DISCRETE ORBITS IN $\beta N - N$

 $\mathbf{B}\mathbf{Y}$

RODNEY NILLSEN (SWANSEA)

0. Introduction. Let N denote the set of natural numbers, including 0, and let βN be the Stone-Čech compactification of N. A function σ from N into N will be called a motion if it is an injection having no periodic points. The motion $n \to n+1$ will be denoted by τ . Throughout the paper, σ will denote a given motion. σ may be extended to a continuous function from βN into βN whose restriction to $\beta N - N$, which we also denote by σ , is a homeomorphism into $\beta N - N$ having no periodic points (cf. [9]). A subset of $\beta N - N$ is said to be σ -invariant if it is non-void, closed and mapped into itself by σ . A σ -invariant set is said to be σ -minimal if it properly contains no σ -invariant set. Let A^{σ} be the union of all σ -minimal sets. Let M_{σ} be the set of all regular Borel probability measures on $\beta N - N$ which are invariant under σ . Let K^{σ} be the closure of $\bigcup \{\sup \mu\}$, where this union is taken over $\mu \in M_{\sigma}$. For $\omega \in \beta N - N$ let $O_{\sigma}(\omega)$ be the set $\{\sigma^{i}\omega : \sigma^{i}\}$ $i \in N$. The set $O_{\sigma}(\omega)$ is called the σ -orbit of ω , and if it is discrete as a subspace of $\beta N - N$, then ω is said to be σ -discrete. Let D^{σ} denote the set of all σ -discrete points of $\beta N - N$.

In the situation described above, the following results are known: $A^{\sigma} \subset K^{\sigma}$ and $A^{\sigma} \neq K^{\sigma}$ [1];

there is an extreme point of M_{σ} whose support is not σ -minimal [1]; K^{σ} is nowhere dense in $\beta N - N$ ([1] and [9]);

the interior of $D^{\sigma} - K^{\sigma}$ is dense in $\beta N - N$ (see [1]), and in 1.4 of [11] Rudin has virtually proved that $D^{\sigma} \cap A^{\sigma} = \emptyset$.

Among the results proved here are the following:

 $D^{\sigma} \cap K^{\sigma}$ is dense in K^{σ} ;

 $D^{\sigma} \cap \overline{A^{\sigma}}$ is dense in $\overline{A^{\sigma}}$;

there is an extreme point of M_{σ} whose support is not σ -minimal although it is contained in $\overline{A^{\sigma}}$;

any σ -minimal set is homeomorphic to each set in an uncountable family of σ -minimal sets and A^{σ} is nowhere dense in K^{σ} .

1. Preliminaries. Let l_{∞} be the space of all bounded real-valued functions on N and l_{∞}' its dual. $\mu' \in l_{\infty}'$ is called a mean if $\|\mu'\| = 1$ and $\mu'(1) = 1$, in which case $\mu' \geqslant 0$. Let M' be the set of all means. We shall regard βN as all multiplicative means on l_{∞} and identify N with its natural injection into βN . If $\mu' \in M'$, there is a unique regular Borel probability measure μ on βN for which

$$\mu'(f) = \int_{\partial N} \bar{f} d\mu \quad \text{for } f \in l_{\infty},$$

where \bar{f} is the continuous extension of f to βN . The mean $\mu' \in M'$ is σ -invariant if $\mu'(f \circ \sigma) = \mu'(f)$ for $f \in l_{\infty}$. Let M'_{σ} be the set of all σ -invariant elements of M'. Then $M'_{\sigma} = \{\mu' : \mu \in M_{\sigma}\}$.

Let N^* denote the set of all non-zero elements of N. Then if $m \in N$ and $n \in N^*$, define $T_{\sigma}(m, n) \in M'$ by

(1.1)
$$T_{\sigma}(m, n)(f) = (1/n) \left(\sum_{i=0}^{n-1} f(\sigma^{i}m) \right) \quad \text{for } f \in l_{\infty}.$$

The following lemma is then well known (see [7]):

LEMMA 1.1. Let I be a directed set and, for $a \in I$, let $m_a \in N$ and $n_a \in N^*$ be given. Let

$$\mu' = \lim_a T_\sigma(m_a, n_a),$$

where this limit is assumed to exist in the weak* topology. Then $\mu' \in M'_{\sigma}$ whenever $\lim n_{\sigma} = \infty$.

