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DISCRETE ORBITS IN BN —N
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RODNEY NILLSEN (SWANSEA)

0. Introduction. Let N denote the set of natural numbers, including 0,
and let BN be the Stone-Cech compactification of N. A function ¢ from
N into N will be called a motion if it is an injection having no periodic
points. The motion » — » 41 will be denoted by z. Throughout the paper,
o will denote a given motion. ¢ may be extended to a continuous function
from BN into SN whose restriction to SN — N, which we also denote by o,
1S @ homeomorphism into SN — N having no periodic points (cf. [9]).
A subset of BN — N is said to be g-invariant if it is non-void, closed and
mapped into itself by o. A o-invariant set is said to be o-minimal if it
properly contains no o-invariant set. Let A° be the union of all ¢-minimal
sets. Let M, be the set of all regular Borel probability measures on SN — N
which are invariant under ¢. Let K° be the closure of |_{supp x4}, where
this union is taken over ue M,. For wme BN — N let O,(w) be the set {¢'w:
te N}. The set O,(w) is called the o-orbit of w, and if it is discrete as a sub-
space of BN — N, then w is said to be o-discrete. Let D° denote the set of
all o-discrete points of SN — N.

In the situation described above, the following results are known:

A° < K° and A° # K° [1];

there is an extreme point of M, whose support is not o-minimal [1];

K° is nowhere dense in BN — N ([1] and [9]);

the interior of D°— K’ is dense in N — N (see [1]), and in 1.4 of [11]
Rudin has virtually proved that D°NA° = @.

Among the results proved here are the following:

D°NK? is dense in K°;

D°NA° is dense in A° ;

there is an extreme point of MM, whose support is not o-minimal
although it is contained in A°; ;

any o-minimal set is homeomorphic to each set in an uncountable
family of o-minimal sets and A° is nowhere dense in K°.
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1. Preliminaries. Let [, be the space of all bounded real-valued func-
tions on N and 1, its dual. u’ €l is called a mean if [u'| = 1 and u'(1) = 1,
in which case u’ > 0. Let M’ be the set of all means. We shall regard SN
as all multiplicative means on ! and identify N with its natural injection
into N. If u’e« M’, there is & unique regular Borel probability measure
u on BN for which

wW(f) = [Jdu for fel,
BN

where f is the continuous extension of f to SN. The mean u'e M’ is
o-invariant if u'(foo) = u'(f) for fel,. Let M, be the set of all o-in-
variant elements of M’'. Then M, = {u': ue M,}.

Let N* denote the set of all non-zero elements of N. Then if me N
and ne N*, define T,(m,n)e M’ by

n—1

(1.1) T,(m, m)(f) = /n) ( ' f(o*m)) for fel.
The following lemma is then well known (see [7]):

LemMMA 1.1. Let I be a directed set and, for ae I, let m,e N and n,e N*
be given. Let

”, = lirnTa(ma7 M),

where this limit is assumed to exist in the weak* topology. Then u' e M,
whenever limn, = oo.

If we M' and 4 = N, we write u'(4) for u'(yy), where y, is the
characteristic function of 4. We then define d,(4) by

d,(A) = sup A1 (4).

NeM,
It has been shown in [8] that
(1.2) d,(A) = limsup (supT,(m, n)(4)).
n—00 m

For me N and ne N* let I (m,n) = {o'm: 0 <i<n—1} and I,(m, 0)
= . Let |A] be the cardinality of a finite subset A of N. Then, by (1.1),

(1.3) T,(m, n)(4) = (1/n) (IANI,(m, n)i).

2. Discrete c-orbits in K°. For A< N let A =An (BN — N), where
4 is the closure of 4 in SN. The sets A form a base for the topology of
BN — N. For this and other properties of the sets A, see [10].
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LEMMA 2.1. Let Ay, A,, A,, ... be a sequence of subsets of N such that

(2.1) d™A,Nnd"A, is finite if m # n.

Then (M jik is contained in D°.
\ k=0

Proof. For ne N let

4,.

DX

V,=06"4, and we
k

0
Then V, is & neighbourhood of ¢"w for each n and, in view of (2.1),
VanV, =0 if m +# n. Hence O,(w) is discrete and we D°.

