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1. Introduction. In the space L. () (*), the integral equation
(1.1) w@)— [E (o, y)u@)u(dy) = g(@) (2e9),
2

where (2, X, ) is & measure space, and u(£2) << + oo, has been solved,
by the Monte Carlo method, in papers [10] and [11].

Suppose that there exists a set QyeX with Q, <« Q and u(£2,) >0
and that it satisfies the following conditions:

(A) For all feL, (2\%2,), the series ) T7%f converges in L. (2\£Q,),

n=0

where the integral operator T, is defined by the formula
[T.f1() = [ IK(@, 9)If@)uldy) (2e2\Q).
a\ ',

(B) K(z,y)=0 for e 2\ 02y (modyu) and ye£2, (modu).
(0) K(x,y) =0 for e, (modu) and ye2 (modu).

The Monte Carlo method is also used in papers [10] and [11] to ob-
tain an estimation of the value of the functional

(1.2) (4, 9) = [u(@)p(@)p(ds),

where u(x) is the solution of equation (1.1), and peL,(£2) (2).

It is well known (see [7]-[9]) that various probability models have
been considered in some special cases for the solution, by the Monte
Carlo method, of problems (1.1) and (1.2).

(*) L3 (A) denotes the space of Z-measurable and bounded on 4 (mody) fune-
tions, where AeX.
(%) L,(A) is the space of u-integrable functions on A, where AeX.
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For solving a particular case of problems (1.1) and (1.2) (without
conditions (B) and (C)), a number of probability models has also been
given in [2].

In order to estimate the computational times of these models, the
estimation of variances of random variables constructed in suitable models
is considered in [5], [4] and [3].

We know that the mentioned variances exert a great influence on
the computational times of the models, but they do not precisely define
the computational time. Therefore, an exact theoretical background for
choosing the optimal model and for comparing the ones already known
has been resolved so far (see [2], p. 1280, and [4], p. 244).

In this paper, we shall, at first, estimate the time needed for solving
the problems (1.1) and (1.2) by probability models displayed in [10]
and [11]. We shall also compare these models and choose an optimal one
with respect to the calculation. Moreover, we shall also consider the dimi-
nution of the time needed for solving the mentioned problems.

By the results of [10] and [11], we remark that the probability models
for solving the problem (1.1) are not essentially different from the ones
for solving the problem (1.2). Therefore, we shall only consider the esti-
mation of the time needed for solving the problem (1.2).

\ 2. Concept of the e-scheme. Suppose that there exists a (X x2X)-
measurable function p(z, ¥),-bounded on 2 x 2 and‘lsa,tisfying the follow-
ing conditions:

() a =vrai sup | [ K(s,9)p(s, y)u(dy)}<1,

B ze\Qy g
(Py) K(z,y)p(z,y) >0 for ze2 (modu), ye (modu),
(Ps) p(z,y) #0 for (2,y)eQx 2 (modp X ).

Then there exists a set A*eX such that u(A*) = 0 and (see [11] or
[10], Lemma (2.1))

(B%) K(w,y)>0 for 224\ 2y, ye, (qu[l,),

where Q% = O\ A%

(P}) o* = sup {[p@ 9) K@ y)pdy)<1,
3‘9:4\90 Q

(P;) p(z,y)K(z,y) >0 for we.Q:, Y (modu),

(2.1) G = sup {lg(@)} < +oo.

xe Q.A.\ Qo.
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Let the complete measure u be the extension of x on the o-field
Z o 2, let é be a positive constant, and let
(22) 9=0UQ% Z=ZUX pAd =pAnQ)+66; (VAI),
where Q% is a set satisfying the conditions
(2.3) Q* 20 and OQ'NnQ=0.

Let X* and 67 be determined by
1 if AnNQ* 20,

0 if AnQ* =0.

It is proved (see [10] or [11], Lemma (2.3)) that under these condi-
tions (2, Z, i) is & space with a complete measure.

Basing on the measure space (f), z , ), we construct two homoge-
neous Markov processes in the broad sense in the phase space Q (see [6],
Pp. 280-283). The transition probabilities P, (%, x, ff) (¢ =1, 2) correspond-
ing to each Markov process are determined (see [10] or [11], Lem-

a (2.4)) (3) by the formulas

(24) S* ={Ad:A =AUQ*; AeZ}, 67 =

(2.5) Pi(k’m’j-) = fPi(k_lyyaA’-)Pz’(l,w’ dy)
i
(we.é; fief’; Ek=2,3,...),
where
| [P, idy) i e QD
(2.6) P, z, A)=1) i
x4 (®) if zed*U QU0
(2.7)
p(@,y)K(z,y) if (0, y) (2N 0Q) X (2\£2),
_ 9:(%)p (%, ¥) . *
Fi»,y) = { px,y)K(z,y)+ m if (@, y)e(25\ Q) X £,
hy () it (@, y)e(Q%\ ) x 2%,
1 9:(») p(w,y)u(dy)]
2.8 h; =—11- y Y) K (@, dy) — ’
@8) o) = 5|1~ [l 0Kie, vuia s ]
(2.9)
2G.M
ga(0) = —[lg(w>|+xgo(w>(l_a, +A)], 02(0) = g(0)—ga(0)  (@e ),
(2.10) M = sup {lp(z, y)I} < + o0,

@2 2)x 9
4 is a positive constant.

(%) In [10] and [11], each such Markov process is called the ¢-th process (+ = 1, 2).
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Let P(-) be a p}obability* measure defined on the o-field by the
formula
(2.11) PA) = [a(a)u(do) (VAZ),

A

where =(x) is & function satisfying the following conditions:

(I1,) 0<zm(r)< +00 on 2 (modu),
(I1,) n(@)>0 on 2 (modi), [ w(z)i(dw) =1.

