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In [3] it has been shown how several analogies between topological
and measure spaces can be subsumed under an abstract theory of Baire
category. There are, however, additional analogies concerning Hamel
bases, translations of sets, and decompositions of sets. The purpose of this
note is to indicate how some of these results can be unified.

Unless otherwise stated, X denotes the real line with the usual to-
pology and algebraic operations. We shall also use the terminology and
theorems of [3] (cf. also [4]).

Definition. A family € of subsets of a fixed non-empty set X is
called a R-family if it satisfies the following axioms:

(a) X =U¢%.

(b) Let A be a ¥-set and let 2 be a non-empty family of disjoint
€-sets which has power less than the power of €. If An({U2) contains
a ¥-set, then there is a 2-set D such that 4 ND contains a ¥-set. On the
other hand, if An({UJ2) contains no #-set, then there is a ¥-set Bc A
which is disjoint from all 2-sets.

Notation. If 8 is a subset of X and te X, then 8(t) = {# +t: ze 8}.

Definition. A R-family ¥ is called an S-family if it satisfies the fol-
lowing conditions:

(1) ¢ is translation invariant.

(2) If A is a ¥-set and D is a topologically dense subset of X, then

U A(t) is a €-set everywhere.
teD

Remark 1. It follows immediately from condition (2) that every
€-set 18 a Epy-set.

Here are three examples of S-families.

Example 1. Let € be the family of all (non-empty) open intervals.
The sets which have the Baire property with respect to € are the sets
with the classical Baire property.
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Example 2. Let € be the family of all comp:ict sets of positive Borel
measure. The sets which have the Baire pioperty with respect to € ave
the Lebesgue measurable sets.

N

Example 3. Let # be a translation invariant (proper) o-ideal and
let ¥« ={4: X ~ AeS}. The faniily of sets having the Baire property
with vespect to ¥ is €u.s.

Throughout this paper € will denote an arbitrary S-family and the
Baire property will be with respect to %.

Condition (1) immediately yields the following

THEOREM 1. The families of €-singular sets, €y-sels, and sets with
the Baire property are translation invariant.

Upon the application of the Fundamental Theorem ([3], Theorem 2)
a strengthening of condition (2) is obtained.

THEOREM 2. If S is a €y-set and D is a topologically dense subset of

X, then (U S(t) is a ¥y-set everywhere.
teD

Proof. Let S be a ¢;-set everywhere on a €-set A and let E be a count-
able, topologically dense subset of D. Suppose B is any %-set. From con-
dition (2), Bn| U A(t)] is a %yr-set. Hence, for some te B, BNA(t) is

te

a €y-set, whence, in view of Theorem 1 of [3], it contains a €-set C. Since
S(t) is a %yr-set everywhere on A(t), CNS(f) is a Fy-set. Therefore,

Bn[U 8(t)] is a €r-set for every €-set B.
teD

COROLLARY. If S is a €y-set with the Baire property and D is a topo-

logically dense subset of X, then ) S(1) is a €-residual set.
teD

The following theorem generalizes a result found in [11]:

THEOREM 3. If D is a topologically dense subset of X, S and T ave €11
-sets, and S has the Baire property, then there is a denumerable subset D,
of D such that SNT(a) is a €11-set for every ae D,.

Proof. Let 8 be a €;;-set everywhere on a €-set A, let K be a count-
able, topologically dense subset of D, and let

U=\ T(a).
aek

Since U is a €yy-set everywhere, UNA is a €;;-set. From the assump-
tion that 8 has the Baire property it follows that A ~ 8§ is a #;-set. Hence
Un(An8) and UNS are €y-sets. There exists then an element a,¢ K
such that SnT(a,) is a €-set. Having defined a,,...,a,, repeat the
reasoning to obtain an element a,,.,¢ £ ~ {a,, ..., a,} such that §nT(a,.,,)
is a €ir-set. Let Dy, = {a,, as, ...}.

The category version of the following theorem is due to Banach [2].
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THEOREM 4. If G is a topologically dense, additive subgroup of X which
has the Baire property with respect to €, then G is either a €y-set or identical
to X.

Proof. Assume @ is a € ;-set and let D be a topologically dense subset
of G. Suppose x is any element of X. Since G has the Baire property, it
follows, as in the proof of Theorem 3, that

Gn[U G(t—a)
teD
is a €;-set. Hence there is an index ¢ such that GNG (I —x) # 0. Selecting
an element ye GNG(t —x), we have £ +y = z -+t for some ze¢ G. Therefore
x=(2+t)—yeG.

Remark 2. Since every uncountable, additive subgroup of X is to-
pologically dense, one can replace the hypothesis that G is topologically
dense by the hypothesis that every countable set is a %;-set.

Remark 3. Theorem 4 is also true when X is the set of all non-zero
real numbers with the usual relativized topology, the group operation
is multiplication, and ¥ consists of all (non-empty) open intervals contained
in X; as is easily seen from the proof of Theorem 4.

The existence of sets which do not have the Baire property is obtained
from the well-known construction of Vitali. First, we prove a basic lemma.

