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AFFINE RESOLVABLE INCOMPLETE BLOCK DESIGNS

1. Introduction. A general method of the analysis of variance for
block designs has been presented by Tocher [8]. Rees [6] has extended
this method to the case of many non-orthogonal classifications. The
chief numerical calculation in the method of Tocher [8] is the inversion
of a matrix that yields the covariance matrix of the adjusted treatment
means. This can be simple when there is some pattern in the design.
Sometimes the pattern of the design itself is not very helpful, but that
of its dual has certain desirable properties. The affine resolvable incom-
plete block designs are of that type. Their analysis can be simplyfied
by considering their duals first. The general formula of Rees [6] is then
helpful in carrying out the analysis.

2. General method for a design with two classifications. Assuming
the same model as that adopted by Plackett [5] and Rees [6] let us write
the linear observational equations in the matrix form

(1) Yy =A0+e’

where y is an (N x 1)-vector of observations, A — an (N X p)-matrix

of known coefficients (with N > p), called the design matriz, 8 — a (p X 1)-

vector of parameters, and e — an (&N x 1)-vector of random errors with

F(e) =0 and FE(ee') = o%l, where I is the (N X N)-identity matrix.
For a design with two classifications we can write

(2) 0 = [/"7 0;7 0;]’ and a4 = [17 A17 Az]r

where @, is an (I, x 1)-parameter vector and 4, is an (N X I;)-design matrix
for the first classification, 8, is an (I, x 1)-parameter vector and A, is
an (N x1,)-design matrix for the second classification, x4 is the general
parameter and 1 is the (N x 1)-unit vector. Thus model (1) has the form

(3) E(y) = [1, 4, 4,]1[p, 6, 6] .

It is assumed that the rank of the partitioned design matrix [1, 4,, 4,]
in (3)is l;+1,—1 = p—2, which means that disconnected designs are °



566 B. Ceranka

excluded from the present consideration. This is the only restriction of
the design. Since the normal equations for the general model (1) are

A A0 = A'y,
the least-squares estimate of 0 is
6= (A4 Ay,
where (A’ A)~ is the generalized inverse of the matrix A’ A, so that
(A"A)(A'A)~(A'A) = A'A.

Since the matrix A’ 4 is of rank p — 2, and hence there exists a (p x 2)-
matrix D of rank 2 such that AD = 0. Furthermore, there exists a (2 x p)-
matrix C of rank 2 such that [CD| # 0. A suitable generalized inverse
of A’A is then the true inverse of the matrix 4’4+ C’ C with C given by

1[0 » 0O
C = ! M K
VN |0 0
where r; (¢ = 1, 2) is the vector of replications for the i-th classification.

The parameters § = [u, 6;,0,]' are then estimable under the side con-
ditions C@ = 0, and the least-squares estimate of 8 (see [7]) is

0 = (A A+C'C) Ay

which, for the design with two classifications defined by (2), reads expli-
citly as

Q G/N
0=10,] = "'1_6(91_”‘292‘:""1"; QQ,/N)
0, 20,

with
Q, =T,—(G/N)r,, Q. =T2—""'1_6T1’

-1 . -8 ’
Q7 =r, —-nri’n4+r,r,/N,

(4)

where T; (¢ =1, 2) is the vector of totals for the i-th classification, G —
the overall total, » — the vector »; expressed as a diagonal matrix, and
n (n = A; A,) is the incidence matrix with a row for each level of the
first classification and a column for each level of the second classification,
and with elements representing the number of times each level of the
first classification occurs with each level of the second classification.

The main numerical difficulty is the inversion of the matrix Q7'
For some types of experimental designs it is possible to give the final
formula of 2, so that the numerical inversion can be avoided in practi-
cal applications.
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The adjusted means for the second classification are given by
a, = (G/N)1+ 2Q,.

The covariance matrix of the vector a, is equal to ¢2Q. The error
sum of squares is given by the formula

E = (y— A6 (y— A9)
= (y'y—G|N)—(T\ri’T,—&|N)— Q. 20,
=y {I— A r7° A — (A, — 4,77n) Q(A; —n'r7° A}y
The sum of squares for ¢-th classification (¢ =1,2) ignoring the
others, is given by
H; = y'{4,{ry’—(1/N)11') A}y.
The sum of squares for the second -classification, eliminating the
first, is given by
H, =y {(A,— A,77°n) (A, —n'r? A)}y,
and the sum of squares for the first classification, eliminating the second,
H, say, can be evaluated from the equation

The quotient
H;/(1,—1
- il —1)

T E(N—-4L,—1l+1)’

is & proper statistics for testing the hypothesis H, : 8; = 0. If the hypo-
thesis H, is true, then the quotient has the F-distribution with I;,—1
and N —1,—1,+1 degrees of freedom.