If $\mu' \in M'$ and $A \subseteq N$, we write $\mu'(A)$ for $\mu'(\chi_A)$, where χ_A is the characteristic function of A. We then define $\bar{d}_{\sigma}(A)$ by

$$ar{d}_{\sigma}(A) = \sup_{m{\lambda}' \in M_{\sigma}'} m{\lambda}'(A).$$

It has been shown in [8] that

$$(1.2) \bar{d}_{\sigma}(A) = \limsup_{n \to \infty} \left(\sup_{m} T_{\sigma}(m, n)(A) \right).$$

For $m \in N$ and $n \in N^*$ let $I_{\sigma}(m, n) = \{\sigma^i m : 0 \le i \le n-1\}$ and $I_{\sigma}(m, 0) = \emptyset$. Let |A| be the cardinality of a finite subset A of N. Then, by (1.1),

$$(1.3) T_{\sigma}(m,n)(A) = (1/n) \left(|A \cap I_{\sigma}(m,n)| \right).$$

2. Discrete σ -orbits in K^{σ} . For $A \subseteq N$ let $\hat{A} = \overline{A} \cap (\beta N - N)$, where \overline{A} is the closuré of A in βN . The sets \hat{A} form a base for the topology of $\beta N - N$. For this and other properties of the sets \hat{A} , see [10].

LEMMA 2.1. Let A_0, A_1, A_2, \ldots be a sequence of subsets of N such that $(2.1) \quad \sigma^m A_m \cap \sigma^n A_n \text{ is finite if } m \neq n.$

Then $\bigcap_{k=0}^{\infty} \hat{A}_k$ is contained in D^{σ} .

Proof. For $n \in N$ let

$$V_n = \sigma^n \hat{A}_n$$
 and $\omega \in \bigcap_{k=0}^{\infty} \hat{A}_k$.

Then V_n is a neighbourhood of $\sigma^n \omega$ for each n and, in view of (2.1), $V_m \cap V_n = \emptyset$ if $m \neq n$. Hence $O_{\sigma}(\omega)$ is discrete and $\omega \in D^{\sigma}$.

LEMMA 2.2. Let $A \subseteq N$. Then there are sequences (p_n) and (q_n) in N such that

$$\lim_{n\to\infty}q_n=+\infty,$$

(2.3)
$$\lim_{n\to\infty} (1/q_n) (|A \cap I_{\sigma}(p_n, q_n)|) = \bar{d}_{\sigma}(A),$$

and

(2.4) the sets $(I_{\sigma}(p_n, q_n))_{n \in N}$ are pairwise disjoint.

Proof. Suppose $p_0, p_1, ..., p_{n-1}$ and $q_0, q_1, ..., q_{n-1}$ have been chosen so that

- (a) $q_i > i$ for $0 \leqslant i \leqslant n-1$,
- (b) $(1/q_i)(|A \cap I_{\sigma}(p_i, q_i)|) > \overline{d}_{\sigma}(A) (1/i + 1)$, and
- (c) the sets $(I_{\sigma}(p_i, q_i))_{0 \le i \le n-1}$ are pairwise disjoint.

In view of (1.2) and (1.3) this can be done for n = 1.

Now let

$$X = \bigcup_{i=0}^{n-1} I_{\sigma}(p_i, q_i)$$

and choose r_0, r_1, \ldots, r_k and s_0, s_1, \ldots, s_k in N so that if some set $I_{\sigma}(p, q)$ meets X, there is a unique $j, 0 \leq j \leq k$, such that $I_{\sigma}(p, q) \cap X \subseteq I_{\sigma}(r_j, s_j)$.

By (1.2) and (1.3), sequences (m_p) and (n_p) in N can be found so that

$$\lim_{p \to \infty} (1/n_p) \big(|A \cap I_{\sigma}(m_p, n_p)| \big) = \bar{d}_{\sigma}(A).$$