LeEMMA 2.2. Let A < N. Then there are sequences (p,) and (gq,) in N
such that

(2.2) lim ¢, = + o0,
(2.3) lim(1/g,) (IANL,(Ps, ga)l) = d.(4),
and

(2.4) the sets (Ic,(pn, Qn))nen OT€ Dairwise disjoint.

Proof. Suppose py, 1y .-y Ppr_y @nd ¢, ¢, -.., ¢,—; have been chosen
so that

() ¢; >t for 0 <i<<n-—1,

(b) (1/g:)(IANIs(p;, ¢:)l) > d,(4)—(1/i+1), and

(c) the sets (I,(p;, ¢;))ocicn_: are pairwise disjoint.

In view of (1.2) and (1.3) this can be done for n = 1.

Now let

n—1
X = .L;JoIa(p'i’ qz)

and choose 7y, 74, ..., 7;, and so,'sl, ...y 83 In N so that if some set I,(p, q)
meets X, there is a unique j, 0 < j < k, such that I,(p, q)nX < I,(r;, s;).
By (1.2) and (1.3), sequences (m,) and (n,) in N can be found so that

lim (1 /n,)(|4 NI, (m,, n,)|) = d,(A).
p->00
For each p, let

U. v.
I,(myy mp) = Lo(mp, uy)V Io(0 Pmy, v, —uy)V I (0P My, n,—0p),

where I,(m,,u,) and I,,(a”pmp, n,—v,) are disjoint from X and
I,(cr“"mp, ¥p — Up,) 18 contained in ‘some I,(r;, s;), 0 <j < k. We see that

lim (1/('"’17 +'n’p_'vp)) (14N (mp, uy)| + |4 nIa((’vpmm ”p_'vp)l) = d,(4),

p—00
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so that either

limsup (1/u,) (14 NI, (m,, u,)) = d,(A4)
P—00
or
limsup (1/(n, —v,))(14 NI, (0Pm,, n,—12,)l) > d,(A4).

DP—>00

In either case it is now clear that p, and ¢, can be found so that (a),
(b) and (c) hold with » in place of n —1, so that (p,) and (q,) have been
defined for all » and (2.2) and (2.4) hold. By (b),

liming (1/g,)(|4 NI, (Ps, )l) = d.(4)

and (1.1), (1.2), (1.3) and Lemma 1.1 ensure that
limsup (1/g,)(140Lo(Pg, ¢a)1) < do(4).

n—»00

Hence (2.3) holds.

Definition 2.1. Let A = {6"m, ¢"'m, ..., " 'm}, where me N and
0<ne<m< ...<Mmy_;. Assuming that s <p, a map y:I,(r,8)—> A
is defined by letting y(r + %) be o''m for 0 < 7 < s—1. The map y is called
the o-injection of I,(r, s) into A.

PropoOSITION 2.1. For each motion o, D°NK° is dense in K°.

Proof. This is divided into a number of steps.

I. For each ne N* let t,,, ty,, ..., t,, De given in N*. Then subsets
B@1,n), B(2,n),...,B(n,n) of N are defined inductively as follows:

If 2 < k<mnand B(1,n), B(2,n),..., B(k—1, n) have been defined,
then

B(k,n) = {(S:l(j—i—l)tjn) +(k+1)i: 0 <4 <t,—1}.
ji=1

Then |B(k, n)| = t,,. Moreover, if 0 <j and k <n with ¥ # j, then
?B(j,n)Nt*B(k,n) =@ for all 0<p<jand 0<g<k.

For n,se¢ N* and 1 < k < n we now let

Bk, n, ) U[(UB(J,'n)) +z(2 (3+1) )|

The significance of the sets B(k, n, s) lies in the facts that if 1 <,
k< m and j # k, then for all s

(2.5) ?B(j,n, 8)NT*B(k, n,s) =0
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and
(2.6) B(j,n,8) < B(k,n,s) if j>k.

For future reference let us remark that if we take t;,, = 2"7'~* for
1 << n, then

‘igktin 2—k_+l —9-n
no - 3-3-27"—p-27"’
2 (7' +1)tin
i=1
so that
n
_Ztin
(2.7) lim — =% _ (1/3).27%+1,
n—oo

M=

(7’ +1)tin
{
II. Let A = N and suppose A meets K°. Then d,(4) >0 and, by
Lemma 2.2, sequences (p,,) and (g,) may be found in N so that (2.2), (2.3)
and (2.4) hold. For ne N let

I

1

(2.8) AL (Pay @)l = 2y ( D) (5-+1)14,) +n,

f=1

d S

where u,,v,¢ N and 0 < v, < (t+1)t;,.

