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THE STRONG AMALGAMATION PROPERTY
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PAUL BACSICH (BLETCHLEY)

0. Introduction. A model A of a theory T is called a strong amalga-
mation base if any two extensions of A in T overlapping only in A have a
common extension in 7. We shall investigate the uses of this notion in
Model Theory and prove the following Main Theorem which reduces this
concept to known ones:

If T is any theory and A is & model of T, then A is & strong amalgamation
base just if A is an amalgamation base and is algebraically closed.

As this paper continues the investigation of [1] into algebraic ele-
ments, we shall employ the (fairly standard) notation of that paper, and
some of the results.

The lay-out of this paper is as follows. In Section 1 we show that,
for a universal theory with the amalgamation property (AP), the notion
of strong amalgamation base provides a good explication of the notion
of algebraical closedness (in that it has all the expected properties), and is
sandwiched between the notions of existential closedness and algebraical
closedness in the usual (Robinson-J6nsson) sense. In particular, we obtain
the easy (necessity) direction of the Main Theorem.

Then in Section 2 we show that if 7 has a model-completion, then
every algebraically closed model of T is a strong amalgamation base.
This gives a “non-combinatorial” proof of a theorem of Park [7].

In Section 3 we use Park’s result and some facts from [1] to prove
the Main Theorem, and in Section 4 we discuss some related results. Final-
ly, in Section 5 we give a rather straightforward “algebraic” proof of the
Main Theorem for the special case of equational theories; in fact, this
was the author’s original proof.

It will help if we introduce some new terminology. We call a pair
A - B, A —C of injections a wedge at A and write it as B< A — C;
such a wedge has a strong amalgam B — D, C — D if the square of injections

/B\
A D
\C/
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commutes, and B'Nn (' = A’, where B’ is the image of B in D (and simi-
larly for C, A). Sometimes we call the whole square a strong amalgam.
A model A of T is called a strong amalgamation base (SA base) for T if
every wedge at A has a strong amalgam (with all structures models of T').
A theory T has the strong amalgamation property (SAP) if every model of
T is a strong amalgamation base.

Note that if we leave out the intersection condition, all these prop-
erties become the well-known amalgamation ones. Note also that for
a model A4 of T the following conditions depend only on the universal
part TNV, of T (as any model of TNV, has an extension to a model of T):

A is a strong amalgamation base,

A is an amalgamation base,

A is algebraically closed (in every extension which is a model of T).

Thus throughout we need only consider universal theories.

I should like to thank Ed Fisher and Paul Eklof for their helpful
conversations and correspondence on this subject. I first proved the Main
Theorem for the two special cases “T is universal Horn” and “7T has a mod-
el-completion”. This work appeared in a preprint Strong amalgamation
bases. Somewhat later I proved it for all countable T by a rather unpleasant
method. Shortly afterwards I received an early draft of Eklof’s preprint
[3] proving it for the case “T has AP” by an inductive approach. Spurred
on by this, I managed to prove the general result in this paper (which
supersedes the previous one).

1. A new notion of algebraical closedness. Let T be a universal theory
with AP. Several authors, among them Jénsson [4], Robinson [9] and
[10] (in two ways), and Simmons [11], have investigated general notions
of algebraical closedness. It seems to us that any class &« of algebraically
closed models of T should satisfy the following axioms:

(1) Every existentially closed (e.c.) model of 7' belongs to «.

(2) </ is inductive.

(3) If B<;, Aeso, then Bes.

(4) o is convex, i.e. if B, < O, B, < C and B,, B,es,then BN B, .

We shall now show that the class & of SA bases for T satisfies these
four axioms.

To begin with, (1) follows from a lemma due to Ed Fisher (oral com-
munication) which, for completeness, we shall prove here.

LEMMA 1.1 (Fisher). Let T be any wuniversal theory. Then each e.c.
model of T is an SA base.

Proof. Let B« A — C be a wedge of #(T). We can assume that
A - B, A — C are inclusions and BN C = A. It is easy to see that this
has a strong amalgam just if



STRONG AMALGAMATION PROPERTY - 15

(%) T+ Ag(B) + Ag(C) 4 {b # ¢: be BNA & ce C\A}

is consistent in L(BUC).

