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On the existence of exactly one solution
of integral equations in the space L with a mixed norm

by BoGDAN RZEPECKI (Poznan)

" Abstract. In this paper we deal with the problem of the existence of a unique
solution of integral equations in the space LF with a mixed norm. Applying the Banach
fixed-point theorem, we give some sufficient conditions for Fredholm second kind
equations, Urysohn and Hammerstein equations and integral equations of a certain
general type.

1. Introduction. The purpose of this paper is to transfer the problem
of exactly one solution of integral equations of the fundamental type
in the space L2 to the case of space L¥ with a mixed norm. We give suf-
ficient conditions for the Fredholm equation of second order, for the
Urysohn and Hammerstein equation and for the general integral equation.

For the definition and fundamental properties of the space LF with
mixed norm powers, see [2]. Let P = (Pyy-evy Pp)y @ = (q1y---)¢n) be
a given n-tuple with 1<p;, ¢;< o0, p;'+¢;' =1 for ¢t =1,...,n.

Let 2 denote the product of 2, ie. 2 = 02, x...x 2,, mesQ —
the product measure of the set 2, where 2; denotes a measurable subset
of the real line with a finite Lebesgue measure.

2. Fredholm equation. In this section we are going to consider the
Fredholm operator

Au(:) = [E(-, y)u(y)dy,
o

under the following assumptions:

ASSUMPTION (A). Suppose that

1° sets £, (¢ =1,...,n) are compact,

2° K: Q% Q—>(— o0, 00) is continuous.

ASSUMPTION (B). Suppose that

1° K: X Q—(— oo, 00) is measurable,

2° |K (- y)llge LF(R) (this means that the function @ (x) = |IK (=, y)lo
belongs to the space LF).
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Let assumption (A) or (B) be satisfied. Then the Fredholm operator
is defined in the space LF(Q).

In the first case there exists a finite integral f K(z, y)u(y)dy for
Q

every xef2 because K is bounded, the variable being fixed. When we

fix the second variable, the function K is unifornily continuous and Au

is continuous. In virtue of the Fubini Theorem, the integral f|Au(z)|" dw,
Q

is defined and as finite almost everywhere on 2, X... X .Qn: measurable
and continuous. Applying the above argumentation to the function
( flAu(x)|P da,)P2P1 integrable on 2, x...x 2,, we get consequently

9

f(...(f(flAu(a:)l"lda:,)"ﬂl”l dmz)“/”Z...)”"“’ﬂ—l dz, < oo.
o, 9y 9,

When we assume (B) for ue L” ,. applying the Hélder inequality, we
obtain

[ 1K (2, y)u(y)dy < |ullpIE (2, 9)lq
and
[ 1K@, p)u)(de, dy) = [{ [ 1K (=, y)uy)dy)da
2x2 2 Q2
< lullp- [ 1K (2, 9)lods < lullp- ILlig-|| 1K (2, 9)llgllp < oo-
(2]

Hence we deduce that A is defined almost everywhere on £, meas-

urabl'e‘ and finite almost everywhere. Let us suppose the existence of
lA%jl. Then

lAullp < llullp-| LK (2, 9)lo|lp < oo-
In order to prove the existence of ||Au||z we consider (n — 1) functions

q)i (a’n—i+l ’ m-n—l'+27 vy m'n)

- f ( f (‘ . ‘( f K (@, y)"g: dml)l’zlpl. . .)pn—i_llpn_i_z o

n-t n—i—1 1

X dwn-—i— 1

Pp—i/Pn—i—1
dwn—i

where i = 1, ..., n—1. Applying the Fubini Theorem (see [3]) we deduce
that the function ®; is finite almost everywhere on 2, ;,, X...X £,.
Let us notice that if f is a measurable function defined on the measurable
space X, having finite real values, then for every a > 0 the function |f|*
is measurable on X. Applying this remark to the function |Au|”, we
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deduce that the integral [|Au(z)/”'dx exists. Hence, according to the
Q

TFubini Theorem, the function
f(@sy ooy @) = f |A’“(w)]pld¢1
2,

is defined and measurable almost everywhere on 2, x...x 2,. We can
apply our remark to the function f72”1 because

[14u(@)Prde, < Iuip- [ 1K (2, y)I13 de, < oo
2

2,

Repeating this argumentation n—1 times, we finally infer that
[[Aullp exists.

We shall now give Theorems on the existence of exactly one solution
for the Fredholm equation of the second kind

(T) u@) =1 [ K(z, y)u(y)dy +(2).

The following result is well known: If assumption (A) is satisfied
and fe C(Q2), then for 4 such that

Al < (M -mes Q)™ (M = max{|K(z,y): z,yeQ})

there exists exactly one continuous solution of equation (I).