Suppose that Q0 is the sample space of trajectories of the i-th pro-
cess with the initial probability distribution P(-). Put

(2.12) Q9 — | Q9[n],
n=0
where 29[n] is the subspace of 29 consisting of trajectories of the i-th
process of the form
(2.13) Byg—> By —> ooo =By,
(@€ Q0 215 Dgy By -evy By e LN\ Qg5 2 = ATV LN\ Q,),

i.e. Q9 is the subspace of 29 and consists of trajectories of the i-th pro-
cess of the form

(214) Zg—> B> ... >x; (Be2yVUQy; @gy Byy .oy By Q5N Qy),

where ! is a finite natural number.
Let F9(x,, #,, ..., ) be the function defined on Q2 by the formula

(2.15)

( @ (%) 9; ()
7t (B0) P (@oy #1) -+ P (%11, Ty)
FO(z,, Byy ooy By) = < @ (@) 9; (o)
7 (%,)
\ 0 if @;e0;.

if {DIG.QO; l> 1’

if wye L2,

Then (see [10] or [11], Section 3) #® = F®(x,, x,, ..., ;) is the
random variable defined on the probability space (2®, @ u) where

~

S0 = Fx %t XEX ...
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and

(2.16)  EOLAgx Ay X ... X A}

= [P(dw) [Pi(1, @, dwy)... [P(1, 2, ,, dw)
- i

(ApeZ; £ =0,1,2,...,10).
We know that (see [10] or [11], Theorem (3.1))

(2.17) My = (u,9) = [ 4 (@)p (@) p(dw),
2

where u¥(z) is the solution in L () of the equation

(2.18) u(@)— [K(z,y)u® @) u(dy) = g:i(a) (2Q).
Q2
"Therefore,
(2.19) My + My = (u, 9) = [u(@)g(@)p(ds),
Q2

where «(x) is the solution in L. (£2) of equation (1.1).

From the previous results, we deduce that the computational
scheme for estimating the value of functional (1.2) consists of the fol-
lowing steps:

1. Sample a trajectory, having form (2.14), of the ¢-th process (with
the initial probability distribution P(-) and the transition probabilities
Pi(k, z, +))-

2. Calculate by formula (2.15) the value of the random variable 7
corresponding to this trajectory.

3. For each ¢-th process (¢ = 1, 2), repeat all the computations
in steps 1=-2 for N; times (N, is sufficiently great). Then we obtain the
values 70, 5%, ..., n{,, where n{) (k =1,2,...,N,) is the value of the
random variable #® corresponding to the %-th trajectory of the i-th
process.

4. Estimate the values of the functionals (u4®, @) (i = 1,2) by the
following approximate formulae (see (2.17)):

N;
. 4 o
(2.20) W0, 9) ~— Do) =79 (i =1,2).
T F=1

5. Estimate the value of funectional (1.2) by the following approxi-
mate formula (see (2.19)):

(2.21) (u, ¢) ~ 7 479,
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Suppose that
(2.22) D%< 400 (i =1,2).

Then we easily infer that the number N; of “experiments” of the
i-th process (in the mentioned computational scheme) is finite and connected
with the error ¢ of the approximate formula (2.21) by the relation
(see [1], p. 11)

(2.23) N, = [D9€1+1 (6 =1,2),

where [Dn® /3] is the integral part of the value Dx®/¢% and the constants
g (t =1, 2) are defined by the conditions

1
(E) 81-{—82=§-8 (¢, >0;¢=1,2).

Definition 2.1. Let conditions (2.22) be satisfied and let N, (z = 1, 2)
be defined by formula (2.23). Then, 3 computational scheme consisting
of the steps 15 for estimating the value of functional (1.2) with the
error ¢ (%) is called an e-scheme. We denote the e-scheme by S,.

Let #? be a time to realize the j-th step (j =1, 2) of §, for the i-th
process (¢ = 1, 2); let C, (or Cp, C,, C;) be the mean time for calculating
the value of the function =(x) (or p(=, ¥), 9;(x), ¢(x)); let C, (or C,,, C;)
be the mean time for realizing an addition (or & multiplication, a divison);
and let 7, (or %) be the mean time for defining an initial state , (or
for defining a transfer from the state «, to a state x,.,) of a trajectory
having form (2.14) of the i-th process.

Then #? (j = 1, 2) are the functions defined on 2® by the formulae

(2.24) £ =10 (@, @1, ..., ) =T+ 1D,

0?.) + ZO2 if $l€ Qo,

2.25 1 =12y, Byy oy &) =
(2.25) 3 2 (Loy L1y .0y Ty) 0 if 2,0,

where ze QyU Q,, Ty, By, ..., B, e Q%\0Qy, and

(2'26) Og.i) = 0¢+Ogi+on+0m+0d’ 02 = p+0m'
We know (see [11], formula (3.11)) that
(2.27) AOLQON QM — 9.

Hence ) (j =1, 2) are the random variables defined on the pro-
bability space (20, ¥ u®),

(%) In the computation we do not discuss the round-off error.
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Let ¢ be a time to realize the calculations for estimating (u®, ¢)
in the 4-th step of 8., and let #{) be the function defined on Q29 by the
formula

~. ~ 1 if mIG '907
2.28 19 = Nwy, 2y, ..., 7)) = '
( ) 4 4 ( 0y 1 ’ l) O if mlEQl.
Then we have '
Ny
(2.29) =0, Yih+C (i =1,2), .
k=1
where t@k (k =1,2,...,N,) is a value of the random variable Zf,"') corre-

sponding to the k-th trajectory of the i-th process in 8,. Obviously, &
is also the random variable defined on the probability space (Q®, 3@ O,

Hence, the time ¢, needed for solving the problem (1.2) by the ¢-scheme
is defined by the formula

2
(2.30) t, = D't +C,,
i=1
where ¢, (%) is given by
N;
(2.31) = ) @+ -+ (i =1,2),
k=1

and #) is a value of the random variable #° corresponding to the k-th
trajectory of the ¢-th process in 8,.