For each p, let

$$I_{\sigma}(m_p, n_p) = I_{\sigma}(m_p, u_p) \cup I_{\sigma}(\sigma^{u_p}m_p, v_p - u_p) \cup I_{\sigma}(\sigma^{v_p}m_p, n_p - v_p),$$

where $I_{\sigma}(m_p, u_p)$ and $I_{\sigma}(\sigma^{v_p}m_p, n_p - v_p)$ are disjoint from X and $I_{\sigma}(\sigma^{u_p}m_p, v_p - u_p)$ is contained in some $I_{\sigma}(r_j, s_j)$, $0 \leqslant j \leqslant k$. We see that

$$\lim_{p\to\infty} \left(1/(u_p+n_p-v_p)\right) \left(|A\cap I_\sigma(m_p, u_p)|+|A\cap I_\sigma(\sigma^{v_p}m_p, n_p-v_p)|\right) = \bar{d}_\sigma(A),$$

so that either

$$\limsup_{y \to \infty} (1/u_p) \left(|A \cap I_{\sigma}(m_p, u_p)| \right) \geqslant \overline{d}_{\sigma}(A)$$

 \mathbf{or}

$$\limsup_{n\to\infty} \big(1/(n_p-v_p)\big) \big(|A\cap I_\sigma(\sigma^{v_p}m_p,\,n_p-v_p)|\big) \geqslant \bar{d}_\sigma(A).$$

In either case it is now clear that p_n and q_n can be found so that (a), (b) and (c) hold with n in place of n-1, so that (p_n) and (q_n) have been defined for all n and (2.2) and (2.4) hold. By (b),

$$\liminf_{n\to\infty}(1/q_n)\big(|A\cap I_{\sigma}(p_n,\,q_n)|\big)\geqslant \bar{d}_{\sigma}(A)$$

and (1.1), (1.2), (1.3) and Lemma 1.1 ensure that

$$\limsup_{n\to\infty} (1/q_n) \big(|A\cap I_{\sigma}(p_n, q_n)| \big) \leqslant \overline{d}_{\sigma}(A).$$

Hence (2.3) holds.

Definition 2.1. Let $A = \{\sigma^{n_0}m, \sigma^{n_1}m, \ldots, \sigma^{n_{p-1}}m\}$, where $m \in N$ and $0 \leq n_0 < n_1 < \ldots < n_{p-1}$. Assuming that $s \leq p$, a map $\gamma: I_{\tau}(r,s) \to A$ is defined by letting $\gamma(r+i)$ be $\sigma^{n_i}m$ for $0 \leq i \leq s-1$. The map γ is called the σ -injection of $I_{\tau}(r,s)$ into A.

PROPOSITION 2.1. For each motion σ , $D^{\sigma} \cap K^{\sigma}$ is dense in K^{σ} .

Proof. This is divided into a number of steps.

I. For each $n \in N^*$ let $t_{1n}, t_{2n}, \ldots, t_{nn}$ be given in N^* . Then subsets $B(1, n), B(2, n), \ldots, B(n, n)$ of N are defined inductively as follows:

$$B(1, n) = \{2i \colon 0 \leqslant i \leqslant t_{11} - 1\}.$$

If $2 \leqslant k \leqslant n$ and $B(1, n), B(2, n), \ldots, B(k-1, n)$ have been defined, then

$$B(k, n) = \left\{ \left(\sum_{j=1}^{k-1} (j+1)t_{jn} \right) + (k+1)i \colon 0 \leqslant i \leqslant t_{kn} - 1 \right\}.$$

Then $|B(k,n)|=t_{kn}.$ Moreover, if $0\leqslant j$ and $k\leqslant n$ with $k\neq j$, then $au^pB(j,n)\cap au^qB(k,n)=\emptyset$ for all $0\leqslant p\leqslant j$ and $0\leqslant q\leqslant k$.

For $n, s \in N^*$ and $1 \leq k \leq n$ we now let

$$B(k,n,s) = \bigcup_{i=0}^{s-1} \left[\left(\bigcup_{j=k}^{n} B(j,n) \right) + i \left(\sum_{j=1}^{n} (j+1) t_{jn} \right) \right].$$

The significance of the sets B(k, n, s) lies in the facts that if $1 \le j$, $k \le n$ and $j \ne k$, then for all s

(2.5)
$$\tau^{j}B(j,n,s)\cap\tau^{k}B(k,n,s)=\emptyset$$

and

$$(2.6) B(j, n, s) \subseteq B(k, n, s) \text{if } j \geqslant k.$$

For future reference let us remark that if we take $t_{in}=2^{n+1-i}$ for $1\leqslant i\leqslant n$, then

$$\frac{\sum_{i=k}^{n} t_{in}}{\sum_{i=1}^{n} (i+1)t_{in}} = \frac{2^{-k+1}-2^{-n}}{3-3\cdot 2^{-n}-n\cdot 2^{-n}},$$

so that

(2.7)
$$\lim_{n\to\infty} \frac{\sum_{i=k}^{n} t_{in}}{\sum_{i=1}^{n} (i+1)t_{in}} = (1/3) \cdot 2^{-k+1}.$$

