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On composite » for which ¢(x)|n—1
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§ 1. Introduction. Im {4], D. H. Lehmer asked if there are any com-
posite natural numbers # for which ¢(n)|#n —1L, where ¢ is Buler’s funetion.
Thig is gtill an unanswered question, many people feeling it is as difficult
a8 the odd perfect number problem. There have been partial results how-
ever, such as: If such an n exists then n is divigible by at least 11 distinet
primes, and if 3|4, then n > 5.5-10°" and » is divisible by at least 212
distinet primes (Lieuwens [57).

It A is an avbitrary set of positive integers, then we deno’re by N{d, x)
the number of members of A which do not exceed . Let F denote the set
of composite n for which g{n}|n —~1. In [6] we proved

(1) N(F, ) = O[wexp(— ¢, (logwloglogx)?)]

Tor some ¢, > 0. If ne F, then o' = 1(modn) for every a with (a, n)
=1, that is, # i% a Carmichael number (also called an absolute pseudo-
prime), Henee o result of Knddel 3] dealing with Carmichael numbers also
implies (1). However, a result of Erdos [1], also dealing with Carmichael
numbers, gives the better estimate

N{F, @) = Olwexp( —eylogaloglogloga/logloga)]

for some ¢, = 0. Tn the prosent note, borrowing somewhat the methods

of Knodel and Erdds, we prove
(2 N(B, @) = 0 (5 {loglogm)’?).

In faet wo prove & more general theorem for which (2) is a special case.
Indeed, in [4] we congiderved the sobs

Jf‘(a = {n: n = a{modep(n))},

F (@) = {ne Fl{a): n # pa for each prime pta},
where ¢ i3 an m‘bitmry integer, We prove that for any a,

(3) N{F'(a), 2) = O (loglogm)"?).
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Since F'(1) = PU{l}, by taking ¢ = 1 in (3), we have (2).

The proof we present below is fairly simple. In a paper to appear
using more complicated methods we shall prove an estimate stronger
than (3). We record the following

CoNIECTURE. Dor every imteger a and every s> 0, we have

N{E'(a), x) = O(z*).

§ 2. The proof of (3). From Theorem 328 in Hardy and Wright
[2), p. 267, it follows that there is a constant e such that
C(4) ' a > nfp{n)loglogn
for every # 3= 3. We now restate a lemma from [6]:

Levva. Let ¢ be an indeger, ¢ o nabural number, and Py, Py primes
with (1) p;te, (i) p,>14-2alogloge if ¢= 3, (iil) p;e > 6442, and (iv)
piee F(w) for i ﬂl 2. Then py, = Ps.

' We now show that (3) holds for every a. We first note that (3) is true
if @ = (. Indeed, Sierpinski ([7], p. 232) showed that
P(0) = {1}uf2*-8": i > 0,5 0},
so that N(E(O),m) ~ (logz)*/2log2log3. Hence we may assume & 3 0,
Let now z be large, » <&, ne F (a). We may assume that
> #**(loglog)'?. Consider the two cases:
(i) there is a prime pin with p > #**loglogs
(ii) every prime p|n satisfies p < m”“’(loglogm)
Suppose eage (i) holds. If p?(n, then plp(n), so pja. Clearly thiz fails
_ for large & (since a # 0), s0 we may assume # = pe¢ where p{e. Then
¢ < o' (loglog®)'. Note that for large =, the lemma guarantees for such
¢ at most a single choice for p > 2 (logloga)™* with pee F'(a). Hence
the number of # for which (i) holds is less than #*° (logloga)*.
Suppose now case (ii) holds. Then # has & proper divisor m with

—1/3,
.)“.1,'3 !

(5). - 2" (loglogz)*® < m < 2 (loglogz)"?
Note that
(6) n = 0(modm) and n = g(modp(m).

-For each m there are at most (using (4))
1--2/[m, (p(m)] = 1 -a(m, ¢(m))jmep(m)
1+ |e|@fmp{m) <1+ |a] awlogloge /me

chomeq for » < ¢ for Whleh {6) holds. Hence the number of »n for which
(it) holds iz less than :

V(14 || amloglogam/m?) < (1+ |a]a)a™ (logloga)®

where 3} denotes the sum over all m satisfying (5).
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We thus have for sufficiently large ,
N(F'(a), 2} < {3+ o] a)a™ (loglogx)'®,
which proves (3).
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