Definition 2.2. The value of
2
(2.32) T, = ) Mi;+C,
i=1

is called the mean time for solving the problem (1.2) by the e-scheme &§,.
We infer from (2.30) and (2.32) that T, expresses the time, in prac-
tice, for solving the problem (1.2) by §S,. Therefore, instead of -schemes

S, we can compare suitable values of T,.

3. Estimation of the mean time for solving the problem (1.2). From
formulae (2.29)-(2.32) it follows

2
(3.1) T, = ) Ny(M&)+ Mt + OMt?) + C, +2C,.
i=1

From (2.23) and (3.1) we see that in order to estimate T, it is necessary
to estimate M), M) M) and Dy®.

B (®) Obviously, ¢; is also the random variable defined on the probability space
(Q0), 20), n)y,
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Now we consider the following problems:
Let T®, T® and T be the integral operators defined as follows:

(3.2) [TPf)(@) = [ K(z,y)p(@,y)fy)s(dy),
(3.3) [TPf1(2) = [ K(w,9)p(@, 9)f(y)u(dy),
)

(3.4) [TPf(@) = [ (@, v)f@)n(dy)

Let 29 be the space of trajectories of the i-th process with some
initial state x (weQ%\ Q,). Put

(3.5) 00 = J 00[n] (0 @\Qy; i =1,2),
n=1

where Q®[n] is the subspace of !52? consisting of trajectories of the ¢-th
process having the form

(88) BB ...>®, (0,620U02; By Ty, ..ny By 25\0,).
Write 50 = Sx Zx ... xZx ...
Then the probability measure il of (29, SO, 4®) is defined by
the formula (see [11], formula (2.29))
3.7) F{A,m... 54}
= [P, 2, dm) [P,y dmy) ... [Pi(1, .y, ds)
i i, Z
(ApeZs k=1,2,...,10).
LeMMA 3.1. Under assumptions (A), (B), (C), (P,), (Py), (Ps), (II,)
and (I1,), the expected values Mt (i = 1, 2) ewist and are finite, and

(3.8) M) = 5 +1(%, 2)ong, () (6 =1,2),

where z(x) is the solution in L (2\ Q,) of the equation

(3.9) 2(x) — [TP2)(3) =1 (we2\9Q,).
Proof. Put

(3.10) 2N (z) = Zn/z(’){!)(j)[n]} (e Q5\0Qp; i =1, 2).

We know that (see [11], formula (2.43))
(3.11) D]} =P;(n, v, 2V Q2,)—P;(n—1, 2, QU) .
(e Q5N\Qy; n =2,3,...),
(3.12) Py(k,x, BN\Q) < (1—q)f (@ \Q; k=1,2,..),

(®) The symbol (f;,fy)4 denotes the value of the integral [ f, (®)fy (%) u(dz).
' 4
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where
(313)  0<g=1- suwp | [ ple, 9K yudy)<1

.
wE.QA\ 2 2\ 92,

Therefore,
(3.14) uP{D[n]} <1—Py(n—1,3, QU Q)
=P;(n—1,2, B\Q) < (1—g)"' (e 25\Qy;n =1,2,...).

Hence, from (3.10) we have

(315) @)< Mn+1)1—gq" =g (@e2\Q; i =1,2),
n=0
i.e. 29(2)el (2\8Q,) (i =1,2).
It follows easily from (3.7) and (3.10) that

(3.16) D na{QPm]} = [ #(2)P,(1, @, dw)+

*
2

4

+ f Zu“’{ﬂ‘:;[n]}Pi(l,m,dwl) (e QuN2y; & =1, 2).

\_Qo

We know that (see [11], formula (2.45))
(3.17) {9} = 2,15;’{9‘0[%]} =1 (2eQ*\0y; i=1,2).
Therefore, from (3.16) we deduce

(318) Y'ng{QPml = [ #@)Py(l,®, doy) +Pi(L, @, 25N\ Q)
n=2

*
AT

(e XN\ Q; i =1, 2).
From (3.7) we have

(319)  AQOIL = [ Pi(1,a,dm) =Pi(1, 2, U 2)
QU2
(e Q4N\Qy; i =1, 2).
From (3.10), (3.18) and (3.19) it follows

(3:20) @)~ [ (@) Py(l, s, doy) = Py(1,2, ) =1 (2 Q5\Dy).

P
A4

It is known that (see (2.6))

dPi 1,m,' ~ *
(3.21) #—)(') = Fi(x,-), Pil,z,-)<pn (2ey\0Q).
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Hence, from (3.20) and (2.7) we obtain

29 (2 f K (%, 3,)p(®, )2 (@) u(de,) =1 (e 2\Q, (mod u)),

ava,

ie. 29(x) (1 =1, 2) are solutions in L, (2\2,) of equation (3.9). On the
other hand, by condition (P,;) we get

(3:22) a, = |T) =vrai sup | [ K(o,y)p(@, p)u(dy)}<a<1.

w ze O\ .Qo o\ DO

Therefore, the solution z(x) of equation (3.9) exists and is unique
in a B-space L, (2\2,). It follows that "

(3.23) V() =2D(w) =2(x) (2eQ\Qy (mody)).