2. Construction of the design. Let ¢ be the number of treatments,
k — the number of experimental units per block, r — the number of
replications for each treatment, b — the number of blocks, and A — the
number of times any 2 treatments occur together in a block. Then, evi-
dently, N = tr = bk.

In some cases it is possible to group the blocks into ¢ sets such that
each set consists of exactly one or more replicates of the treatments.
In the special case where ¢ = r the blocks are grouped into a single rep-
lication. Balanced incomplete block designs that can be arranged in sets
of blocks, each containing a complete replicate, are known as resolvable
balanced incomplete block designs. Bose [1] has shown that if a balanced
incomplete block design with parameters ¢,b,r,k and 1 is resolvable,
then the following inequality must hold:

b=t+r—1.
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Moreover, if for a resolvable balanced incomplete block design the
equality

(6) b=t+r—1

holds, the design has the property that two blocks belonging to different
sets have the same number of treatments in common. This number is

(7) m = K.

The designs for which properties (6) and (7) hold simultaneously are
called affine resolvable balanced incomplete block designs. The analysis of
them has been discussed by Bose [1]. It is clear that if we omit some of
the replications of the affine resolvable balanced incomplete block design,
property (7) will be preserved, though equality (6) will not remain true.
The resulting design will be called an affine resolvable partially balanced
imcomplete block design. Such designs exist for r =2, 3, ..., b—1, where b
denotes the number of blocks in the appropriate balanced design. Since,
for some numbers of treatments, affine resolvable balanced incomplete
block designs exist for very large numbers of replications only, affine
resolvable partially balanced incomplete block designs can quite exten-
sively be used in practice. Lists of partially balanced incomplete block
designs with & small number of replications, known up to now, do not
contain experiments with all number of treatments. It turns out that
the gaps in the lists can partially be fulfilled by constructing plans of
experiments based on condition (7), but not necessarily balanced. The
designs so constructed will be called the affine resolvable partially bal-
anced designs, 1.e. designs with more than one association class. New plans
for designs of this type can be built for the following numbers ¢ (¢ < 200)
of treatments: 18, 24, 27, 32, 45, 48, 50, 54, 75, 80, 98, 108, 128, 162,
200. They supplement the list of incomplete block designs given by Co-
chran and Cox [3] for & small number of replications.

Let us consider affine resolvable balanced incomplete block designs
with parameters t,, b, r, k, and 4. Replicating the designs n times, we get
again affine resolvable partially balanced incomplete block designs with
parameters { = nt,, b, 7, k = nk,, A, = r, 3, = A, and such that two blocks
belonging to different sets have the number of common treatments equal
to m = n*ki/nt, = nm,. If from such designs we eliminate one or more
replicates, then we still have affine resolvable partially balanced incom-
plete block designs, but with a smaller number of blocks. The resulting
design has three or more association classes. These designs can be ob-
tained also by taking some of the first replications from affine resolvable
balanced incomplete block designs and repeating this procedure » times.

4. Analysis of variance. In this section the analysis of variance for
affine resolvable balanced and partially balanced incomplete block designs
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is evaluated. Let the first classification be due to treatments and the
second one due to blocks. Then I, =1, I, =b, r, =r1, r, = k1, v] = kI,
r{® = (1/r)I, ror, = K*11’, and the matrix 27, defined in (4), is expressed
by the equation

2

1 k
Q' =Fk[-—n'n+-—11".
(8) r + N

The product »'n can be expressed in the form of the partitioned
matrix

S R R
) wn_ |B S R
R R S

with submatrices S = kI and R = m11’, where I is an identity matrix

(¢/k) % (t/k), and 1 is a unit vector (¢/k) x 1. Then the matrix 27! is of
the form

U o 0

. 1louw 0
Q' = ,

yl........