II. Let $A \subseteq N$ and suppose \hat{A} meets K^{σ} . Then $\bar{d}_{\sigma}(A) > 0$ and, by Lemma 2.2, sequences (p_n) and (q_n) may be found in N so that (2.2), (2.3) and (2.4) hold. For $n \in N$ let

$$|A\cap I_{\sigma}(p_n, q_n)| = u_n \left(\sum_{i=1}^n (i+1)t_{in}\right) + v_n,$$
where $u_n, v_n \in N$ and $0 \leqslant v_n < \sum_{i=1}^n (i+1)t_{in}.$

In view of (2.2) and (2.3), $|A \cap I_{\sigma}(p_n, q_n)| \to \infty$ as $n \to \infty$, and we may assume that

$$(2.9) u_n \geqslant 1 \text{and} \lim_{n \to \infty} v_n / (|A \cap I_{\sigma}(p_n, q_n)|) = 0.$$

By virtue of (2.8) and (2.9) we see that $B(k, n, u_n)$ is contained in

$$I_r(0, u_n \sum_{i=1}^n (i+1)t_{in})$$

and that we may let γ_n be the σ -injection of this latter set into $A \cap I_{\sigma}(p_n, q_n)$. Then define A_k for $k \in N^*$ by

$$A_k = \bigcup_{n=k}^{\infty} (\gamma_n (B(k, n, u_n)))$$

and let $A_0 = A_1$. From the definitions and (2.4), (2.5) and (2.6) it follows that

$$(2.10) \sigma^{j}A_{j}\cap\sigma^{k}A_{k} = \emptyset \text{if } j\neq k$$

and

$$(2.11) A \supseteq A_0 \supseteq A_1 \supseteq A_2 \supseteq \dots$$

Now let $\lambda'_n = T_{\sigma}(p_n, q_n)$. Then, by (1.3),

$$\lambda'_n(A_k) = (u_n/q_n) \sum_{i=k}^n t_{in} \quad \text{for } n \geqslant k.$$

Together with (2.8) this gives

$$\lambda_n'(A_k) \, = \, rac{\sum\limits_{i=k}^n t_{in}}{\sum\limits_{i=1}^n (i+1)t_{in}} \, igg(1 - rac{v_n}{|A \cap I_{\sigma}(p_n,\,q_n)|}igg) rac{|A \cap I_{\sigma}(p_n,\,q_n)|}{q_n}.$$

If we now choose the t_{in} so that (2.7) holds and use (2.3) and (2.9), then

$$\lim_{n\to\infty}\lambda'_n(A_k) = (1/3)\cdot 2^{-k+1}\bar{d}_\sigma(A) > 0.$$

Hence, if λ' is a limit point of (λ'_n) , then $\lambda' \in M'_{\sigma}$ by Lemma 1.1 and (2.12) $\lambda'(A_k) > 0$ for $k \in N$.

III. In view of (2.11) and (2.12), there is

$$\omega \in (\operatorname{supp} \lambda) \cap (\bigcap_{k=0}^{\infty} \hat{A}_{k}),$$

so that $\omega \in K^{\sigma} \cap \hat{A}$. However, by (2.10) and Lémma 2.1, $\omega \in D^{\sigma}$. Hence, if \hat{A} meets K^{σ} , then \hat{A} meets $D^{\sigma} \cap K^{\sigma}$ and the proof is complete.

3. Discrete σ -orbits in \overline{A}^{σ} . For $C \subseteq N$ and $k \in N^*$, C is called a k-chain if $|m-n| \leq k$ whenever m and n are successive elements of C.

LEMMA 3.1. The following are equivalent conditions on a point ω in $\beta N - N$:

- (1) $\omega \in A^{\sigma}$, and
- (2) given a neighbourhood U of ω in $\beta N N$, there is $k \in N^*$ for which $\{i: i \in N \text{ and } \sigma^i \omega \in U\}$ is a k-chain having an infinite number of elements.

Proof. This is a straightforward adaptation of either Lemma 2.4 of [1] or Proposition 3.1 of [4].

Proposition 3.1 (cf. Remark 1.4 of [11]). For each motion σ , we have $D^{\sigma} \cap A^{\sigma} = \emptyset$.