Now suppose that 4 <,C and that the theory () is inconsistent.
Then there are open formulae 6,(z,x) and 0,(z,%) and lists ae A,
be BNA and ¢e C\ A such that

T +6,(@, b) + 0,(@, &)+ N\ b; # ¢
is inconsistent, and v
Bk 0,(a,b), O FO0ya,zt).
Hence
TFOG2) &0,(2,9) >V 2 =y,
and _ " _
A EFOy(a,d) for some de A

(as A <,0C). Thus
Bk 0,(a, d) & 0,(a, d),
and so b; = d;e A for some i, j. Since b;¢ A, we obtain 3 contradiction.
1f A is e.c., then A <, C for each C > 4, and the result follows.
There are two remarks worth making.
1. We shall often use the stronger result proved within Lemma 1.1.

2. An alternative proof has been given by Eklof: he has constructed
a diagram of injections

/B—I———*ByD
A\‘\*AI/D/
c—"

for a suitable set I and an ultrafilter D on I, and observed that the square
7 is & strong amalgam by well-known results on ultrapowers. (In fact,
such results were used in Park’s thesis [7], which we shall come to later.)
However, the proof of Lemma 1.1 seems more natural and is the one
that leads on to further considerations.

Since axiom (2) follows by an easy compactness argument, using
the theory (*) of the proof of Lemma 1.1, we move on to (3).

LEMMA 1.2. Let T be any universal theory, let A <, B F T, and let B
be an SA base for T. Then A is an SA base for T.

Proof. Let C, < A —-C, be a wedge in .#(T). As A <, B, in the fol-
lowing diagram we can construct =, and =, and then, B being an SA base,
also n; such that each =; is a strong amalgam:
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LN
w N\

c,—— D,

Then it is easy to see that C;, - E, C, - F is a strong amalgam of
C,<~ A —>C,.

By using a more complicated diagram, we can prove (4) as follows:

LrMMA 1.3. Let T be a universal theory with models C, B, and B,,
where B; < C (¢t =1,2) and B; is an SA base for T. Let A = B,N B,.
If A is an amalgamation base, then A is, in fact, an SA base for T.

Proof. By extending C to an e.c. model, we can assume that C is
also an SA base. Given a wedge 4,< A - A,, we construct a strong
amalgam by building up the following diagram of injections in the sequence
Ty T2y Oy Ogy T:

A1—-—-—P D1
181/61/5]
A/Q\C T

In this diagram o,, 0, and v are strong amalgams (as B,, B, and C
are SA bases), #; and n, are amalgams (as A is an amalgamation base),
and p is a pre-existing strong amalgam (by the definition of A4). It is easy
to check that D, - F, D, - F is a strong amalgam of 4,« A — A,.

In fact, o satisfies one more condition which determines it uniquely.
Namely, it is the smallest class satisfying (1) and (4). This follows from

LEMMA 1.4. Let T be any universal theory and let A be an SA base for T.

(i) There are e.c. models B,, B, and C of T such that B,, B, < C and
A = B,NnB,.

(ii) A s algebraically closed.

Proof. Let A —~ A’ be any inclusion and let A’ < B, where B is e.c.
There are C F T and an injection f: B —C such that A = B NnfB, A being
an SA base, and, by a further extension, we may assume that C is e.c.
Clearly, fB is e.c. and A = Bn fB. This proves (i).

For (ii) it suffices to note that A is algebraically closed in C (as so are
B and fB), and thus in A’. Since A’ was an arbitrary extension of A4,
A is algebraically closed.
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We have proved a little more in these four lemmas than we originally
wanted. Firstly, if we add to axiom (4) the condition “B,NB, is an amalga-
mation base” and call the resulting axiom (4’), then the lemmas, in fact,
show that, for any universal theory (not necessarily having AP), the class
of SA bases satisfies axioms (1)-(3) and (4') and is the smallest such class.

Secondly, part (ii) of Lemma 1.4 establishes the easier direction of the
Main Theorem: every strong amalgamation base is an algebraically closed
amalgamation base.