0 0 U

where the ((¢/k) X (t/k))-matrix Uis U = k(N —¢)I+k*11’. The matrix Q'
has a simple pattern and can be inverted by one of the methods described
by Pearce [4]. Then we obtain

u 0 0
1 0 0
9 —_
(10) N—tlb........ !
0 0 u

where the ((¢/k) x (t/k))-matrix w is w = bI—11".

The components of the vector Q, = T,— (1/r)nT,, denoted by g;,
can be obtained practically in the following way. Let T, be the vector
of block totals, and T, the vector of treatment totals. Among the compo-
nents of T, we choose sums of those treatments which appear in the j-th
block, take the sum of them, divide it by the number of replications 7,
and subtract the result from the j-th component of T',. This is performed,
in turn, for each block, i.e. for j = 1,2, ...,b. Evidently, 1'Q, = 0.
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The analysis of variance can be summarized in the following table:

Source of variation Degrees of freedom Sum of squares
Blocks eliminating treatments b—1 H,
Treatments ignoring blocks t—1 H,
Error N—t—b+1 E
Blocks ignoring treatments b—1 H,
Treatments eliminating blocks t—1 H,
Total [ N-1 8

In this table we have
H, = (1/T\T,—G|N, H,=0Q,2Q,,
S=yy—-G/N, E=8—H,—H,=8—H,—H,,
H, = 1/k\T,T,—G*/N, H,=H,+H,—H,.
The statistics (5) for testing; the hypothesis Hy,:0, =0 is
__ Hje-1)
E|(N—t—b+1)

If the hypothesis H, is true, then the quotient has the distribution ¥

with t—1 and N —t—b-+1 degrees of freedom. The estimates of block

parameters are given by the vector 2)2 = 020Q,. The adjusted blocks means
are given by

a, = (G/N)1+ 20,.
The estimates of treatment parameters are given by the vector
0, = (1/r)(Q;—n2Q,).
The adjusted treatments means are given by
a, = (G/N)1+1/r)(Q,—n2Q,).
The em‘mriance matrix of the vector @, is equal to ¢%£,;, where
2, = (1/r?)(rI + ng@n;)  with my = n—(rk/N)11".

The standard error of the difference between two adjusted treatment
means is evaluated from the formula

g _]/ E 2b(kr —k+1r—A4;)
¢V N—t—b+1 r3(N —1) ’

where 4; =0,1,2,...,r is the number of times any two treatments
occur together in a block.
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We show now a different way of getting the matrix 2. Calinski [2]
has introduced the matrix M, = r~’nk~°n’—1Ir'/N and has shown
that, using M,, the matrix , for treatments can be constructed without
any inversion. This will be particularly in the case where

(11) M} = "M,

Califiski [2] showed also that affine resolvable incomplete block
designs have property (11).
To evaluate the matrix 2 for blocks, let us first define the matrix
M, = k~*n'r~*n—1Kk'|N,

which in the case of affine resolvable incomplete block designs is of the
form

M, = (1/kr)n'n— (k/N)11’.

In view of property (9), the matrix Mo can be written as

D 0 ... 0
- 110 D 0
=Nl ... !

0 0 D

where D = tI —k11' is a ((t/k) x (t/k))-matrix. The matrix 2!, defined
by (8), can be presented as

Q' = p(I-M,),
and hence

2 = (1/k)(I—My)™" = (1/k) (I + f}m:).

h=1

The matrix Mo satisfies condition (11) with » = 1/r. Then
2 = (1/k){I+[r/(r— 1)1}

which is equivalent to (10).
It can be shown that the matrix £, for treatments is equal to

Q = A [r){I+[r/(r —1)1My}.
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AFINICZNIE ROZKLADALNE UKLADY 0 BLOKACH NIEKOMPLETNYCH

STRESZCZENIE

W pracy podano definicje oraz zasade konstrukeji afinicznie rozkladalnych
ukladéw o blokach niekompletnych. Przedstawiono ogélna metode uzyskiwania esty-
mator6w dla parametréw obiektowych oraz metode uzyskiwania macierzy kowa-
rianeji tych estymatorow. Podstawowe obliczenia numeryczne w analizie do§wiadczen
ukladéw blokowych zwigzane 83 ze znalezieniem odwrotnosci tej macierzy kowariancji.
Wykorzystujae rozwiazanie dualne pokazano, w jak prosty sposéb mozna znalezé
poszukiwang macierz kowariancji.



