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1. Introduction. Let X be a first countable linear topological space
over the real numbers R or the complex numbers C. Then (see [5], p. 28)
there exists a function p: X — [0, oo) such that, for all z, ye X and
scalars 4, '

(P1) p(#) = 0 if and only if z = 0;

(P2) p(dr) < p(@) if 1A <1;

(P3) p(e+y) <p(®)+0(¥);

(P4) the topology of X is given by the metric d(z, y) = p(v—v).

If X is a linear space and p: X — [0, oo) satisfies (P1)-(P3), then
p will be called a pseudonorm, and the pair (X, p) a pseudonormed space.
If X is a linear topological space and p: X — [0, oo) satisfies (P1)-(P4),
then the pair (X, p) will be called a metric linear space. A norm is a pseudo-
norm which is absolutely homogeneous.

Following Menger [4], a subset A of a metric space (M, d) will be
called metric convex if, for each z,ye A, # y, there exists ze¢ A such
that d(x,2) =d(2,y) = 4d(»,y). If M itself is metric convex, then we
shall usually say that the metric d is metric convex. In [2], p. 41, it is
shown that, for a complete space (M, d), there is a weaker condition equiv-
alent to the convexity of d. If # and y are distinet points of M, then
ze M is metrically between x and y provided z # @, 2 # y, and d(x, y)
= d(w», 2) +d(2, y). If each pair of distinct points in a complete metric
space (M, d) has a metrically between point, then, given x, ye M, there
is an isometry f mapping the interval [0, d(x, y)] into M so that f(0) = &
and f(d(=, ¥)) =y. In particular, d is metric convex. The image under
fof [0, d(x,y)] is called a metric segment between x and .

There is an equivalent formulation of metric convexity in pseudonormed
spaces; namely, a pseudonorm p is metric convex if and only if, for each
xe X, there exists ye X such that p(y) = p(#—y) = 4p(x). If each such
¥y is unique, then p will be called strictly metrie convex. It is easy to verify
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that when p is a norm, this definition coincides with the usual definition
of a strictly convex norm. A

If A is a subset of a linear topological space X, then co(4) and co(4)
denote the convex hull and closed convex hull of A, respectively. If K
is a convex set, then 0K denotes the set of extreme points of K. For
a pseudonorm p, the closed p-sphere centered at » with radius £> 0
will be denoted by B(z, ¢).-

In Section 2 conditions are investigated under which the space is
normable. A preliminary result shows that a continuous strictly metric con-
vex pseudonorm is a norm. A subsequent characterization of those metric
convex pseudonorms which are strictly metric convex is obtained. It is
also shown that, for finite-dimensional spaces, metric convexity charac-
terizes those pseudonorms which are norms. The final result shows that
a locally convex metric linear space with metric convex pseudonorm is

necessarily normapble. _
In Section 3 examples are presented which show that the above

results are not true in more general settings.

2. Main results. The following two preliminary lemmas will be useful
in the sequel.

LEMMA 1. Let p be a continuous pseudonorm on a linear topological
space X. Then p is a norm if and only if p(3x) < 3 p(x) for each xe X.

Proof. The necessity is immediate from the definition of a norm.
Suppose p(32) < 3p(2) for each xe¢ X. Then (P3) implies p(32z) = }p(2),
and a simple induction argument shows that p(2*z) = 2*p(x) for each
integer k¥ and each v« X. By (P3), it is sufficient to show (for either B
or C) that p(Ar) < Ap(x) for 1¢[0,1]. But if »/2* is a dyadic rational
in [0, 1], then, from the above and (P3),

n 1 n
P\gE®) = ?P(”W) <§P(-’D),

and the result follows from the continuity of p.

LeEMMA 2. Let (X, p) be a metric linear space. Then p is a norm if
and only if p is melric convex and the spheres B(x, ¢) are convex.

