FASC. 2

PROJECTIVE LIMITS OF TOPOLOGICAL ALGEBRAS

BY

T. MÜLDNER (WARSZAWA)

It has been proved by Michael (see [1], Theorem 5.1) that every complete locally m-convex algebra is isomorphic to a projective limit of Banach algebras. In this paper we generalize this theorem.

1. We first recall some necessary definitions (see, e.g., [4]). By a topological algebra we mean a topological linear space (not necessarily Hausdorff) over complex or real scalars in which there is defined a jointly continuous multiplication. We define a K-algebra as a topological algebra which, as a topological linear space, belongs to the class K of topological linear spaces. In the sequel we shall consider the following classes:

LC - the class of locally convex topological Hausdorff algebras,

 F^* — the class of metrizable topological Hausdorff algebras,

 ${m F}$ — the class of complete metrizable topological Hausdorff algebras,

 B_0 — the class of complete metrizable locally convex topological Hausdorff algebras.

By an F-seminorm in a topological algebra A we mean a mapping $v: A \to R_+$ such that

- (a) $v(x+y) \leqslant v(x) + v(y)$ for $x, y \in A$,
- (b) $\nu(\lambda x) \to 0$ for all x and λ scalar, $\lambda \to 0$,
- (c) $\nu(\lambda x) \leqslant \nu(x)$ for λ scalar, $|\lambda| \leqslant 1$ and $x \in A$.

We can now formulate our theorems:

THEOREM 1. Every complete topological Hausdorff algebra A is isomorphic to a projective limit of F-algebras.

THEOREM 2. Every complete locally convex topological Hausdorff algebra A is isomorphic to a projective limit of B_0 -algebras.

The proof of Theorem 1 is based upon the following lemma:

LEMMA. Let X be an arbitrary topological algebra and let $\Phi(X)$ be a basis of closed balanced neighbourhoods of zero in X. If

$$N = \bigcap_{U \in \Phi(X)} U,$$

then N is a closed ideal in X.

Proof. If X is a topological Hausdorff algebra, then $N = \{0\}$. Suppose that $N \neq \{0\}$, and let $0 \neq x$, $y \in N$, $0 \neq a$, $\beta \in C$. For $U \in \Phi(X)$ choose $V \in \Phi(X)$ such that $V + V \subset U$. Clearly,

$$x, y \in (\alpha^2 + \beta^2)^{-1} V$$

whence

$$ax + \beta y \in a(a^2 + \beta^2)^{-1} V + \beta(a^2 + \beta^2)^{-1} V \subset V + V \subset U$$

and

$$(1) ax + \beta y \in N.$$

It follows that N is a linear subspace of X. Now let $0 \neq x \in N$ and $y \in X$. For $U \in \Phi(X)$ choose $V \in \Phi(X)$ such that $V^2 \subset U$. We can find $\lambda > 0$ such that $\lambda y \in V$. From (1) we have $x/\lambda \in V$, whence

$$xy = \frac{1}{\lambda} x \lambda y \, \epsilon \, V^2 \subset U,$$

which proves the Lemma.

Proof of Theorem 1. In virtue of Theorem 1.3 of [2] there is a basis $\Phi(A)$ as in the Lemma. Let Ω be a family $\{\Phi_{\lambda}\}_{{\lambda}\in A}$ of "elementary neighbourhood chains", i.e. of $\Phi_{\lambda} = \{U_{n}^{\lambda}\}_{n=1}^{\infty}$ such that, for n = 1, 2, ...,

- 1. $U_n^{\lambda} \in \Phi(A)$,
- 2. $U_{n+1}^{\lambda} + U_{n+1}^{\lambda} \subset U_n^{\lambda}$,
- 3. $(U_{n+1}^{\lambda})^2 \subset U_n^{\lambda}$.

