}_2 respectively. We consider the sequences $\{Y_{ik}^{(d)}\}$ defined as follows:

$$(4.0) Y_{ik}^{(d)}(t) = \left[\int_{t_0}^{t} \frac{(t-s)^{n-1}}{(n-1)!} g_k(s, \tilde{x}_{ik}(s), \tilde{x}'_{ik}(s), \dots, \tilde{x}_{ik}^{(n-1)}(s)) ds + W_{n-1}(t) \right]^{(d)}$$

for d = 0, 1, ..., n-1 and i = 1, 2.

From Helly's theorem it follows that a subsequence $\{Y_{iu_k}^{(d)}\}$ of $\{Y_{ik}^{(d)}\}$ is convergent to a function $Y_i^{(d)}$ of finite variation in (a, b) for $i = 1, 2, d = 0, 1, \ldots, n-1$ and $u \to \infty$. Moreover, $Y_i^{(d)}(t_0) = \varkappa_d$. Hence by (4.0) we get

(4.1)
$$Y_i(t) = \tilde{x}_i(t)$$
 for $i = 1, 2$.

We put

$$(4.2) Z_{u_k}(t) = Y_{1u_k}(t) - Y_{2u_k}(t), E_{du_k}(t) = \left| |\tilde{x}_{1u_k}^{(d)}(t) - \tilde{x}_{2u_k}^{(d)}(t)| - |Z_{u_k}^{(d)}(t)| \right|.$$

In view of (4.0), (4.1), (4.2) and Hypothesis H_3 we have

$$(4.3) \qquad |\overline{Y}_{u_k}(t)| \leqslant \Big| \int\limits_{t_0}^t |\overline{B}_{u_k}(s)| \, ds \, \Big| \exp \Big| \int\limits_{t_0}^t \|A_{u_k}(s)\| \, ds \, \Big|,$$

where

$$\begin{split} |\overline{Y}_{u_k}(t)| &= \sum_{d=0}^{n-1} |Z_{u_k}^{(d)}(t)|, \\ |\bar{B}_{u_k}(t)| &= \sum_{i=0}^{n-2} \left(\sum_{r=1}^m |p_{ru_k}(t)| \, q_{ri}(t) \right) \, E_{iu_k}(t) + \sum_{i=0}^{n-1} \, q_{0i}(t) \, E_{iu_k}(t) \, . \end{split}$$

Hence $\lim_{u\to\infty}(d)Z_{u_k}=0$. By Theorem 3 and (4.1) the proof of our assertion is ended.

References

- [1] P. Antosik, Order with respect to measure and its application in the investigation of the product of generalized functions (in Russian), Studia Math. 26 (1966), p. 247-261.
- [2] On the modulus of a distribution, Bull. Acad. Polon. Sci., Sér. math. astr. et phys. 15 (1967), p. 717-722.
- [3] Some conditions for mean convergence, ibidem 8 (1968), p. 641-646.
- [4] A mean value of distribution (in preparation).
- [5] J. Mikusiński and R. Sikorski, Advanced theory of distributions, Warszawa 1973.
- [6] J. Kurzweil, Linear differential equations with distributional coefficients, Bull. Acad. Polon. Sci., Sér. math. astr. et phys. 7 (1959), p. 557-560.
- [7] A. Lasota and F. H. Szafranicc, Application of the differential equations with distributional coefficients to the optimal control theory, Zeszyty Naukowe U. J., Prace Mat. 12 (1968), p. 31-37.
- [8] J. Ligeza, On generalized solutions of linear differential equations of order n, Prace Mat. Uniw. Sl. w Katowicach 3 (1973), p. 101-108.
- [9] J. Mikusiński and R. Sikorski, Elementarna teoria dytrybucji, Warszawa 1964.
- [10] Irregular operations on distributions, Studia Math. 20 (1961), p. 163-169.

Reçu par la Rédaction le 25. 3. 1972