We have (see (2.24)) &) = (2, 4,, ..., %) > 0; hence M exists
and is defined by the formula (see (2.27) and (2.24))

(324) M) = [0 = [00G0 = 3 [ G049 > [ ndi.

a® () n=0 g(i)[n] n=1 g(i)n)
From (2.16), (3.7), (3.10) and (2.11) we deduce
00 oo
(3:28) D' [ map®= D" [ npd {0} P@e) = [ &(x)P(dw)
n=1 g(i)n) n=1 9" \g, Q' N2,

= [ #@n@pdn) = (7, 2)g%x g5y = (7, Dara,-

L]
2\

We know (see [11], formula (3.10))
(3.26) OO = M a0} =1 (i =1,2).
n=0

Therefore, from (3.24) and (3.25) we obtain (3.8). This completes
the proof.

Let Q¥[n, s] (re2%\2,; s = 0,1) be the subset of 2¥[n] consist-
ing of trajéctories of the ¢-th process having the form

(3.27) BBy ees > Xy (L €23 Ty Byyoney @16 25N\ 2,).
It is clear that
(3.28) Q9[n] = Q9[n, 0]uP[n,1] (%2 i =1,2),

(3.29) APH{QP[n]} = Zu“’{ﬂﬁ’_[n,s]} (@e 2\ 23 i =1, 2).
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Hence, from (2.25) we get

CO1nC, if (@—m,—...>w,)e29[n,0],
0 it (-2 —~...>2,)e29[n, 1]
(e Q5N Qp; n=1).

(3.30) ) (@gy @1y .eny Bp) =

LeMMA 3.2. Under the assumptions of Lemma 3.1 and peL,(Q), the
expected values M1 (i = 1, 2) exist and are finite, and

(3.31) M) = COWz,Va)g,+ 0P (m, ")gn g, + Calrr, W) v, (i =1,2),

where V¥ () and w? (x) are the solutions in L. (2\Q,) of the equations

(3.32) @(i)(m) _ [T(P),v(i)](m) — [Tgp) -1](w) + M [f‘gp) (_1_)] ()
©(£2) 9:

(we.Q\.Qo),

(3.33) wD(2) — [TPwD])(z) = v (@) (2e2\Q,).
Proof. Put

(3.34) (@) = Y aP(QO[n, 01} (2 QYN\Q; i =1,2).
n=1
From (3.29) and (3.17) we deduce
v9(2) < Z#“’{Q‘"[n]} = i{OH=1  (2c20\0)),

ie. v9)(@)eL (2\2,). From (3.7) we obtain

(3.35) pO{QO[1, 0]} = f Pi(1,®,dm) (0 2%\Q,),
(3.36) AP {QO[n, 0]} = f {00 [n—1, 01}P;(1, @, dm)
AN

(e 2%\ Q,; n > 2).
Hence, from (3.34) we have

337) [ O@)Py(1,w,dm) = D uP{0[n, 01} (2 QU\Qy).
AN ne=2 .
Using (3.34), (3.35) and (3.37) we obtain
(3.38) (@) = [ o@)Py(1, @, do)+ [Pi(l, 3, de) (0 QNDy).
2,

L]
2, ,\9
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Therefore, from (3.21) and (2.7) we get
gz(w P(%, ®)
©(£ g:(21)

o () — f K (@, 8)p (@, 2,)0(@,) p(da,) +

aNa,

p(dw,) +

+ f K(z, 2)p(@, o) ulds,) (@ Q\Q2, (modp)),

i.e. v9(x), defined by (3.34), is the unique solution in L, (2\ Q,) of equa-
tion (3.32) (7).
Put

(3.39)  w(x Zny("{!)‘”[n 0} (e Q\Qy; i =1,2).
By (3.29), (3.10) and (3.15) we deduce
w® () < Z P {QP[n]} =20 (@) < g (e 2\ 2y),
i.e. w9 (x)eL (2\Q,). From (3.39) and (3.36) it follows that

[ @) P, 2, doy) = 3 ni{Q9 [n, 0T} — Z #O{20n, 07}

* n=1
'QA\'QO

(e Q5N Q).
Hence, from (3.21), (2.7), (3.34) and (3.39) we have

f K (@, @) p (@, @) 0 (@) p(day) = w (@) —vD (@) (0 2\ 2, (modp)),
o\ Qg
i.e. w®(x), defined by (3.39), is the unique solution in L_(2\ 2,) of equa-
tion (3.33).
Since 1) = ) (wy, @1, ..., ;) >0 (see (2.25)), M) exists and is
defined by the following formula (see (2.27), (2.16) and (3.7)):

(3.40) M) = [Hau® = [#dp®

2@ a(®)
= f 1) (a00) P (dwo) + Z f 8 (@ @1y -+ s B,) A
(o n=1 o(i)[n]
= [ #(@)P(dw) +
'QOU'QI
+2 f { f @, vy, . n)dﬁg)}P(dm)- e

n=1g'Nay o)

(?) It follows from (3.22) that equa.tlons (3.32) and (3.33) have the unique
solutions in L., (2\ £,).
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From (3.28) and (3.30) we deduce
(3.41) f (@, @1y ..., @) A = (CF +nCy) f aud)
R o)
= (OO +nC,y) pP{QD[n, 0} (@ Q4\Qp; n>1).
From (2.25) and (2.11) we have
(3.42) | @) Pldz) = CPP(2) = [ n(a)u(dw).
. QU2 2

By (3.40)-(3.42), it follows clearly that

M) = 0P fn pldn)+09 [ D aP{0P[n, 01} P(da) +

=1
.QA\QO"

+0;, [ ZW"’{QS’[%,OJ}P(M)-

2%, \g, =1

Hence, from (3.34), (3.39) and (2.11) we obtain (3.31). This completes
the proof.

LeMMA 3.3. Under the assumptions of Lemma 3.1, the ewpected values
M) (i =1,2) exist and are finite, and
(3.43) M) = (Va, Va)gy+ (7, ™)ang, (6 =1,2),
where v (x) is the solution in L. (R2\Q,) of equation (3.32).

