VOL. XXXIII 1975

FASC. 2

TWO EXAMPLES OF NON-SEPARABLE METRIZABLE SPACES

 \mathbf{BY}

R. POL (WARSZAWA)

In this note we shall give two examples, the first of which is an answer to a question of A. Pełczyński and the second to a question communicated to the author by P. Minc.

In our constructions the following observation due to A. H. Stone plays a fundamental role:

There is a zero-dimensional, complete, metrizable space T of weight \aleph_1 containing a subspace S such that

- (1) each separable subspace of S is countable,
- (2) S is not a Borel set at any point of T, i.e., for every open non-empty subset U of T, $U \cap S$ is not a Borel set in T.

For the proof let us take the subspace E of the Baire space $B(\aleph_1)$ (i.e. of the countable product of discrete spaces of cardinality \aleph_1) with the property that each separable subspace of E is countable, but E is not σ -discrete (see [5], 5.1). Let S be the non-locally σ -discrete kernel of E (see [4], Theorem 1) and let E be the closure of E in E is E is E is E in an another interpretation open non-empty subspaces of E are not E is an absolutely Borel set, and hence (2) holds.

Example 1. There exists a non-Borel subspace X of the Hilbert space H of weight \aleph_1 such that every separable subspace of X is contained in a closed subspace of X homeomorphic to the separable Hilbert space.

We can assume that $S \subset H$. Take $X = H \setminus S$. Since, by (2), S is not an absolutely Borel space, X is not a Borel set in H. For every separable subspace A of X there exists a closed, linear, separable subspace H' of H containing A. The intersection $H' \cap S$ is separable, and hence, by (1), countable. Thus $H' \cap X = H' \setminus (H' \cap S)$ is the complement of a countable subset of the separable Hilbert space H' and, by a theorem of Anderson (see [1], Corollary 2), it is homeomorphic to the separable Hilbert space.

Example 2. There exists a connected, metrizable space Y of weight \aleph_1 , each separable subspace of which is zero-dimensional.

Let S(r) be the sphere with center 0 and radius r in the Hilbert space H of weight \aleph_1 . Let \overline{xy} denote the segment joining points $x, y \in H$, let R denote the real numbers, and let P and Q be the sets of irrational and rational numbers, respectively, of the open interval (0, 1). For an arbitrary pair of disjoint subsets A, B of the unit sphere S(1) we define the space M(A, B) — the Knaster-Kuratowski broom over A and B (cf. [3], Section 46, II, Remark) — by setting

$$M(A, B) = \{tx: (x \in A \text{ and } t \in P) \text{ or } (x \in B \text{ and } t \in Q) \text{ or } (t = 0)\}.$$

We can assume that $T \subset S(1)$. Put

$$C = T \setminus S$$
 and $Y = M(S, C)$.

We prove that Y is connected, repeating the argumentation of Knaster and Kuratowski [2], p. 241. Suppose that Y is not connected. Then there exists a closed subset L of H which is disjoint with Y and cuts Y. The set L cuts some segment \overline{ao} , where $a \in T$, and thus it cuts also every segment \overline{xo} for x belonging to a sufficiently small neighbourhood V of a in T. For each $q \in Q$ let

$$L_q = \left\{ rac{1}{q} x \colon x \in S(q) \cap L
ight\} \cap V.$$

We have $\bigcup_{q \in Q} L_q \subset V \cap S$, since in the opposite case it would be $x \in C \cap L_q$ for some $q \in Q$, but this implies $qx \in Y \cap L$, which is impossible. Suppose now that there exists

$$x \in (V \cap S) \setminus \bigcup_{q \in Q} L_q$$
.

Since L cuts \overline{xo} , there is $t \in (0, 1)$ such that $tx \in L$. By our choice of x we have $t \in P$ and we get $tx \in Y \cap L$, which is a contradiction. We obtain

$$\bigcup_{q \in Q} L_q = V \cap S,$$

but this contradicts (2), as each L_q is a closed subset of V. Thus Y is connected.

Now let $A \subset Y$ be a separable space. There exists a separable space $T' \subset T$ such that $A \subset M(S', C')$ for $S' = S \cap T'$ and $C' = C \cap T'$. Since the space T' is zero-dimensional and separable, it can be embedded in R, and since, by (1), the set S' is countable, the space $M(S', C') \setminus \{0\}$ can be embedded in the subspace $Q \times P \cup P \times Q$ of the Euclidean plane, which is, as is easy to see, zero-dimensional. Thus A is zero-dimensional.

REFERENCES

- [1] R. D. Anderson, Some special methods of homeomorphism theory in infinitedimensional topology, Proceedings of the Second Prague Topological Symposium 1966, Prague 1967, p. 31-37.
- [2] B. Knaster and K. Kuratowski, Sur les ensembles connexes, Fundamenta Mathematicae 2 (1921), p. 206-255.
- [3] K. Kuratowski, Topology, vol. II, Warszawa 1968.
- [4] A. H. Stone, Kernel constructions and Borel sets, Transactions of the American Mathematical Society 107 (1963), p. 58-70.
- [5] On σ -discretness and Borel isomorphism, American Journal of Mathematics 85 (1963), p. 655-666.

DEPARTMENT OF MATHEMATICS AND MECHANICS WARSAW UNIVERSITY

Reçu par la Rédaction le 15. 3. 1974; en version modifiée le 24. 9. 1974