One could derive this in a slightly different way, as it is not very
difficult to prove directly that the class of algebraically closed amalgama-
tion bases satisfies (1)-(3) and (4'), and so contains .

2. Park’s theorem. Now let us consider a topic which looks rather
different — Park’s work on convexity properties (see [7]). He used a notion
of “algebraic” which we can describe as follows. Given an L-structure D,
a subset Y of D and an element ae¢ D, we say that a is Park-algebraic
over Y in D if there is an L-formula 6(z, z), a list b¢ Y, and an integer n
such that

DE6(a,bd) &IA<"z0(x, b).

Then we call Y Park-algebraically closed (Park - a.c.) in D if no element
of D\'Y is Park-algebraic over Y in D.

As the key to Chapter 2 of his thesis, Park proved the following re-
markable theorem (Theorem 2.3 of [7]):

If A is Park - a.c. in B, there exist ¢ > B and B’ < C such that
A =BnB.

His proof used a rather ingenious combinatorial result. We shall
give a model-theoretic proof avoiding combinatorial considerations;
in this proof we shall use the fact that the theorem of Park is essentially
equivalent to a special case of our Main Theorem.

THEOREM 2.1. Let T be a universal theory with AP and a model-compa-
nion K. Then every algebraically closed model of T is an SA base.

The proof uses three lemmas.

LEMMA 2.2. Under the hypotheses of Theorem 2.1, the class < of SA
bases for T is elementary.

Proof. Let P, @ and R be unary predicates and let K* be the theory
with axioms
K+ KP + K° +Vz (Rry — Px & Qu) + TE.

Then, by Lemmas 1.3 and 1.4,
o ={D: (A,B,C, D) F K*}.
Hence & is closed under ultraproduct. But & is also closed under

elementary substructures (by Lemma 1.2). The result follows.

2 — Colloquium Mathematicum XXXIII.1
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Lemma 2.3 (Kueker [H], Lemme 2.3). Let G be a special L-structure
and let A < G be Park-a.c. in G with |G| > |L|+-|A|. Then

A=N{C: A<C<a).

The following assertion is essentially Theorem 5.2 of [1] (with B = G
there):

LuMMA 2.4, Let T be any universal theory, let G be a generic model
of T, and let A <. G be algebraically closed in G. Then A is Park - a.c. in G.

Proof of Theorem 2.1. Let A be an algebraically closed model of T,
let B > A be e.c. (hence a model of K), and let @ > B be a special L-struc-
ture with |G| > |L| -+ |B|. Thus G F K, and so G is also generic for 7. Now A
is algebraically closed in G, so Park-a.c. in G;thus A=) {C: A<C<G}.
But if ¢ < @G, then C is e.c.,, and so Ce o/. Also & is convex and ele-
mentary, and so closed under arbitrary intersection. Hence A e /.

CoROLLARY 2.5 (Park). Let A be Park-a.c. in B. Then there are C > B
and B' < C with A = BN B’ and also B’ isomorphic to B.

Proof. Let B* be the full expansion of B in the sense of Morley and
let 7'); be the theory with axioms all universal sentences of Th(B*). Then,
by Lemma 1.2 of [6], Ty is & universal theory with AP which has a model-
-companion K = Th(B*). It is easy to check that the substructure of B*
built on A is algebraically closed in B*, and so algebraically closed (as
B* is e.c.). Hence 4 is an SA base for Ty by Theorem 2.1. Thus we have
& strong amalgam

/ a
A \C*
\B*/
in .#(T,), where C* k Th(B*). The result follows by taking reducts to
the language L of 7.

In fact, it is possible to prove a variant of Kueker’s lemma with
“special ” replaced by “homogeneous universal for 77, “Park - a.c.” replaced
by “algebraically closed”, and < replaced by <,. This would replace the
use of LLemmas 2.3 and 2.4 in the proof of Theorem 2.1.

By looking hard at this new proof, one can also eliminate the hypo-
thesis of having a model-companion. This would give an alternative
proof of Theorem 2.3 of [3]. But in the next section we shall prove a still
more general result.