Proof. Since ) = ) (x, #;, ..., ;) >0 (see (2.28)), there exists
Mt and we have (see (2.27))

(3.44) M) = [ ap® = [daud
5@ a®
-~ bt ~ -
= [ @)+ D> [ (@0, ..., 2,)daO.
.Q(i)[O] n=1 .()(Z)[n]
From (2.28) we deduce
~ 1 if ®yef
(3.45) 0 () = oeto
0 if $0€.Ql-

~ 1 f(go>2—...>2)elPn,0
(3.46) t,(:)(éb‘,wl,...,mn)=‘ o oL 1.

0 if (1>, > ... >m,)eQ9[n,1].
Hence, by (3.44), (2.16) and (3.7), it is not difficult to see that
M) — f P (day) + f 2 {2 [n, 01} P (da).

n=1

8 — Zastosow. Matem. 14.4
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Therefore, from (2.11) and (3.34), we obtain (3.43). This completes
the proof.
By formula (3.1) and Lemmas 3.1-3.3, the following theorem is evident:
THEOREM 3.1. Let the assumptions of Lemma 3.2 and condition (2.22)
be satisfied. Then the mean time T, for solving the problem (1.2) by the
e-scheme 8, is finite and defined by the formula
2
(3.47) T, = ) N:Q9+20,+C,,
i=1

where N, is given by formula (2.23),
(3.48) QO =7, +CP(Va, Var) g, + (m, o2 + TP + Cowl)gn g, (8 =1, 2),
(3.49) O =00 +0, = Op+Cpy+Cr 4 Op + 05+ 0,

and z(x), V() and w9 (x) are the solutions in L (2\RQ,) of equations
(3.9), (3.32) and (3.33), respectively. ‘

By this theorem, it is easy to estimate the upper bound of the mean
time T, for solving the problem (1.2) by the ¢-scheme (see [10], p. 656-67).

In order to obtain more concrete results, we estimate Dy® in for-
mula (2.23).

Let T,, T and T be the integral operators defined by the follow-
ing formulae:

K(®
[Tpf1() = f(y (dy),
(3.50) 9\f9 P (w’y

K(w,y) ~ Ty p(dy)
(0) — T\ J7 (0) _ JANITITNTI T
[Tpf](m—gf Sy W@, (LMl = e

LeMvA 3.4. Under the assumptions of Lemma 3.2, suppose that
@ (@) /7 (@) e L, (2) and that the following conditions are satisfied:

(- -]
(Py)  Tpe[Ly(R2N\2y) >Ly(2\82,)] and the series > Tyf converges in
L (2N\92,) (for all feL (R2\2,)); n=0
(Ps)  TY, T e[ Ly (20) > Loo (2N 2]
Then we have (2.22) and

2 2
i 14 i j
(3.51) Dy = (—, g,) + ("'4, u;’) — (49, 9)?,
7 Q, 7 a\9,
where u® () is the solution in Ly (2) of equation (2.18) and ul(z) is the
solution in L (2\ 2,) of the equation
(3.52) uf(@)— [Tpud)(@) — [TO(g"](@) + L2

(_Q ) [T(‘” 9:1(®) (we2\£).
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Proof. Put

gi(®)
#(20)

Since g,(%) € L, ( 2), it follows, by condition (Ps), that H,(x) e L (2\ Q,).
Moreover, from (3.21) and (2.7) we obtain

(3.53)  Hy(@) = [T9(g)*1(x)+ [T99,1(@) (@e@\Qy; i =1,9).

9:(y)
p’(év, Y)

f(y

(3.54) H,(z) =

[K(w, 1) (@, 9)+ M]u(dy)

©(£)9. ()

P;(1, z, dy).

From condition (P,), we deduce that the solution in L, (2\Q,) of
equation (3.52) is of the form

(3.55) uf(@) = Y [ToH](®) (9eQ\Q).

n=0

It is known (see condition (P,) and [10] or [11], Lemma (2.2)) that
K (, y)
p(®,y)

Hence, from (3.54), (3.55), (3.21), (2.7) and (2.11) it is easy to de-
duce that

[ 2 4 @) (o)

7t ()

Q\.Qo
— Z f . [ 'Pz(w)gf(wn)P(l’ wn—l? dmn) ]

g 3 (x)p(®, @) ... p*(®p_yy )
)

(3.66) H;(xz)=0, >0 (2e2\Q,(modu), ye2y (modu)).

n=10\0, o\g,
— p—

()
X Py(1, @y sy d2y_y) ... Py(1, @, dw;) P (do).

Therefore, from (2.15) and (2.16) we obtain

? (( L uPauida) = 31 [ (Opai.

Ne=

(3.57)
1 )

Moreover, it is evident (see (2.11) and (2.15)) that

¢’ (@) ¢’ (%) g3 ()

3.58 —_—

(358 ,,of (@) (@)

P(dz) = f (FO)2gu®,
9“)[01

u(dz) =
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From (2.27), (3.57) and (3.58) we have

(3.59)  MOF = [(FOPGEO — [ (FOPaE®

50 o®
had 2 2
= Z f (FORGED — (‘_P_, gg) T (‘L, ug)) _
n=0 o T 2o 7 2\ 9

Since ¢?/meL,(2), gieLo(R) and ueL (2\2), so from (3.59)
we deduce that M (5?) < + co. Moreover, by (2.17), we get (Mzn®)?
= (u®, p)? < +oco. Hence, the variance Dn® exists and is finite, and
(see (3.59) and (2.17))

@) @) @2 ¢? LA 6 2
D"] = M( ) (M"] )y = ‘;7.% + 7{7 Uy —(u 7‘7’) .
2y

This completes the proof.

