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On an identity between infinite series
of arithmetic functions
. by

8. L. Smearn (Nottingham and Rochester, N.,Y.)
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We therr obtain the formal identity
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where 4, = %‘ g, by substitating (1) in (2) and collecting together the

terms for which ma has the same value,
is diffieult to justify.
In [1], [2], Davenport discussed the cases

In general, however, this process

where a, = s(m), A(n),

 d(n), these functions having their nsual number-theoretic meanings, For

rational # the identity (2) is readily established using the theory of Dirich-
let’s L-series, in the sense that, whenever oue side of (2) converges, so
does the other, and to the same value. We will refer to the identitvj (2)
Lolding always in this sense. For irrational @, however, this ideiltity
appears much diffieult to justify; in [1], uging a reasonably compliaateﬁ
argument, Davenport establishes (2) in the cited cages for almost all z:
In [2], using Vinogradov’s method which had in the meantime appea,red’
he establishes it for all « (the proof is worked out in detadl only for a’
= p(n)). This latter proof involves the demonstration that for any fixed 7;:

2, e — 0fy(logy)
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uniformly in @. The proof of this last is not €8y, even nging Vinogradov’s
results. ‘ ' o
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The purpose of this note is to give a simple proof snd natural extension
of Davenport’s results as to when (2} holds. It should be noted that our
.notation differs slightly from his, in that Davenport writes {t} where we
have D{¢). No contribution is made to the deeper estimafes in [2]. For
results on the Riemann f-function £(s) which are used, reference may be
made to [4]. 5 and w are always complex variables.

PropoOSITION 1.
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Proof. One of the many proofs of the functional equation for the
Riemann ¢-function involves establishing the formula
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valid for —1 < Res< 0 (see [4], p. 15), the argument being well-known

and reasonably straightforward. Making the change of variable o = 1/u
and applying the Mellin inversion formmula gives

1 1 T
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valid for —1 << o< 0.
{(The inversion may, for exa.mple, be justified by using [5], Chapter

VI, Theorem (9b) with A (u f D( ) dt and then differentiating. Alter-

natively (3) may be esta,bhshed by the argument also used below, namely,
starting from the integral, apply the functional egquation for the Riemann
{-function, replace {(1 ~s) by its Dirichlet series (valid since —1 << << 0)
interchange swmmation and integration, and finally use the Mellin tramns-
form for sing to ayrive at the Fommr series (1).)

Hence we obtain
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for —1<<e< 0.
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z1l4e8>0, a.nd henee we may mtereha,nge the summation. and integra-
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tion in {4), obtaining

A (m) 10
(5) . gT.D(w%) = —2_T|:'1.:C_:t[o mmsds,

for —1<e< (.
The functlona:l e¢quation for the Riemann £-function and the egqnation

—&sl(—8) = I(l—s) now yield
. 1 ¢+ioa C‘(S) . 1 etico .
(6) '—ﬁcﬁf ma’i ds = omis . T(—s)sm(%ns)(ﬁ?nm)"ds

- Replacing s by -s in (6) and substituting in (5) gives for 0< g < 1,

o a-+ioo
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n=1 a—ioo

I(s)sin ($nrs) (Zrw)~5ds = — —lesin(%cm),

by & well-known Mellin transform (e.g. [3], p. 317, (1))
Proposrrion 2.
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Proof. Arguing exactly as in Proposition 1, BlnCGZ

—_ el
i)-for Rew>1+e, s >0, we
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absolutely and uniformly to

obtain
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where 0 < @< 1.

Here again, we may represent — ¢’ (w) by its Dirichlet series Z did
d=1 -

which is a.'bqolutely and uniformly convergent for Rew > 1-+s6,¢ >0,

and interchange the summation and mtegmtmn, thus obtaining Propo-
sition 2.
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Consider 2«3—, if this series converges absolutely and uniformly

for Rew = 1 + g, & >0, to & (w) say, then as 18 easy to see,
- \ |
y
S Y,
sl dln

converges absolutely and uniformly to {(w)ef {w} in the samo region.

Henee, since the argument is clearly reversible, it is plain that the
above argument Wﬂl prove the

THEOREM. IfZ——- converges  absolutely and wniformly for Rew
M,-—.

= 142,820, then zdmzm@/ 2 lw!ds (In the sense thal for & given = etther
both sides converge to the same value or both diverge.)
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Normal recurring decimals, normal periodic
systems, (4, &-normality, and normal numbers

by
R. G. SEONTIHAM (New York, N.Y.)

1. Introduction. In 1946, I. J. Good [1] gave a topological argument
{the traversing of a particular planar network) in order to construct what
he called “normal recurring decimals possessing normality of order »”
[1, p. 167], i.e. all sequences of + digits have normal frequency 107" in the
decimal. Then he says “If r is a given integer, the question arises whether
there are recurring deeimals possessing normality of order r. Any such
recurring decimal (in the base 10) must clearly have a period of at least

10". Our purpose here is to show that there are such decimalg with period o

107 for any given value of 7”. He also points out that the consiruction he
gives can be done in any base g.

In 1950, Korobov [2,3 and 4, pp. 64— —657 considered the normal
recurring decmnl's of Good from a dlfferent point of view and constructed
by & different method what he called a “normal periodic system” (still
essentially a normal recurring decimal of Good) which is a positive integer
onlg) that containg sequentially in ity representation in a base g all possible
n-tuples chosen from 0,1,...,4-—1. The integer g,(g) consisting of
g" +n—1 single digits is construeted in such & way that every m-tuple
from 00...0,00...1,..., g—1g—1...4 1 appears exactly once somewhere
in g,{g). For example, Korcbov [3, p. 31] gives the normal periodic system
of 284-3—1 digits in the hase 2, g(2) = L0001L0L110 which has each
3-tuple, 000,001, ..., 111 appearing exactly once in the sequence. Also
Korobov [2] proved in 1950, by a method different from Good’s, the
general existence of normal periodic systems g,{g). Tn essence, he gave
an algorithm for the construction of a normal periodic system.In [3,
§4, p. 361 Korobov develops a completely general algorithm which will
produce every such g, (g) for a given » and g. Other papers of Korobov
referenced in [4, pp. 64-65] studied the use of the g,{g) in constructing a
particular irrational whose distribution of fractional parts approached a
uniform digtribution.

The purpose of this paper is to show that the normal recurring decimals
of Good and the related normal periodic systems of Korobov are very