1

I
-

In view of (2.2) and (2.3), |[ANI,(p,, ¢,)] = o© a8 » — oo, and we may
assume that

i

(2.9) u,>1 and limv,/(|ANI,(p,, ¢.)l) = 0.

By virtue of (2.8) and (2.9) we see that B(k, n, u,) is contained in

L.(0, 4, Y i+1)t,)
i=1

and that we may let y, be the o-injection of this latter set into ANI,(p,, ¢,)-
Then define A4, for ke N* by

A, = O (Vn(B(k7 ", ’“’n)))

n=k
and let A, = A,. From the definitions and (2.4), (2.5) and (2.6) it follows
that
(2.10) dANFA, =0 fj£k
and
(2.11) A2D2A4,24,24,>...
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Now let 2, = T,(p,, q,)- Then, by (1.3),

n

In(Az) = (Un/qa) Dt for n>k.

i=k
Together with (2.8) this gives

tin
K(d,) = — =k (1_ Vn )lAnL,(pmqnn
IAnIo(pm )l qn

n

2 (i+1)ty,
i=1
If we now choose the t;, so that (2.7) holds and use (2.3) and (2.9),
then
lim4,(4,) = (1/3)-27%+1d (4) > 0.

N—>»00

Hence, if 1’ is a limit point of (4,), then 1A'« M, by Lemma 1.1 and
(2.12) A(4,)>0 for keN.
ITI. In view of (2.11) and (2.12), there is

-

w € (suppi) N (6 Ak),

so that we K°NnA. However, by (2.10) and Lémma 2.1, we D°. Hence,
if A meets K°, then A meets D°NK° and the proof is complete.

3. Discrete g-orbits in 4°. For C = N and % «N*, C is called a k-chain
if |m —n| < k whenever m and » are successive elements of C.

LEMMA 3.1. The following are equivalent conditions on & point w in
BN —N: )

(1) we A°, and

(2) given a neighbourhood U -of o in BN — N, there is ke N* for which
{i:ie N and 6’we U} is a k-chain having an infinite number of elements.

Proof. This is a straightforward adaptation of either Lemma 2.4
of [1] or Proposition 3.1 of [4].

ProPOSITION 3.1 (cf. Remark 1.4 of [11]). For each motion o, we have
D°NA° = 0.

Proof. If we D’ there is a neighbourhood V of w in BN, so that
VNnO,(w) = {w}. By Lemma 3.1, w¢ A°.

LEMMA 3.2. Let A = N. Then the following conditions are equivalent:

(1) d,(4) =1,

(2) given me N, there is me N for which I,(m,n) < A, and

(3) there are sequences (p,) and (q,) in N such that limgq, = oo, the

n—-o0

sets (I,,(p,-, 4:))ien are pairwise disjoint and I1,(p;, ¢;) < A for each 1.
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Proof. (1) implies (3) is & consequence of Lemma 2.2. (3) implies
(2) is obvious, and (2) implies (1) is immediate from (1.2) and (1.3).

LEMMA 3.3. Let A < N. Then the following conditions are equivalent:

(1) An4° £ 0,

(2) An 4° £ @, and

(3) for some re N*, d,(AUcAU ... Ud™'4) =1.

Proof. The equivalence of (1) and (2) is obvious as A4 is open. If (3)
holds, AucAuyU ... Us" !4 must contain some o-minimal set which will
then meet A, and (1) follows. If (3) does not hold, it is straightforward to
adapt the argument of [1], p. 784, to prove the result — the idea is to use
Lemma 3.1 instead of Lemma 2.4 of [1].

LEMMA 3.4. Let A < N, me N and r, ne N* with r < n. If
I, (m,n)s AvcAdu...ud 4,
then {i: 0 <i<n—1 and o'me A} is an r-chain whose first element 1s
inclusive between 0 and r —1.
The proof is easy and is omitted.
PROPOSITION 3.2. For each motion o, D°NA° is dense in A°.