Proof. The necessity follows easily from the definition of a norm.
If p is metric convex and the spheres are convex, then, for each ze X,
the set
C, = B(O7 ‘}p(w))nB(w, ‘}p(w))

is convex and non-empty. If ye C,, then, clearly, #—ye C,. Thus

1z =y +i(@—y)< C,,
and it follows that p(3z) < 3 p(«). By Lemma 1, p is a norm.
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THEOREM 1. Let p be a continuous strictly metric convexr pseudonorm
on a linear topological space X. Then p is a strictly convex norm.

Proof. Let ¢ X and let ¥ be an element of the set C, defined above.
Then x—ye C, and, since p is strictly metric convex, ¥y = x—y. There-
fore, p(3z) < 3p(«) and, by Lemma 1, p is a norm.

THEOREM 2. Let (X, p) be a complete metric linear space and let p be
metric convex. Then p is a strictly convex morm if and only if each closed
metric convex subset of X 18 comvex.

Proof. Suppose p is a strictly convex norm and let A be a closed
metric convex subset of X. Since X is complete and A is closed, it is enough
to show that 3(z+y)e A whenever x,ye A. Since A is metric convex,
there exists a z in A such that

p(Z—2) =p(yY—=2) = %p(w4y)-

Hence, p being a strictly convex norm, we get z = }(x+v).

Suppose each closed metric convex subset of X is convex and let
ze X. Let 8 be a metric segment between 0 and z. Then § is closed and
metric convex. Thus § = {Az: 0 < A< 1} and there exists Ae (0, 1)
such that

p(Ax) = p((1—2)2) = §p(a).

For either of the cases A< 4 or 1—1< 4 we have p(}2) < }p(x).
Hence, by Lemma 1, p is a norm. Suppose that p(x) = p(y) = 1 and

p(@+y) = 2. Then, clearly, p(z+y) =p(®)+p(y). Since

ple—(@—y) =p(y) = ¥p(r—(—1v)
and

plr—y—(—9) =@ =3pl@—(—9v),

it follows that  —y = }2+3(—v). Hence ¢ = y, and p is a strictly con-
vex norm.

The special case of Theorem 2 for finite-dimensional (X, p) with the
Euclidean norm p appears in [2], p. 43. A related result appears in [6],
p. 101.

The argument used in the proof of the sufficiency of Theorem 2 shows
that every metric convex pseudonorm on a one-dimensional space is
a norm. We have the following extension to spaces of finite dimension.

THEOREM 3. Let (X, p) be a. finite-dimensional metric linear space.
Then p is a norm if and only if p is metric convex.

Proof. The necessity is immediate. To prove the sufficiency let us
assume that p is metric convex. By Lemma 2, it is enough to show that
the spheres B(0, ¢) are convex. We first show that they are compact. For
a sufficiently small ¢ > 0, this is a consequence of the local compactness
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of the space. If z¢ B(0, 2¢), then there exists ye¢ X such that y and 2 —y
are in B(0, ¢). Hence B(0, 2¢) = B(0, ¢) + B(0, ¢). By induction, it follows
that, for each ¢ > 0 and for each non-negative integer =,

B(0,2"¢) = B(0, &)+... +B(0, ¢).

2" summands

Since the sum of compact sets is compact, each sphere B(0, ¢) is
compact.

For each ¢> 0, let K(¢) = co(B(O, ¢)). Then K (&) is compact and
convex, so that, by Milman’s theorem (see [4], p. 68), K (¢) < B(0, &).
We will show by induction that if z,¢ 0K (¢), then

1 1
p( wo) = FP(%)

2"
for each non-negative integer n. The assertion is trivial for n = 0. Suppose
it is true for » = k —1. Then there exists z¢ X such that

1 1 1 1 P
p(R) =19 ST o2 = 5P| =T %o =?p(wo)<§;.