It follows from (3.51) and (3.52) that we can diminish the wvalue
of the variance Dy by choosing a function p(z, y) (or m(x)) such that
its absolute value be great on 2 x £ (or on 2). We can also estimate the
upper bound of Dy (see [10], p. 72-77). Moreover, from Lemma 3.4
and Theorem 3.1 it is easy to deduce

THEOREM 3.2. Assume that peL,(2), and that conditions (A), (B)
and (C) are satisfied. Suppose that the function p(x, y) is bounded, measur-
able on 2 x Q and satisfies conditions (P,)-(P;). Let the function w(xz) satisfy
conditions (I1,), (11,) and

(I5) <P2”—1€L1(Q)-
Then the mean time T, for solving the problem (1.2) by 8, is finite and
defined by the formula (®)
2

(3.60) T, = ) @O(IO/s} +11)+20,+C,,

i=1

where the constants ¢; (1 = 1, 2) are given by condition (E),
O — p,o _ (22 2 L) O o2 (G =
(3.61) LY =Dy = y 9i) + y Up —(u", @) (¢ =1, 2),
7T 2 24

ul) is the solution in Ly, (2\2,) of equation (3.52), and u® is the solution
in L, (82) of equation (2.18).
CoROLLARY. Under the assumptions of Theorem 3.2, we have

(3.62) T,<2C;+0C,+

2
— C = \ 1 i
+[ro+(rp—{—20(f)+ 1_2a*)(1—a*)‘1][2+1)2{ 2 2(ut, @) ]

(8) The symbol [L(*)/e?] denotes the integral part of the value L()/é%.
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where
(3.63)
_ 26 M 2 (10" — 1) (u (L) ITON + 17O 11| o
D =12 -+ = LA 1 2 ] —Il,
(”g” 1—a* " )[+ #(Q6)(1— ﬁp)<n —1) -
2 2
7, =max(e, @), |=| = fr((;")) p(dw),
(3.64) _
lgll = vrai sug{lg(w)l},
. K(z,y)
0) | —
(3.65) I | —v:alxisnu\pgo{gof ) u(dy)},
) — M — P K(w7y) .
179 = walzf})l\})go{f }, T, Vl;“alzf»g&ﬁ’go{ fp(w,y)‘u(dy)}’

oNg

and the natural number is chosen such that the following condition is satisfied :

(3.66) By = ITpllzyongy < 1-

Proof. It follows from condition (P,) that there exists a natural
number n, defined by condition (3.66). Moreover, from (3.52) and (3.53)

we have also
n -1

u® —ZT”H Z(T"")"Z

Therefore,
; L TP =1
(3.67) ludllz onag < (1—Bp) " T-’;Fl— H o anay) -
p
From (3.53) we deduce
s
(3.68) IH Nz on0g < (”T(o)” + ) )) lig:l12,
0
where (see (2.9))
. 26M
(3.69) llg:ll = vraisup {|g;()|} < 2llgll + T~ T 4.
n xR —aQa

From (3.51) we have

(PZ

(3.70) D’?(i) <J o “ (Ilgsl* + ““g)”Lw(n\ao)) — (u®, ).

By (3.61), (3.63) and (3.67)-(3-70) it is easy to deduce
(3.71) LY =Dy < D—(uD, 9> (i =1,2).
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From (2.9) we get
(@) _ _ 26(1—d’)
g(@) = 2GM -+ A(1—a*)
Hence, from (2.10) and (3.4) we obtain

(e Q5N\0y; yey; + =1,2).

(3.72) g i’@)( 1 ) . 20M(1—a") (=1, 9
. v —_ < 1 = .
w(2) " \g L2y  20M +4(1— a®) ’
By (3.3) and conditions (P}), (P,), we deduce
(3.73) HTgp)(l)“Loo(n\no) <a<a <1.
Therefore, from (3.22) and (3.32) it is easy to get
) _ 2G M (1—a*) )
61 W0igony < 0= (o ) < a0
From (3.22), (3.33) and (3.9) we have
(3.73) H’w(i)”Lw(a\ o) < (1— a*)™ ””“’“Lm(a\ 29 < (1— a*)72,

(3.76) 2]l Log(an 2g < (1 — i

Using the definition of C,, and (2.9) it is easy to deduce that €, < C,;
therefore (see (3.49)),
(3.77) CY < 09,

From (3.48), (3.74)-(3.77) and condition (II,) we have

(3.78) QY < 7, (z,,+26§2>+ 102 )(1—a*)-1 (1t =1,2).

*
—a
Hence, by (3.47) and (3.71) it is easy to obtain formula (3.62). This
completes the proof.

'Note that by Lemmas 3.1-3.4 we can obtain an estimation of the
upper bound of 7', more precise than by formula (3.62) (see [10], p. 80).

4. Optimal ¢-scheme and the comparison of c-schemes. Put

(4.1) 8, = {p(@,¥), n(x), 4, 0, &, &},

where the functions p(z, y), n(x) -and the constants A4, §, ¢, ¢, are used
in the suitable e-scheme 8§, (i.e. they satisfy the assumptions of Theorem
3.1). It is clear that each s, corresponds in one-to-one way to the e-scheme:
(4.2) 8. = 8.(s.).