3. The Main Theorem. The proof of the Main Theorem is now
fairly easy.

THEOREM 3.1. Let T be any theory and let A be an algebraically closed
amalgamation base for T. Then A is a strong amalgamation base for T.
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Proof. As mentioned in the Introduction, we can assume that T is
universal. Now let G be a generic model of T such that A < G. Then A is
Park -a.c. in G (by Lemme 2.4), and so (by Corollary 2.5) there are H > G
and G’ < H isomorphic to G such that A =GN @'. Since G, and so G,
are SA bases for T, A is an SA base for T by Lemma 1.3.

There is another representation of SA bases that we can give. This
uses a combinatorial lemma extracted from a construction of Park.

LEMMA 3.2. Consider the diagram of injections

A—>By—>B,—>..—>B

Lol b

By—> B,—> B, — ... — B

where the unlabelled arrows are inclusions, B = | J B,, and u is the direct
limit of the u,. Then n<e
‘ A = (N u"B.
n<w

Proof. Note first that u, = u|B,. Now 4 = B,nuB, and «B,
=B, ;nuB, ,. Thus we have A = B,nuB, by induction on n, and so
A = B,nuB. Similarly, uB, = B, ,;NnuB.

We can now prove by induction that

n+1

A = B,n N uB.
s=1

n-+1

Hence A < Bn (M) «’B for all n, and so
s=1

A< () ¥B.

s<w

But if be () «®* B, then be B, for some n, and so

s<w
n+1
beB,n(Yu'B = A.
8=1
Using this, we can prove that every SA base is the intersection of
a decreasing sequence of e.c. models. More precisely, the following is true:

THEOREM 3.3. Let T' be a universal theory. If A is a strong amalgamation
base for T, then there are an e.c. model B of T and an injection u: B —~ B
such that

A<B and A = ()u"B.
n<w

The converse i3 also true provided A is an amalgamation base.

Proof. Let B,> A be e.c. Since A is an SA base, there are B, > B,
and an injection u,: B, — B, with uy(a) = a for ae A, and we can take
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B, e.c. (by a further extension). Now build up the diagram ( +); this is
possible as each B,, is an SA base. Let

B =\ B,.

n<w

Then B is an e.c. model of 7. The other results follow from Lemma 3.2.
Conversely, if
A=MNu"B
n<w

with B e.c., then A — B is antialgebraic (as each 4"B — B is); thus A4 is
algebraically closed, and so an SA base by the Main Theorem.

In fact, one can prove the converse without using the Main Theorem
by employing a certain compactness argument.

4. Applications of strong amalgamation to convexity properties. In this
section we show how an explicit use of strong amalgamation can simplify
or at least reduce to more standard considerations results obtained by
Robinson, Park and others on convexity and related properties of theories.

We shall use the standard preservation theorem asserting that a the-
ory T is inductive (i.e. closed under chain unions) just if A £ T whenever
A<,BFT. ,

The following slight strengthenings of Lemma 1.1 will be useful
(they can be proved by similar compactness arguments):

LeEMMA 4.1. Let B< A—C be a wedge of inclusions with BN(C = A.

(i) If A <, B and A < C, then there is D with B < D and C < D.

(ii) If A < B and A < C, we can make B < D also.

Now we can prove

LEMMA 4.2 (Robinson). If T is convex, then T is inductive.

Proof. Let A <, Bk T. By Lemma 4.1, there are D > B and an
injection f: B — D with A = BNnfB. Now B, fB, DET, and so AFT
if T is convex.

Before we can proceed, we need two more definitions.

We call T descending-chain-closed (DC-closed) if whenever (4,)p<.
i8 a descending chain of models of T and B = () 4, # 9, then B FT.

n<w

(This is the nested intersection property of Park [7].) And we call T hypo-
-convex if whenever A, B< CFT and ANB # @, then ANBFT.
Clearly, a convex theory is hypo-convex, and it is also DC-closed,
by & result of Robinson.
LEMMA 4.3 (Park). If T is DC-closed, then T is inductive.

Proof. Let 4 <, B ET. Then there are B, > B, and an injection
#y: By — B, with B,nu,B, = A. Repeating this, we obtain the dia-
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gram ( +), where B,, < B, if m < n. Hence BFT, and so «"BET. Since
A =Nu"B,

n<w

it follows that A F T if T is DC-closed.
THEOREM 4.4 (Park). If T is DC-closed, then T is hypo-conves.