Considering the metric of the space LF, we can obtain a solution
of our equation for A belonging to a larger interval of values than in the
case of the space C. Let us prove

THEOREM 1. Let assumption (A) be satisfied and fe C(2). Then Jor
1A < (|| 1K (2, Ylolle)

there exists exactly one continuous solution of equation (I).

Proof. We deduce in a standard way that the assumptions imply
that:

(a) the function y(x) = ||K (, y)lly is defined almost everywhere on 2,
(b) the function

Vi®ipny iyay -5 Tp)

= f( f ((fllK(a;, y)”gldml)pz‘ﬂll”')Pi~1/1‘)i—2 dwi_])pi/pi—ldmi,
2

2; M5

is defined almost everywhere on £, ,X...x2,, i1 =1,2,...,n—1,

(¢) |IE (2, y)lol| exists and has a finite value,
(@) [|IK (2, y)llglp < M -mes Q, where M = max{|K(z,y)|: &, yeQ2}.
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Let ue L and let us consider the operator defined by the right-hand
side of equation (I) with values in C(£). Since the assumptions ensure
that our operator acts in L%, we have proved that among the functions
of LF, only continuous functions may be solutions of equation (I). Now,
let us take u,, u,e L” and consider the integral [ K (z, y)[u,(¥)— %.(y)]dy.

2

Applying (c) and the Holder inequality, we get
| [ K (@, 9)[ua(9) — a(9)1dy ||, < s — wollp- || 1K (2, 9)lg]|p-
n

This means that the operator under consideration is a contraction
for sufficiently small 2. The application of the Banach Principle completes
the proof.

Remark 1. For every A satisfying the inequality
(Mmes )7 < 14 < ([[IK (=, 9)llg]lr) ™
the sequence of successive iterations converges in the space L to a con-
tinuous solution. ‘

Remark 2. If fe L¥, then equation (I) has a solution in L¥ for the
same interval of values of the parameter A. The uniqueness of the solution
now means uniqueness up to a set of measure zero.

Applying assumption (B), we obtain
THEOREM 2. If assumption (B) is satisfied and fe L¥(Q), then for
A1 < (|[I1E (2, ¥)ligl|e) "
there exists exactly ome solution of equation (I) in the space LF.

3. Urysohn equation. In this part we shall set a theorem for the
Urysohn equation

(IT) w@) = [K[s,y, u(y)ldy.

We introduce

ASSUMPTION (C). Suppose that

1° the functions
K: QX Q2x(—o0, 0)>(—o00, 00), R: 2x R2x(—o00, 00)—>(— 00, 00)
satisfy the Carathéodory condition, i.e. they are functions measurable with

respect to variables (z, y)e 2 X 2 for every we (— oo, o0), and continuous
with respect to the variable ue ( — oo, oo), for almost all (x, y)e 2 X £,

2° |K (2, ¥, 2)| < R(x, y, 2) for every z,yeQ, ze (— o0, o0),
3° the integral operator
Bu(-) = [R[-,y,u(y)ldy
¢]

acts in L¥(Q).
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Under assumption (C) the Urysohn operator
w(+) = [K[,y,uy)]dy
2

acts in LF.

Proof. Let ue L*. In virtue of the above assumptions, applying
the Fubini Theorem and the Holder inequality, we deduce that Aw is
defined almost everywhere and measurable on 2, and has a finite value
almost everywhere. We prove the existence of ||Au|, applying assumptions

3° and 2°. This is proved in the same way as in the case of the Fredholm
" operator.

Now we shall apply the above result to the solution of equation (II)
under the following assumption:

AssumpTIiON (D). Suppose that
1° the function K: 2 X Q X (— oo, 00)—>( — 00, o) satisfies
(a) Carathéodory condition,

(b) Lipschitz condition with respect to the last variable: there exists
a constant C > 0 such that

K (2, Y, 21) — K (2,4, 2:)] < Cl2; — 2,
for every x,yeQ and z,, 2y¢ (— 00, 0),
2° Qf K (-, 9y, 0)ldy e LF(Q).
Since
|K (2, y,2)| < Clz| +|K(z, y, 0)],
it is convenient to take the operator B with the kernel
R(z,y,2) = Ciz| + |K(z, ¥, 0)|.

Let ue L¥; then Bue L*. If we consider the operator defined by
the right-hand side of equation (II), then assumption (C) is satisfied and
this operator acts in Lf. For u,, u,e LF

} f{K[iL‘, Y, u,(y)]—Klz,y, uz(y)]}dyl
<C- f 1 (y) — 2 (¥) | dy < Clluy — Usllp- L [lg-
Hence

| [{El2, 3,001 Kl2,y, 4:(9)]} dy |, < O mes 2+ uy — uyllp.
2

Thus the operator considered is a contraction if

[A]C-mes 2 < 1.
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We obtain the following
THEOREM 3. Let assumption (D) be satisfied. Then for

I1] < (C-mes 2)7*,

there exists exactly one solution of equation (II) in the space LF ().
Remark 3. The existence of exactly one solution in I* of equation
(IT) was given in [5H].