Thus 2*z and 22,—2%z are in B(0, &) = K (¢). Since x, is an extreme
point of K(e) and x, = }(2%2) +3 (22, —2%2), we have 2*z = 2z, —2%2.
Therefore, 2 = z,/2* and the assertion is true for » = k. As in the proof
of Lemma 1, we have p(iz,) < Ap(x,) for all Ae [0,1]. Let

n n
y = ) hw;, where >0, YA =1 and x;c0K(s).
i=1 i=1
Then

n

n n
Py < D'p(hm) < D Ap(m) < D) e = .
i=1 i=1 {=1

Hence, by the Krein-Milman theorem, K (&) is a subset of B(0, &),
and so B(0, ¢) is convex.

By imposing an additional condition on the space X, we obtain
the following result:

THEOREM 4. Let (X, p) be a locally convew metric linear space with
a metric convex pseudonorm p. Then p is normable.

Proof. By a well-known result of Kolmogorov (see, e.g., [6], p. 41),
it is sufficient to show the existence of a convex bounded neighborhood
of 0. Since

1 1 1
B(O, W)-‘—B(O, Wl—) = B(O, F) for each n,
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we have, as in the proof of Theorem 3,

1 1 1
B(O’W) 4., +B(0’W) = B(O’F) for each n and k.

2% summands

Hence, putting K, = co(B(0,1/2")), we obtain

Kn+k+ cee +Kn+k = 2kKn+k = Kn.

2% summands

Thus, since the sets K, form a base at 0, they are bounded. In par-
ticular, K, is bounded.

We note that Theorems 3 .and 4 hold for almost convex pseudomorms
(see [1]).

3. Examples. In example (i) below we present a metric linear space
which is not locally convex but has a metric convex pseudonorm. This
example shows that Theorem 3 is not true for infinite-dimensional spaces.
It also shows that the hypothesis of local convexity cannot be deleted
from Theorem 4. In example (ii) below we present a locally convex metric
linear space with a convex pseudonorm which is not a norm.

(i) Let LY[0 ,1] denote the space of Lebesgue measurable scalar
functions f on [0, 1] such that

1

S < co.

0

Define p on L'2[0,1] by

p(f) = [ 11,

Then p is, clearly, a pseudonorm which is not a norm. Furthermore,
the space (L'?[0,1], p) is not locally convex (see [5], p. 34) and, therefore,
not normable. We now show that p is metric convex. Let fe L'2[0, 1]
and let

F(a) = [ If1*.
0

Then, by [3], p. 272, there exists t¢ [0, 1] such that

¢ 1
F(t) — f |f|1/2 —_ %f |f|ll2-
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Let ge L'*[0, 1] be the characteristic function of the subset [0, ¢]
of [0,1]. Then

1

¢ 1
2(f9) =f Ifglll2 =f |f|,l/2 = %f Ifluz

and ' )
p(f—fg) = [ 1F—fol™® = [ 1f@—g)™ = [ 1f"* =} [ If 1™

0 t

Hence p(f9) =p(f—f9) = 3p(f), and so p is a metric convex
pseudonorm.

(ii) Let L'[0, 1] be the space of Lebesgue integrable scalar functions
on [0,1], with its usual norm

Ifil = [ 1f1.
0
Define p on L'[0,1] by
1
2(f) = Ifil+ [ If 1.

Then p is, clearly, a pseudonorm on L'[0, 1] which is not & norm.
Furthermore, by Holder’s inequality for 0 < p <1 (sge [3], p. 191), we
have

IFIl < p(f) < IFI+IFI*®  for each fe L'[0,1],

and so p is topologically equivalent to ||:||. We now show that p is metric
convex. Let fe L'[0, 1] and let

F(a) = [(IfI +1f1").
0
Then, by [3], p. 272, there exists te [0, 1] such that
t
F(t) = [(f1+1f") =3F1) = }p(f)-

Let ge L'[0, 1] be defined by g = f on [0, ¢] and by ¢ = 0 in (¢, 1].
Then

1 1 ¢ ¢
p(9) = [ lgl+ [19" = [1f1+ [ 11" = tp().

Similarly, we have p(f—g) = 3p(f). Thus p is metric convex.
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