Proof. Rather than use Park’s characterization of hypo-convex
theories, it is simpler to use the above methods. Let T be DC-closed.

(a) We first prove an apparently weaker form of hypo-convexity.
Let A< By<B,;FT and let uy: B, - B, be an elementary injection
such that w,(a) = a for ae A and 4 = Bynu,B. By repeated uses of
Lemma 4.1 (ii), we build up the diagram (-+) with B, < B, if m < n
and u, elementary. Thus B F T, and so

AT as A =()u"B.
n<w

(b) Now we prove that this weaker form actually implies hypo-con-
vexity. Let A = B,Nn B,, where B,, B, < CkT. Let C; be an isomorphic
copy of C such that C;nC = B; for ¢ =1, 2, and C;NnC, = A. We can
find D; such that, by Lemma 4.1 (ii), C, C; < D, for ¢ = 1,2, and then
we can take G kT with D,, D, <@. Thus C,, C, <G FT and A= 0,NnC,,
and C, is isomorphic to C,. By part (a), it follows that 4 k T.

However, we have not been able to give a simpler proof of the converse

of Park’s main theorem asserting that an inductive hypo-convex theory
is DC-closed.

5. An algebraic proof and some remarks. It is possible to give a proof
of the Main Theorem for universal Horn (and a fortiori equational) T, which
requires & minimum of model theory. This uses the following lemma:

LEMMA 5.1. Let B< A — C be a wedge of inclusions of #(T) with
BNnC = A. This has a strong amalgam just if for each be B\A there are
an extension D, of C and an injection f,: B — D,, the identily on A, with

fo(b)¢ C.
Proof. The necessity is obvious. Conversely, let

b= [] b,

be B\ 4

and define f: B — D by f(x)(b) = f,(x) for be B\A, and =zeB, and
u:C — D by u(x)(b) =« for be BNA, and xeC. Clearly, f and u are
injections with f|l4A = u|A. If f(b) = u(c), where be B\ A and ce C\ A,
then f,(b) = f(b)(b) = u(c)(b) = ceC, contrary to hypothesis.

THEOREM 5.2. Let T be a universal Horn theory, and A an algebraically
closed amalgamation base for T. Then A is a strong amalgamation base for T.
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Proof. Suppose not. Then we can find extensions B and C of 4 with
BNnC == A and (by Lemma 5.1) be B\NA such that for every extension
D’ of C and injection w: B — D’, the identity on A, we have w(b)eC.
We shall show that b is algebraic, of degree 1, over 4 in B.

Suppose not. Then, by an amalgamation, we obtain an extension
D of C and injections w, v: B — D, the identity on A, with u(b) # v(b).
Let x be a cardinal such that x» > |C|. For each j < », we define an in-
jection w;: B — D* by

w;(b)(i) = w(b) if i £j and w;(b)(j) = v(b).

Now let e¢: ¢ — D* be given by e(¢)(i) = ¢. Then w;|4A = e|A, and
so, by hypothesis, w;(b)e uC. But if ¢ < j < %, then w;(b) # w;(b). This
gives a contradiction, as |uC| < x.

It would be of interest to extend the Main Theorem to non-elementary
classes, but our knowledge here is fragmentary. Note, however, that
Theorem 5.2 does not use compactness, and so applies to any class of
structures closed under product and substructures, e.g. metric spaces
of diameter not greater than 1. Note also that the trivial direction
always holds.

There are two particular non-elementary classes where the theorem
does hold.

(a) Let € be the category of metric spaces and contractions. Any
complete metric space is a strong amalgamation base (by a direct argu-
ment), and any strong amalgamation base is algebraically closed in its
completion, and so complete.

(b) Let £ be the category of complete Boolean algebras and com-
plete embeddings. Ronald Jensen has observed (oral communication) that
any complete Boolean algebra is a strong amalgamation base, by using
Boolean-valued models to reduce the problem to a known joint embedding
result.

Some categorical observations on strong amaigamation can be
found in [2] and [8].
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