Proof. Let A = N and suppose A meets A°. By Lemma 3.3 we may
choose re N* so that d,(AUcAuU...Uc"'4) =1. By Lemmas 3.2
and 3.4, choose sequences (p,,) and (¢g,) in N so that (2.2) and (2.4) hold; if

J, ={i: 0<1<¢q,—1 and ofpneA},

then

(3.1) J, is an r-chain,

and

(3.2) Tl = D)+ 1) b,
i=1

Here the i;, are as in the proof of Proposition 2.1 and we choose them
so that '
(3.3) lim¢,, = oo for ke N*.
e n
In view of (3.2), we may let y, be the o-injection of I,(0, > (i+1)t,,)
into AnI,(p,, q,)- Then define O, for ke N* by =1

¢, = Qk(yn(B(k, n, 1))

and let C, = C,. By (2.4), (2.5) and (2.6), we have

(3.4) ?C;nd*0, =0 it j #k,
and
(3.5) A=20,20,20,2...
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Now each set B(k,n,1l) contains B(k,n) which is a (k-+1)-chain
having ¢, elements, so that, by (3.1), the set

{i: 0<i<gq,—1 and o'p,ey,(B(k, n, 1))}

must contain an r(k--1)-chain having ¢, elements. Hence there is
Pue yn(B(k, n, 1)), so that

I,(Ps tin) S CU a0, U ... UED-1(0,
In view of (3.3) and Lemma 3.2 we can deduce that
d,(C,VaCiu ... UEI-I0) = 1.

By Lemma 3.3, 0, meets A° for all ke N. By (3.4), (3.5) and Lemma 2.1,
we may choose we D°NA°NA and the result is established.

The following corollary is not surprising, but to the author’s knowledge
has not been proved before.

COROLLARY 3.1. A° i8 not closed.

The proof is immediate from Propositions 3.1 and 3.2.

In [1], Chou has proved that there are extreme points of M, whose
support is not r-minimal. None of these extreme points he constructs are
supported by A_‘, although the following proposition shows that this does
happen.

ProposITION 3.3. For each motion o, there is an extreme point of M,
whose support is not o-minimal but which is contained in A’

Proof. Let we D°NA° by Proposition 3.2. Let y: N — O,(w) be
y(t) = ¢'w. The map y extends to @ homeomorphism, which we also denote
by 7, from SN onto §(0,(w)). By 6.9 and 14N of [5], §(0,(w)) = 0,(w).
Moreover, yor = coy on SN. By 2.5 of [1], let ¢ M, be an extreme point
of M, whose support is not r-minimal. Then 1oy~! is an extreme point
of M, whose support is not o-minimal. However, the support of Aoy~!
is in 5,,(w). Now we A—", so that O,(w) = A° and the result follows.

4. Homeomorphic minimal sets. Here we show that any o¢-minimal
set is homeomorphic to uncountably many other ¢-minimal sets.

LEMMA 4.1. Let B< N and assume that d (B) = 1. Then there is
we D° for which O,(w) < B.
Proof. Let ¢, be numbers as in the proof of Proposition 2.1. Let

@n =D (i +1)t.

t=1
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Then, by Lemma 3.2, there is a sequence (p,) in N, so that (2.2)
and (2.4) hold and I,(p,, q,) < B for «ll n. Let y, be the o-injection of-
1.(0,q,)into I,(p,, q,) and, for ke N*, let

A, = L_)k(yn(B(k,n,l))) and A, = A,.

Then (2.10) and (2.11) hold for the sets A, and ¢*(4,) = B for all
ke N. Let

m -~
we () 4.
k=0

Then weD° by Lemma 2.1. Since o*wed* 4, = B for all k, O,(w) < B.

LemMA 4.2. Any tv-minimal set in BN — N i8 homeomorphic to each
set of an uncountable family of v-minimal sets in fN — N.

Proof. Let M be a r-minimal set in SN —N. By Corollary 3.1 there
is an infinite family of r-minimal sets, so that we may choose A < N with
M < A and d,(N — A) = 1. By (1.9) of [1], there is an uncountable family
(B,) of subsets of N— A such that d,(B,) =1 for all a and B,NB, is
finite if @ # B. By Lemma 4.1 choose w,e D* so that O,(w,) < B,. Now
let y,: BN — O,(w,) be the homeomorphism obtained by extending i — *w,
on N to BM (since B(0.(w,)) is O.(w,) by [5], 6.9 and 14N). Then yp,07
= 70y, on BN, so that y,(M) is r-minimal for each a. Since (Ii’a) is a dis-
joint family and y,(M) < 0,(w,), we infer that (y,(M)) is an uncount-
able family of r-minimal sets to each of which M is homeomorphic.