It follows from Theorem I.6.1 of [2] and the remark after this theorem (see also [3]) that the topology τ_{λ} , given by Φ_{λ} in the set A, is defined by the F-seminorm $|\cdot|_{\lambda}$. We set $N_{\lambda} = \bigcap_{n=1}^{\infty} U_n^{\lambda}$, $A_{\lambda} = A/N_{\lambda}$, and $x_{\lambda} - a$ congruence class of $x \pmod{N_{\lambda}}$. It follows from the Lemma that N_{λ} is a closed (in the topology τ_{λ}) ideal and that A_{λ} , equipped with the topology I_{λ} , given by the F-norm $||x_{\lambda}||_{\lambda} = |x|_{\lambda}$, is an F^* -algebra. We define a partial order in the set Λ putting

$$\lambda \prec \mu$$
 iff $U_n^{\mu} \subset U_n^{\lambda}$ for $n = 1, 2, ...$

We shall show that this relation turns Λ into a directed set. Let λ , $\mu \in \Lambda$. We define inductively a chain $\Phi_{\delta} \in \Omega$. First, we find $U_1^{\delta} \in \Phi(A)$ such that $U_1^{\delta} \subset U_1^{\lambda} \cap U_1^{\mu}$. Suppose that we have defined $U_1^{\delta}, \ldots, U_n^{\delta}$ satisfying, for $1 < k \le n$, the following conditions:

$$1_n. \ U_k^{\delta} \subset U_k^{\lambda} \cap U_k^{\mu},$$

$$2_n. \ U_k^{\delta} + U_k^{\delta} \subset U_{k-1}^{\delta},$$

$$3_n$$
. $(U_k^{\delta})^2 \subset U_{k-1}^{\delta}$,

$$4_n$$
. $U_k^{\delta} \in \Phi(A)$.

We choose $V \in \Phi(A)$ such that $V^2 \subset U_n^{\delta}$, $W \in \Phi(A)$ such that $W + W \subset V \cap U_n^{\delta}$, and $U_{n+1}^{\delta} \in \Phi(A)$ such that $U_{n+1}^{\delta} \subset U_{n+1}^{\lambda} \cap U_{n+1}^{\mu} \cap W$. Then we have

$$1_{n+1}. \ U_{n+1}^{\delta} \in U_{n+1}^{\lambda} \cap U_{n+1}^{\mu}.$$

$$2_{n+1}.\ \ U_{n+1}^{\delta}+\ U_{n+1}^{\delta}\subset U_{n+1}^{\lambda}\cap U_{n+1}^{\mu}\cap W+\ U_{n+1}^{\lambda}\cap U_{n+1}^{\mu}\cap W\subset\ W+W\subset\ U_{n}^{\delta}.$$

$$3_{n+1}. \ (U_{n+1}^{\delta})^2 \subset (U_{n+1}^{\lambda} \cap U_{n+1}^{\mu} \cap W)^2 \subset W^2 \subset (V \cap U_n^{\delta})^2 \subset V^2 \subset U_n^{\delta}.$$

It is obvious that if we put $\Phi_{\delta} = \{U_n^{\delta}\}_{n=1}^{\infty}$, then $\delta \in \Lambda$ and λ , $\mu < \delta$. Now it is easy to verify that, for every $\lambda < \mu$, the mapping

$$g_{\lambda\mu}\colon x_{\mu}\to x_{\lambda}$$

is a homomorphism from A_{μ} into A_{λ} . From the proof of Theorem I.6.1 of [2] it follows that, for $\lambda \prec \mu$, we have $|\cdot|_{\lambda} \leq |\cdot|_{\mu}$, so $g_{\lambda\mu}$ is a continuous mapping. Let

$$Y = \lim_{\leftarrow} \{A_{\lambda}, g_{\lambda\mu}\}$$

be the projective limit of algebras A_{λ} . The mapping

$$\varkappa \colon x \to \{x_{\lambda}\}_{{\lambda} \in \Lambda}$$

is clearly a 1-1 homomorphism from A into Y. We shall show that \varkappa is onto.