From (3.47) we see that the mean time 7, for solving the prob-
lem (1.2) by 8,(s,) is the functional depending on s,:

(43) T, =T.(s) = D ([D1"(s)/¢}(s)]+1) Q9 (s,) +2C4+C,.

t=1
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From the practical sense of 7,(s,), we can replace the comparison
of e-schemes 8,(s,) by the one of values of the functional T,(s,). Now we
consider the problem more concretely for a class of special s-schemes.
Put

(4.4) Pe = Q1 X Py X @3 X @y X @5,
where
(4.5) @1 = {p(®@, y) M (2% 2% u*): (Py)-(Ps)},

and M (%, 3% u?) is a space of the following functions, (£ x X)-measurable
and bounded on 2 x Q:

(4.6) #2 = {m(@): (M)-(TLy)},
(4.7) g = {4: 4 >0},

(4.8) @, = {0: 6 >0},

(4.9) ps = {(e1) &2): (E)}.

It is easy to see that each

8 = {p(®,9), n(®), 4, 0, &1, &3} € @,

satisfies the assumptions of Theorem 3.2. Therefore, we have
2

(410) T,(s) = Y QO(s.)([LD(s,)/e3(s)]+1) +2C4+C,  (.< 00),

i=1
where the dependences of Q® and L® upon s, are defined by for-
mulae (3.48) and (3.61), respectively.

Definition 4.1. Let s,, §,¢ ¢,.. Then the &-scheme S, = S,(s,) will
be called better than the s-scheme 8, = §,(s,) if 7.(s,) < 7.(S,), where

(4.11) w(s) = D @0(s.) ([L9(s,)[e3(s.)]+1).

It is easy to observe that (see (4.10) and (4.11)) if §, = 8,(8,) is the
e-scheme better than S, = §,(8,), then the solution of problem (1.2) by
S, is faster than that by §,. Similarly we have

Definition 4.2. 87 = 8,(s?) is called the optimal e-scheme in the
class of e-schemes 8 = {8,(s,): 8. € @¢} if
(4.12) 7,(s}) = inf{r,(s,)}-

885¢‘

The minimum problem of (4.12) is unsolved in this paper. However,
in the special case where p (2, ¥) = P and n(2) = 7 (P and 7 are constants),
the solution of (4.12) becomes the problem of minimizing a function of
six variables. Therefore, we can use the Monte Carlo method for solving
this problem (see [12]).
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Remark 4.1. Since the number N; of experiments of each i-th pro-
cess of 8, in the practical computation is very great, we can take, by
(2.23) and (3.61), the approximation

N, = [D9)]+1 ~ 72 Dy = L9672,

Hence, by (4.11), we have

(4.13) D) = D QV(s.) e (30 IV (s,) ~ 7,(s,).

=1

Therefore, for the purpose of practical comparison of e-schemes,
in Definitions 4.1 and 4.2 we can replace the functional z,(s,) by the sim-
pler functional &,.(s,). Now we use the functional @,(s,) to express the
time (in practice) for solving the problem (1.2) by 8, = 8.(s,).

5. Method of decreasing the time needed for the solution of the problem.
In order to decrease the time needed for solving the problem (1.2), we
now consider a method of decreasing the value of the functional 9,.
Let

(5.1) y(m) = VI:a,i inf {n(2)} > 0.

n TEN*®

Then there exists a set A* ¢ X such that A* = Q*, i(4*) = 0, and

(5.2) y(@) =y = inf {=(a)} >0.
xe Q*\ A*
Therefore,
(5.3) A(@) = 7>0 (e (modp)).

LeMMA 5.1. Under the assumptions of Theorem 3.2 and condition (5.1),

let us put \ .

A ln (@) if £eQ,
(5.4) 7a (%) =

A—1
7‘(“’)4‘7 7 (y) u(dy) if e Q*,

where 8, = {p(%,y), m;(%), 4, 8, &y, e} e p,, and A is a constant satisfying
the condition

[7(y) u(dy)
9 <Ai<1.

b.b —
(6-5) T et [r@n@)

Then s(cl) = {p(z, y), m(x), A; 0, &1y Eg} € @,.
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Furthermore, if C,, 1o and v are constants (and we replace 8, = 8,(s,)
by 8P = 8,(s¥)), we have

2

(5.6)  Bu(s)— () = (1—1) > &) (u, ) +
! i=1
’ 2 2
. T, ,
+ 22 1=D) D IOE) + (=4 D 67w, )t

=1 i=1

Proof. Since s,eq,, 50 p(®,Y)e@;, n(v)epy, de@s, de@,, and
(&1 €5) € 5. It follows from (5.2) and conditions (II,) and 6 > 0 that

(5.7) [ @) u(dy) >0 (2, >0).

Therefore, by (5.5), we obtain
(5.8) 0< A<,

By (5.4), (5.8) and condition (II,), we receive

(5.9) 0< my(2) = A'a(@) < 400 (2eQ (modu)).
From (5.5), (5.4) and (5.3) it follows that
1—4
(5.10)  my(@) = n(a)— Tgf 7(y) p(dy) > 7 (@) —yo > 0

(we 2* (mod p)).
Hence, by (5.9), we have

(5.11) @) >0 (weQUQ* = 2 (modj)).
Taking into account (5.4), (2.2) and condition (II,), we easily obtain

(5:12) [ 7,(0) is(do)

2

. Am1.
=17 [a@u@n)+ [#@id)+ =2 [awudy)
Q Qo Q2

= [a@i0)+ [a@i) = [a@)ids) =1.