Proof. If $\omega \in D^{\sigma}$, there is a neighbourhood V of ω in βN , so that $V \cap O_{\sigma}(\omega) = \{\omega\}$. By Lemma 3.1, $\omega \notin A^{\sigma}$.

LEMMA 3.2. Let $A \subseteq N$. Then the following conditions are equivalent:

- $(1) \ \bar{d}_{\sigma}(A) = 1,$
- (2) given $n \in N$, there is $m \in N$ for which $I_{\sigma}(m, n) \subseteq A$, and
- (3) there are sequences (p_n) and (q_n) in N such that $\lim_{n\to\infty} q_n = \infty$, the sets $(I_{\sigma}(p_i, q_i))_{i\in N}$ are pairwise disjoint and $I_{\sigma}(p_i, q_i) \subseteq A$ for each i.

Proof. (1) implies (3) is a consequence of Lemma 2.2. (3) implies (2) is obvious, and (2) implies (1) is immediate from (1.2) and (1.3).

LEMMA 3.3. Let $A \subseteq N$. Then the following conditions are equivalent:

- $(1) \hat{A} \cap A^{\sigma} \neq \emptyset,$
- (2) $\hat{A} \cap \overline{A}^{\sigma} \neq \emptyset$, and
- (3) for some $r \in N^*$, $\bar{d}_{\sigma}(A \cup \sigma A \cup \ldots \cup \sigma^{r-1}A) = 1$.

Proof. The equivalence of (1) and (2) is obvious as \hat{A} is open. If (3) holds, $\hat{A} \cup \sigma \hat{A} \cup \ldots \cup \sigma^{r-1} \hat{A}$ must contain some σ -minimal set which will then meet \hat{A} , and (1) follows. If (3) does not hold, it is straightforward to adapt the argument of [1], p. 784, to prove the result — the idea is to use Lemma 3.1 instead of Lemma 2.4 of [1].

LEMMA 3.4. Let $A \subseteq N$, $m \in N$ and r, $n \in N^*$ with $r \leqslant n$. If

$$I_{\sigma}(m, n) \subseteq A \cup \sigma A \cup \ldots \cup \sigma^{r-1} A$$
,

then $\{i: 0 \le i \le n-1 \text{ and } \sigma^i m \in A\}$ is an r-chain whose first element is inclusive between 0 and r-1.

The proof is easy and is omitted.

PROPOSITION 3.2. For each motion σ , $D^{\sigma} \cap \overline{A}^{\sigma}$ is dense in \overline{A}^{σ} .

Proof. Let $A \subseteq N$ and suppose \hat{A} meets \overline{A}^{σ} . By Lemma 3.3 we may choose $r \in N^*$ so that $\bar{d}_{\sigma}(A \cup \sigma A \cup \ldots \cup \sigma^{r-1}A) = 1$. By Lemmas 3.2 and 3.4, choose sequences (p_n) and (q_n) in N so that (2.2) and (2.4) hold; if

$$J_n = \{i \colon 0 \leqslant i \leqslant q_n - 1 \text{ and } \sigma_1^i p_n \in A\},$$

then

(3.1) J_n is an r-chain,

and

$$|J_n| \geqslant \sum_{i=1}^n (i+1)t_{in}.$$

Here the t_{in} are as in the proof of Proposition 2.1 and we choose them so that

(3.3)
$$\lim_{n\to\infty} t_{kn} = \infty \quad \text{for } k \in N^*.$$

In view of (3.2), we may let γ_n be the σ -injection of $I_{\tau}(0, \sum_{i=1}^{n} (i+1)t_{in})$ into $A \cap I_{\sigma}(p_n, q_n)$. Then define C_k for $k \in N^*$ by

$$C_k = \bigcup_{n=k}^{\infty} (\gamma_n(B(k, n, 1)))$$

and let $C_0 = C_1$. By (2.4), (2.5) and (2.6), we have

$$\sigma^j C_j \cap \sigma^k C_k = \emptyset \quad \text{if } j \neq k,$$

and

$$(3.5) A \supseteq C_0 \supseteq C_1 \supseteq C_2 \supseteq \dots$$

Now each set B(k, n, 1) contains B(k, n) which is a (k+1)-chain having t_{kn} elements, so that, by (3.1), the set

$$\{i: 0 \leqslant i \leqslant q_n-1 \text{ and } \sigma^i p_n \in \gamma_n(B(k, n, 1))\}$$

must contain an r(k+1)-chain having t_{kn} elements. Hence there is $p'_n \in \gamma_n(B(k, n, 1))$, so that

$$I_{\sigma}(p'_n, t_{kn}) \subseteq C_k \cup \sigma C_k \cup \ldots \cup \sigma^{r(k+1)-1} C_k.$$