Let H be an arbitrary non-void finite subset of Λ and let $z = \{z_{\lambda}\}_{{\lambda} \in \Lambda}$ be a fixed element of Y. We can find a $\beta \in \Lambda$ such that $\alpha \prec \beta$ for $\alpha \in H$. If we put $g_{\lambda}(x) = x_{\lambda}$ for $x \in \Lambda$, $\lambda \in \Lambda$, then we can choose $x_{H} \in \Lambda$ such that $g_{\beta}(x_{H}) = z_{\beta}$. It follows that

(2)
$$g_a(x_H) = g_{a\beta}(g_{\beta}(x_H)) = g_{a\beta}(z_{\beta}) = z_a \quad \text{for } a \in H.$$

We are now going to show that $\{x_H\}$ is a Cauchy net. For an arbitrary $V \in \Phi(A)$ let

$$\Phi_{\lambda_0} = \{U_n^{\lambda_0}\}_{n=1}^{\infty} \epsilon \ \Omega$$

be an elementary chain such that $U_1^{\lambda_0} = V$ (the existence of such a chain follows from the continuity of addition and multiplication). We put $H_0 = {\lambda_0}$. If $H_1, H_2 \supset H_0$, then $\lambda_0 \in H_1 \cap H_2$, and from (2) we get

$$g_{\lambda_0}(x_{H_1}) = z_{\lambda_0} = g_{\lambda_0}(x_{H_2}).$$

It follows that $x_{H_1} - x_{H_2} \epsilon V$, so $\{x_H\}$ is a Cauchy net.

From the completeness of the algebra A it follows that there exists $y = \lim x_H$. Clearly, $y_{\lambda} = z_{\lambda}$ for $\lambda \in \Lambda$, so we have proved that κ is onto.

It can be easily verified that \varkappa is a homeomorphic mapping. We denote by \tilde{A}_{λ} the completion of A_{λ} with respect to the topology I_{λ} , and by $\tilde{g}_{\lambda\mu}$: $\tilde{A}_{\mu} \to \tilde{A}_{\lambda}$ the extension of $g_{\lambda\mu}$.

It is easy to see that Y is dense in $\lim_{\lambda} \{\tilde{A}_{\lambda}, \tilde{g}_{\lambda\mu}\}$, but Y is isomorphic to A, so it is complete. It follows that

$$Y \equiv \lim_{\longleftarrow} \{\tilde{A}_{\lambda}, \, \tilde{g}_{\lambda\mu}\},$$

which completes the proof of Theorem 1.

The proof of Theorem 2 is analogous (if A is a complete LC-algebra, then A_{λ} is a metric LC-algebra and \tilde{A}_{λ} is a B_0 -algebra).

Remark. It is easy to see that if A is a complete locally convex topological Hausdorff algebra such that, for every sequence $\{p_n\}$ of continuous seminorms, $\sup p_n$ is a continuous seminorm, then A is m-convex, and so is isomorphic to a projective limit of Banach algebras. Therefore, a complete locally convex topological Hausdorff algebra is isomorphic to a projective limit of non-normable B_0 -algebras iff the sequences of continuous seminorms are unbounded.

Acknowledgement. The author is indebted to Professor W. Zelazko for his guidance and suggestions.

REFERENCES

- [1] E. Michael, Locally multiplicatively convex topological algebras, Memoirs of the American Mathematical Society 11 (1952).
- [2] H. Schaefer, Topological vector spaces, New York 1966.
- [3] Summer school on topological vector spaces, Lecture Notes 331 (1973).
- [4] W. Żelazko, Selected topics in topological algebras, Aarhus Lecture Notes 31 (1971).

INSTITUTE OF MATHEMATICAL MACHINES WARSZAWA

Reçu par la Rédaction le 25. 4. 1974