4. General integral equation. Let A denote an operator acting in L”
and let us take the non-linear operator of superposition

AssuMPTION (E). Suppose that

1° the function f: 2 X (— oo, c0) X (— 00, 00)—>( — 00, c0) satisfies the
Carathéodory condition: it is measurable with respect to the variable xe Q2
at every fized (y,z)e(— co, 00) X (— o0, 00), and continuous with respect
to variables (y,z)e (— 0o, ©) X (— 00, 0o} at almost every fixed xe$2,

2° 1f(®, ¥, 2)] < M Iyl + N 2| + a () for any we 2, y, z< (— oo, co), where
M, N are non-negative constants, ae LF (£).

Arguing as above and applying the Minkowski inequality, we infer

Under assumption (E) the superposition operator § acts in LF.

Setting for A an integral operator, we may generalize the results
of Sections 2 and 3 to integral equations generated by a superposition
operator. As an example we give the generalization obtained in the case
of the Urysohn operator.

Let us consider the integral equation

(IT1) u(@) = fla, u(@), 4 [ K(o,y, u(y))dy|

under the following assumptions:
AssumprioN (F). Suppose that
1° the function f: Q X (— oo, 00) X ( — o0, 00)—>{ — 00, ) salisfies:
(a2) Carathéodory condition,

(b) Lipschitz condition with respect to the last two wvariables: there
exist positive constants M and N such that

1f(@y Y1y 20) — (@, Yay 22)| < M|y — Yol + N2, — 25l
Jor every e, yy, Y,y 2y, 25¢ (— 00, 00),

2° f(+, 0, 0)e LF(Q),

3° the function K: 2 X 2 X ( — 00, 00)—>( — oo, o) satisfies assumption
(D).
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THEOREM 4. Let assumption (F) be satisfied. Then for

there exists in L¥ (Q) exactly one solution of equation (III).

Proof. Let A denote the Urysohn operator with kernel K. Let us
consider the operator defined by the right-hand side of equation (III).
Sinice

flz,y,2)| < Myl + N2+ |f(=, 0, 0)],

assumption (E) is satisfied and our operator acts in LF. We have for
Uy, Uge LE

| flos @), 2 [ Ko, y, uiw))dy] ~flo, wala), 4 [ Kz, y, u(y)dy]|

< Muy (@) —ug(x)] - NC A - Nluy — usllp.
Hence

| f]o) wa@), 2 [ K (o, y, ) dy| —f|o, wel@), 2 [ K, y, wa(y))ay]|,

< M fuy—usllp + A NC (Ll ey — usllp- [Lllp = [M + NC|Ames 2] |luy— telp -
Since M + NC|i|-mes 2 < 1, the application of the Banach Principle
completes the proof.
Remark 4. Sufficient conditions for the equation

(IV) u(x) =f[a:,lf1((a:,y,u(y))dy]

to have a continuous solution are given in [7]. These results were gen-
eralized to equation (III) in [1]. We introduce

AssuMPTION (G). Suppose that

1° the function f: 2 x (— oo, o0)—(— 00, o) satisfies

(a) Carathéodory condition: it is measurable with respect of the variable

ze 2 for all ye (— oo, o0), continuous with respect to the variable y e ( — oo, o),
at almost all xe L,

(b) Lipschitz condition with respect to the last variable: there exists
a constant L > 0 such that

(@, 1) —f(z, y)| < Ly, — sl
for every xeQ, y,, yse (— o0, o),
2° f(+, 0)e L¥(Q),

3° the function K: 2 x 2 x ( — 0o, co)—>( — 0o, oo) satisfies assumption
(D).
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Then we get:

Under the above assumptions, there exists exactly one function in the
class L (Q) satisfying equation (IV) for A satisfying the inequality

1Al < (LC-mes ).

Remark 5. Since (see e.g. [4]) every Hammerstein operator can be
written in the form
4 = Kfi,

where K is the Fredholm operator generated by the kermel K and f is
the superposition operator

fu(+) =fHu()],
the investigation of these operators can be reduced to the investigation

of a linear operator K and a non-linear operator f. Since A acts in LP
if K and f act in this space, we get

THEOREM 5. Let assumption (B) and conditions 1° and 2° from assumn-

tion (G) be satisfied. Then, for |A| sufficiently small, the Hammersteip
equation

(V) u(@) =4 [ K(x,y)fly, w(y)ldy

has exactly one solution in LF(Q).

It is easy to verify that the values of A for which the above theorem
holds should satisfy the inequality

2| < L{{| 1K (0, y)lqlp) -

The existence of exactly one solution in L* for equation (V) is given
in [6].
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