In view of (3.3) and Lemma 3.2 we can deduce that

$$\bar{d}_{\sigma}(C_k \cup \sigma C_k \cup \ldots \cup \sigma^{r(k+1)-1}C_k) = 1.$$

By Lemma 3.3, \hat{C}_k meets A^{σ} for all $k \in N$. By (3.4), (3.5) and Lemma 2.1, we may choose $\omega \in D^{\sigma} \cap \overline{A}^{\sigma} \cap \hat{A}$ and the result is established.

The following corollary is not surprising, but to the author's knowledge has not been proved before.

COROLLARY 3.1. Λ^{σ} is not closed.

The proof is immediate from Propositions 3.1 and 3.2.

In [1], Chou has proved that there are extreme points of M_{τ} whose support is not τ -minimal. None of these extreme points he constructs are supported by $\overline{A^{\tau}}$, although the following proposition shows that this does happen.

Proposition 3.3. For each motion σ , there is an extreme point of M_{σ} whose support is not σ -minimal but which is contained in \overline{A}^{σ} .

Proof. Let $\omega \in D^{\sigma} \cap \overline{A^{\sigma}}$ by Proposition 3.2. Let $\gamma \colon N \to O_{\sigma}(\omega)$ be $\gamma(i) = \sigma^{i} \omega$. The map γ extends to a homeomorphism, which we also denote by γ , from βN onto $\beta(O_{\sigma}(\omega))$. By 6.9 and 14N of [5], $\beta(O_{\sigma}(\omega)) = \overline{O_{\sigma}(\omega)}$. Moreover, $\gamma \circ \tau = \sigma \circ \gamma$ on βN . By 2.5 of [1], let $\lambda \in M_{\tau}$ be an extreme point of M_{τ} whose support is not τ -minimal. Then $\lambda \circ \gamma^{-1}$ is an extreme point of M_{σ} whose support is not σ -minimal. However, the support of $\lambda \circ \gamma^{-1}$ is in $\overline{O_{\sigma}(\omega)}$. Now $\omega \in \overline{A^{\sigma}}$, so that $\overline{O_{\sigma}(\omega)} \subseteq \overline{A^{\sigma}}$ and the result follows.

4. Homeomorphic minimal sets. Here we show that any σ -minimal set is homeomorphic to uncountably many other σ -minimal sets.

LEMMA 4.1. Let $B \subseteq N$ and assume that $\bar{d}_{\sigma}(B) = 1$. Then there is $\omega \in D^{\sigma}$ for which $O_{\sigma}(\omega) \subseteq \hat{B}$.

Proof. Let t_{kn} be numbers as in the proof of Proposition 2.1. Let

$$q_n = \sum_{i=1}^n (i+1)t_{in}.$$

Then, by Lemma 3.2, there is a sequence (p_n) in N, so that (2.2) and (2.4) hold and $I_{\sigma}(p_n, q_n) \subseteq B$ for all n. Let γ_n be the σ -injection of $I_{\tau}(0, q_n)$ into $I_{\sigma}(p_n, q_n)$ and, for $k \in N^*$, let

$$A_k = \bigcup_{n=k}^{\infty} (\gamma_n(B(k, n, 1)))$$
 and $A_0 = A_1$.

Then (2.10) and (2.11) hold for the sets A_k and $\sigma^k(A_k) \subseteq B$ for all $k \in \mathbb{N}$. Let

$$\omega \in \bigcap_{k=0}^{\infty} \hat{A}_k$$
.

Then $\omega \in D^{\sigma}$ by Lemma 2.1. Since $\sigma^k \omega \in \sigma^k \hat{A}_k \subseteq \hat{B}$ for all k, $\overline{O_{\sigma}(\omega)} \subseteq \hat{B}$. Lemma 4.2. Any τ -minimal set in $\beta N - N$ is homeomorphic to each set of an uncountable family of τ -minimal sets in $\beta N - N$.