Qe

Q

From: (5.4) and condition (II;) it is clear that
(5.13) ¢ (@)m(2) ! = A’ (z) 7 (@) " e Ly (Q).
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For reason of (5.9) and (5.11)-(5.13) we remark that the function
m,(®), defined by formula (5.4), satisfies also conditions (II,)-(II,),
i.e. m,(x)e ¢,. Therefore,

S(sl) = {p(»,v), m(=), 4, d, &, €z} € Q-

Since C,, 7, and 7§ are constants (by hypothesis), so C% and C,
are also constants (see (2.26) and (3.49)). Hence, from (4.13), (3.48) and
(3.61) it follows that

2
(5.14) (sP) = > QO(s¥) &7 L (sP),
i=1

where

(5.15) QD(sW) = 7,4 O (V,,“ ,/,,l)‘2 (701, T (z)z+0(1),,(x)+0 w())ﬂ\ﬂo’

2
(5.16) LO(sP) = ( ,92) + (E— ’ uﬁ’) —(u®, @)*.
2 T4 o\ a9,

By virtue of (3.48), (5.15) and (5.4) we deduce that
(5.17) QY (s?) = A7 [QY(s.) +(A—1) 7]
or
(5.18) Q@9(s.) = 2QY(sP) + (1 — )7,

Similarly, from (3.61), (5.16) and (5.4) it follows
(5.19) LO(s) = 2[LO(s) + (u?, 9)*]— (u?, 9)’,
(5.20) - I(s,) = 27 L) + (1 —2) (uY, 9)*].

By (4.13), (5.18) and (5.20), we have

2 2
D,(8.) = D @D e L (s9) + (1 —2) D £72@9 (s (u? ) +
i=1 =1

2

2
FATM A=A D e P LOP) +9T 1 — A7 D) &t (uf, o).

=1 i=1
Finally, from (5.14) it follows (5.6). This completes the proof.
Remark 5.1. By (5.6) and (5.8) it easily follows
(5.21) D,(s) < Po(s0),

i.e., under the assumptions of Lemma 5.1, from the e-scheme §, = §,(s,)
we can construct the suitable better c-scheme S = 8,(s{) (in the sense
of (5.21)).
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Remark 5.2. If condition (5.5) is replaced by the stricter condition

(5.22) AW<i<l,

then, from (5.4) and (5.2) it follows

(5.23) () = vrai mj {ma(@)} >y (7) — 0> 0.
T reld*

“

It means that the function = () satisfies conditions having form (5.1).
Therefore, we can further use Lemma 5.1 for the e-scheme 8P = §,(s?)
to receive the better e-scheme S — §,(s¥). We can also repeat the
above-given process for 8§ and so on.

Note that we can choose many values for the constant 1 satisfying
condition (5.5). Hence, from the given ¢-scheme S, = 8,(s,) we can con-
struct a better ¢-scheme S8 = §,(s¥) by many different methods. The
problem is to choose such a value of A that the value of the functional
®,(s?¥) be minimal.

LeMMA 5.2. Under the assumptions of Lemma 5.1 we have
(5.24) @,(s() = min {@,(sP)},

Ag<A<l
where the constant A, is defined by (5.5).
Proof. Put

(5.25) AD(A) = By(8,) — Do (s") (<A< D).
From (5.6), (5.17) and (5.19) we get
(5.26) AD(A) = —A7'[(@y+ a5) A + (4, — 245 — ay) A+ (a3 — a,)],

where
2

2
oy =D e7Q0(s)(u, 9!, @y =7 ) 67 L(s,),
i=1 =1

(5.27) 2
a3 = TOZ 8;2('“(07 ‘P)z-
i=1

By (5.26), it follows

dAD (1)

= — A7 [(ag+ ay) 2 4 (a; — ag)].

(5.28)

Since Q¥(s,) > 7, (see (3.48)), we have

2

. (5.29) a; = D &77Q9(s,) (u, ) > 7,

&7 (u?, ¢)" = ay.

2
i=1 i=1



636 Nguyen Quy Hy

Moreover, from (3.61) and (5.27) it is easy to deduce

2

(5.30) Gyt a5 = 75 Y 677 [LO(s.) + (u?, )*] > 0.

=1

Using (5.28)-(5.30), we have

dAD ()
T<0 (A< A<1).
Therefore,
(5.31) AD (%) = max {AD(1)}.

;.0</1-< 1

By virtue of (5.31) and (5.25), we get (5.24). This completes the proof.
Remark 5.3. It follows from Lemma 5.2 that in order to decrease
most quickly the value of ®,(s,) (using Lemma 5.1), the constant A in
condition (5.5) must be chosen such that 4 = 4,. Then formula (5.4) has
the form
Ay m(x) if zeQ,

- (8:32) () = (@) —y, if weO*.

Remark 5.4. If we replace condition (5.1) by the stricter condition

(5.33) y(n) = vrai inf {#n(x)} >y, = inf {n(x)} >0,
7 mear zea\ )

where A*c %, A* ¢ ©* and (A¥) = 0. Then from (5.32) we have
(5.34) (7)) = vrai inf {m; (#)} = y(#)—y, >0,

~ *
P TeQ

i.e. the function 73, (®), defined by (5.32), satisfies also the condition having
gorm (5.1). Therefore, we can futher use Lemma 5.1 for 8% — §,(s{0)
to receive & better e-scheme 8% = §, (s%).

The author wishes to express his gratitude to Professor B. Bojarski
for many valuable discussions and remarks.
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NGUYEN QUY HY (Warszawa)

CZAS POTRZEBNY DO OSZACOWANIA PEWNEGO FUNKCJONALU
METODA MONTE CARLO

STRESZCZENIE

W pracach [10] i [11] skonstruowano klase probabilistycznych modeli dla obli-
czenia wartodei funkcjonalu

w,9) = [u(@)e@)uds),
Q2

gdzie ¢ (x) jest funkejg u-calkowalng na Q, u(x) zaé rozwigzaniem réwnan catkowych
postaci

w(@)— [ K (=, y)u(y)p(dy) = g(@)
Q

w przestrzeni funkeji 2-mierzalnych i ograniczonych na 2 (modu).

W pracy tej oszacowano czas potrzebny do obliczen wedlug kazdego z modeli
probabilistycznych poprzedniej klasy. Rozpatrzono takie metode zmniejszenia czasu
obliczen.