ProPOSITION 4.1. Let o, and o, be motions. Then each o,-minimal
set in BN —N i3 homeomorphic to each set im an uncountable family of
ao-minimal sets in SN —N.

Proof. In view of [2], Theorem 4.8, and [9], Theorem 2.17, there is
no loss of generality in assuming that {o{m: ie N} = N for some me N.
Let ¢: SN — BN be the homeomorphism obtained by extending the map
i - oim from N to SN. Then ¢,0¢ = @o7 on BN, so that if M is a ¢,-min-
imal set, ¢ '(M) is z-minimal. By Lemma 4.2, there is an uncountable
family (M,) of r-minimal sets all homeomorphic to ¢~ !(M). By arguing
now with ¢, in place of o,, there is a homeomorphism y: N — N such
that y(M,) is o,-minimal for each a. Then M is homeomorphic to y(M,)
for each a, and the result is established.

5. Nowhere denseness of A° in K° Let us recall a construction
due to Chou in [1]. Let 4, ={1,2,3}. If A4,, 4,,..., A, have been
defined, let

Ay =AU {supd, +n+A,}U{2supd,+2n+ A4,}.
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This defines A, 4,, ... by induction. It is easy to see that
(5.1) any k-chain in 4, has at most [4,| elements.

PROPOSITION 5.1. For each motion o, A° is nowhere dense in K°.

Proof. Let A = N and suppose A meets A°. By Lemmas 3.2, 3.3
and 3.4, there is an re N* and sequences (p,) and (g,) in N exist, so that
(2.2) and (2.4) hold and, for each =,

(5.2) {i: 0<i<gq,—1 and &'p,e A} is an r-chain

having sup 4,, elements, whose first element is 0 and whose last element
is q, —1, where 4, is as in (5.1). Hence we may let y, be the o-injection
of I.(1,supAd,) into ANI,(p,,q, and let

B = Uyn(An)'

neN*

Then Ta(prn Qn)(B) = IAn]/Qn Now

lim|4,|/(sup4,) = 2/3

~>00

(see [1]), and (5.2) ensures that (sup4,)/q, = 1/r. Hence, if ' is a limit
point of (T,(P,, ¢,)), X'€« M, by Lemma 1.1, and A'(B)>0. Hence B
meets K°.

It now follows from (5.1) that if me N and k, ne N*, then any k-chain
contained in {i: ¢ N and o*me y,(4,)} has at most |4,| elements. From
this it is easy to see that any k-chain contained in {i: i< N and ¢‘me B}
has at most |A4,|+ [4,]+ ... +[4;_;] +3|4;] elements. In view of Lem-
mas 3.2, 3.3 and 3.4, we deduce that BNA°= 0. Since B = A and B meets
K°, the result is established. -

COROLLARY 5.1. If we D°NA° then A°— O, (w) contains an infinite
family of o-minimal sets.

Proof. Let us assume that M,, M,,..., M, are all o-minimal sets
in A°—0,(w). Then

A°—0,(w) = MyUM,V ... UM,.

Let y be the homeomorphism from SN onto O,(w) constructed in the
proof of Proposition 3.3. Then

y(4') = A°— (M, UM,V ... UM,),

which, by Proposition 5.1, must be nowhere dense in A°. This is clearly
impossible.
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6. Remarks.

6.1. If we SN — N, then the induced topology on O, (w) leads to a to-
pology T, on N by identifying N with O,(w) by means of the map i — ¢’ .
The topology T, is Hausdorif and v is T,-continuous. If we A° then every
open set in T, will be a k-chain for some ke N (by Lemma 3.1). So far
there do not seem to be examples of points of SN —N which belong neither
to D° nor to A°. If such a point w does exist, the topology T, will be non-
-discrete and will have open sets which are k-chains for no ke N*. Such
topologies on N are possible.

6.2. In view of Proposition 4.1 it would be interesting to have an
example of two non-homeomorphic ¢-minimal sets or to prove that this
is not possible. (P 938)

6.3. Assuming the continuous hypothesis, Rudin [10] has constructed
homeomorphisms of SN — N which arise from no motion on N. I do not

know what results of this paper are valid for such homeomorphisms.
(P 939)
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