Proof. Let M be a τ -minimal set in $\beta N-N$. By Corollary 3.1 there is an infinite family of τ -minimal sets, so that we may choose $A\subseteq N$ with $M\subseteq \hat{A}$ and $\bar{d}_{\tau}(N-A)=1$. By (1.9) of [1], there is an uncountable family (B_a) of subsets of N-A such that $\bar{d}_{\tau}(B_a)=1$ for all a and $B_a\cap B_{\beta}$ is finite if $\alpha\neq\beta$. By Lemma 4.1 choose $\omega_a\in D^{\tau}$ so that $\overline{O_{\tau}(\omega_a)}\subseteq\hat{B}_a$. Now let $\psi_a\colon\beta N\to\overline{O_{\tau}(\omega_a)}$ be the homeomorphism obtained by extending $i\to\tau^i\omega_a$ on N to βM (since $\beta(O_{\tau}(\omega_a))$ is $\overline{O_{\tau}(\omega_a)}$ by [5], 6.9 and 14N). Then $\psi_a\circ\tau=\tau\circ\psi_a$ on βN , so that $\psi_a(M)$ is τ -minimal for each α . Since (\hat{B}_a) is a disjoint family and $\psi_a(M)\subseteq\overline{O_{\tau}(\omega_a)}$, we infer that $(\psi_a(M))$ is an uncountable family of τ -minimal sets to each of which M is homeomorphic.

PROPOSITION 4.1. Let σ_1 and σ_2 be motions. Then each σ_1 -minimal set in $\beta N - N$ is homeomorphic to each set in an uncountable family of σ_2 -minimal sets in $\beta N - N$.

Proof. In view of [2], Theorem 4.8, and [9], Theorem 2.17, there is no loss of generality in assuming that $\{\sigma_1^i m\colon i\in N\}=N$ for some $m\in N$. Let $\varphi\colon\beta N\to\beta N$ be the homeomorphism obtained by extending the map $i\to\sigma_1^i m$ from N to βN . Then $\sigma_1\circ\varphi=\varphi\circ\tau$ on βN , so that if M is a σ_1 -minimal set, $\varphi^{-1}(M)$ is τ -minimal. By Lemma 4.2, there is an uncountable family (M_a) of τ -minimal sets all homeomorphic to $\varphi^{-1}(M)$. By arguing now with σ_2 in place of σ_1 , there is a homeomorphism $\psi\colon\beta N\to\beta N$ such that $\psi(M_a)$ is σ_2 -minimal for each α . Then M is homeomorphic to $\psi(M_a)$ for each α , and the result is established.

5. Nowhere denseness of A^{σ} in K^{σ} . Let us recall a construction due to Chou in [1]. Let $A_1 = \{1, 2, 3\}$. If A_1, A_2, \ldots, A_n have been defined, let

$$A_{n+1} = A_n \cup \{\sup A_n + n + A_n\} \cup \{2\sup A_n + 2n + A_n\}.$$

This defines A_1, A_2, \dots by induction. It is easy to see that

(5.1) any k-chain in A_n has at most $|A_k|$ elements.

PROPOSITION 5.1. For each motion σ , A^{σ} is nowhere dense in K^{σ} .

Proof. Let $A \subseteq N$ and suppose \hat{A} meets A^{σ} . By Lemmas 3.2, 3.3 and 3.4, there is an $r \in N^*$ and sequences (p_n) and (q_n) in N exist, so that (2.2) and (2.4) hold and, for each n,

(5.2)
$$\{i: 0 \leqslant i \leqslant q_n-1 \text{ and } \sigma^i p_n \in A\}$$
 is an r-chain

having $\sup A_n$ elements, whose first element is 0 and whose last element is q_n-1 , where A_n is as in (5.1). Hence we may let γ_n be the σ -injection of $I_{\tau}(1, \sup A_n)$ into $A \cap I_{\sigma}(p_n, q_n)$ and let

$$B = \bigcup_{n \in N^{\bullet}} \gamma_n(A_n).$$

Then $T_{\sigma}(p_n, q_n)(B) = |A_n|/q_n$. Now

$$\lim_{n\to\infty} |A_n|/(\sup A_n) = 2/3$$

(see [1]), and (5.2) ensures that $(\sup A_n)/q_n \geqslant 1/r$. Hence, if λ' is a limit point of $(T_{\sigma}(p_n, q_n))$, $\lambda' \in M'_{\sigma}$ by Lemma 1.1, and $\lambda'(B) > 0$. Hence \hat{B} meets K^{σ} .