LEMMA. If S is a subset of X, D 18 a topologically dense set, and
S(r)yn8(t) =0 for all r,te D, r #t,

then the complement of S is a €y-set everywhere (or, equivalently, S contains
no €yr-set with the Baire property).
Proof. The conclusion is obvious if § is a €;-set. Assume 8 is a €y;-set,
let a be a fixed element of D, and let £ = D ~ {a}. From Theorem 2
and the inclusion
U S = X ~8(a)
teE
it follows that X ~ 8(a), and hence also X ~ §, is a €;-set everywhere.
THEOREM 5. X can be decomposed into denumerably many, disjoint,
congruent sets, none of which has the Baire property with respect to any S-
family.
Proof. Let @ denote the set of rational numbers. Define an equiva-
lence relation on X by # =y if x —ye Q. Choose one member from each
distinet equivalence class and let S be the set of elements selected. Then

X=US@ and S@r)nS(t) =0 for r,teQ,r #1t.
teQ
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THEOREM 6 (cf. [5]). Every €y,-set with the Baire property contains a set
which does nmot have the Baire property.

Proof. Let § be a €;-set with the Baire property, let D be a count-
able, topologically dense subset of X, let

U = U S (t)’
teD
and let N be a set which does not have the Baire property. The equality
N = (NnU)u(N ~ U) and the fact that X ~ U is a %;-set imply the
existence of an index te D such that NNS(t) does not have the Baire
property. Hence SNN(—t) does not have the Baire property.

In [7] Sierpinski proved that a Hamel basis has inner Lebesgue
measure zero and in [10] he proved the category analogue that the com-
plement of a Hamel basis is everywhere of the second category. In the case
of measure, Ruziewicz proved a stronger result.

THEOREM 7 (cf. [6]). If B is a Hamel basis and U is a union of fewer
than continuum many translates of B, then the complement of U is a € -set
everywhere.

Proof. Let I be a set of real numbers of power less than the power
of the continuum, let

U= U B(t),
tel
let D be a topologically dense set of non-zero rational numbers such that
lr—8| #= 1 for all r, se D, and let b be an element of B which does not
occur in the Hamel expansion (in base B) of any element of I.

Assume r,s8e D and U(br)nU(bs) # 0; then there exist ¢,,t,el
and b,, bye B such that b, +1?, +br = b;+1t,+ bs. Since the expansions
of ¢, and t, do not contain the element b, it is easily seen that in the ex-
pansion of b, +t,-+br the element b occurs either with coefficient » or
with 1 +7 and in the expansion of b, +t,-+ bs the element b occurs either
with coefficient s or with 1+ s. From the uniqueness of Hamel expansions,
one of the following equalities holds:

r=¢8, r=1+4+8, 14+r=s, 14+7r =14+s.

By virtue of the choice of D, we must have r = s. The conclusion
now follows from the Lemma.

COROLLARY. A Hamel basis with the Baire property is a €y-set.

THEOREM 8 (cf. [1] and [7]). The set S of real numbers whose represen-
tation with respect to a given Hamel basis B does mot contain a given fired
element b e B does not have the Baire property. In fact, both 8 and X ~ 8
are €yy-sets everywhere.
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Proof. Let @ denote the set of all rational numbers, let ¢ be a fixed
element of B ~ {b}, and let T be the set of all real numbers representable
as a rational linear combination of elements of B ~ {b, ¢}. From the equali-
ties

X = US@pbr) and 8= U T(er)
reQ reQ
it is seen that S and T are %;-sets. By Theorem 2 and the Lemma, 8
and X ~ 8§ are %-sets everywhere.

Finaily, we unify two theorems regarding the functional equation
fle+y) = f(z) -f(y)

Definition. A function f: X — X has the Baire property with respect
to ¥ if the inverse image of each open set has the Baire property with
respect to €.

THEOREM 9 (cf. [8] and [9]). Suppose every Borel set has the Baire
property with respect to € and € is invariant under reflection about 0. If
f(x) has the Baire property and satisfies the functional equation f(z -+ y)
= f(x)+f(y) for all z,ye X, then f(x) = ax for all x, where a = f(1).

Proof. Set ¢(z) = f(®) —2-f(1); then ¢(x+y) = ¢(x)+¢(y) for all
z,y. It can be shown that, for every rational number 7, ¢ (r) = 0. Hence

(%) p(x+r) = g@(x) for every rational number r.
Let E = {x: ¢(x) = 0}, F = {x: ¢(x) > 0}, and G = {x: ¢(x) < 0}.
Since ¢( —x) = —o@(x), the sets F' and G are symmetric about zero. Assume,

for some real number b, that ¢(b) # 0.
We first show F is a €py-set. This is clear if E is a €-set. On the other
hand, if E is a %y-set, then so also is

E(—b) ={z—b: p(x) =0} = {y: ¢(y+b) = 0}.

But if ¢(y-+b) = 0, then, since ¢(y+b) = ¢(y)+¢(b), y does not
belong to E. Hence E( —b)is disjoint from E. Thus, in any case, F'is a €y;-set.

It follows from (x) that F and G are % ;-sets everywhere; whence F
and X ~ F are %;-sets everywhere, and ¥ does not have the Baire prop-
erty. However, this contradicts the fact that ¢ (#) has the Baire property.
Therefore, ¢(z) = 0 for all real numbers z.
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