It now follows from (5.1) that if $m \in N$ and k, $n \in N^*$, then any k-chain contained in $\{i: i \in N \text{ and } \sigma^i m \in \gamma_n(A_n)\}$ has at most $|A_k|$ elements. From this it is easy to see that any k-chain contained in $\{i: i \in N \text{ and } \sigma^i m \in B\}$ has at most $|A_1| + |A_2| + \ldots + |A_{k-1}| + 3 |A_k|$ elements. In view of Lemmas 3.2, 3.3 and 3.4, we deduce that $\hat{B} \cap \overline{A^{\sigma}} = \emptyset$. Since $\hat{B} \subseteq \hat{A}$ and \hat{B} meets K^{σ} , the result is established.

COROLLARY 5.1. If $\omega \in D^{\sigma} \cap \overline{A}^{\sigma}$, then $\overline{A}^{\sigma} - \overline{O_{\sigma}(\omega)}$ contains an infinite family of σ -minimal sets.

Proof. Let us assume that $M_1, M_2, ..., M_p$ are all σ -minimal sets in $\overline{A^{\sigma}} - \overline{O_{\sigma}(\omega)}$. Then

$$\overline{A^{\sigma}} - \overline{O_{\sigma}(\omega)} = M_1 \cup M_2 \cup \ldots \cup M_p.$$

Let γ be the homeomorphism from βN onto $\overline{O_{\sigma}(\omega)}$ constructed in the proof of Proposition 3.3. Then

$$\gamma(A^{\tau}) = A^{\sigma} - (M_1 \cup M_2 \cup \ldots \cup M_p),$$

which, by Proposition 5.1, must be nowhere dense in \overline{A}^{σ} . This is clearly impossible.

6. Remarks.

- **6.1.** If $\omega \in \beta N N$, then the induced topology on $O_{\sigma}(\omega)$ leads to a topology T_{ω} on N by identifying N with $O_{\sigma}(\omega)$ by means of the map $i \to \sigma^i \omega$. The topology T_{ω} is Hausdorff and τ is T_{ω} -continuous. If $\omega \in A^{\sigma}$, then every open set in T_{ω} will be a k-chain for some $k \in N$ (by Lemma 3.1). So far there do not seem to be examples of points of $\beta N N$ which belong neither to D^{σ} nor to A^{σ} . If such a point ω does exist, the topology T_{ω} will be non-discrete and will have open sets which are k-chains for no $k \in N^*$. Such topologies on N are possible.
- 6.2. In view of Proposition 4.1 it would be interesting to have an example of two non-homeomorphic σ -minimal sets or to prove that this is not possible. (P 938)
- 6.3. Assuming the continuous hypothesis, Rudin [10] has constructed homeomorphisms of $\beta N N$ which arise from no motion on N. I do not know what results of this paper are valid for such homeomorphisms. (P 939)

REFERENCES

- [1] C. Chou, Minimal sets and ergodic measures for $\beta N N$, Illinois Journal of Mathematics 13 (1969), p. 777-788.
- [2] D. Dean and R. Raimi, Permutations with comparable sets of invariant means, Duke Mathematical Journal 27 (1960), p. 467-479.
- [3] R. Ellis, Topological dynamics, New York 1969.
- [4] L. Fairchild, Extreme invariant means without minimal support, Transactions of the American Mathematical Society 172 (1972), p. 83-93.
- [5] L. Gillman and M. Jerison, Rings of continuous functions, Princeton 1960.
- [6] G. H. Hardy and J. E. Littlewood, Some problems of Diophantine approximation, Acta Mathematica 37 (1914), p. 155-191.
- [7] M. Jerison, The set of all generalised limits of bounded sequences, Canadian Journal of Mathematics 9 (1957), p. 79-89.
- [8] R. Raimi, Invariant means and invariant matrix methods of summability, Duke Mathematical Journal 30 (1963), p. 81-94.
- [9] Homeomorphisms and invariant measures for $\beta N N$, ibidem 33 (1966), p. 1-12.
- [10] W. Rudin, Homogeneity problems in the theory of Čech-compactifications, ibidem 23 (1956), p. 409-419.
- [11] Averages of continuous functions on compact spaces, ibidem 25 (1958), p. 197-204.

UNIVERSITY COLLEGE OF SWANSEA WALES

Reçu par la Rédaction le 15. 3. 1974