W. Philipp

386

6] János Galambos, The largest coefficient in continued fractions and related problems in Diophantine Approximation and its Applications, ed. by Charles Osgood, Academic Press, 1973.

 7] — An iterated logarithm type theorem for the largest coefficient in continued fractions, Acta Arith. 25 (1974), pp. 359-364.

[8] Walter Philipp, Some metrical theorems in number theory, Pacific J. Math. 20 (1967), pp. 109-127.

Some metrical theorems in number theory II, Duke Math. J. 37 (1970), pp. 447-458,
 Errata, ibid., p. 788.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF ILLINOIS Urbana, Illinois

Received on 21.2.1974

(535)

On composite n for which $\varphi(n) \mid n-1$

by

CARL POMERANCE (Athens, Ga.)

§ 1. Introduction. In [4], D. H. Lehmer asked if there are any composite natural numbers n for which $\varphi(n)|n-1$, where φ is Euler's function. This is still an unanswered question, many people feeling it is as difficult as the odd perfect number problem. There have been partial results however, such as: if such an n exists then n is divisible by at least 11 distinct primes, and if 3|n, then $n > 5.5 \cdot 10^{570}$ and n is divisible by at least 212 distinct primes (Lieuwens [5]).

If A is an arbitrary set of positive integers, then we denote by N(A, x) the number of members of A which do not exceed x. Let F denote the set of composite n for which $\varphi(n)|n-1$. In [6] we proved

$$(1) N(F, x) = O\left[x \exp\left(-c_1(\log x \log\log x)^{1/2}\right)\right]$$

for some $c_1 > 0$. If $n \in F$, then $a^{n-1} \equiv 1 \pmod{n}$ for every a with (a, n) = 1, that is, n is a Carmichael number (also called an absolute pseudoprime). Hence a result of Knödel [3] dealing with Carmichael numbers also implies (1). However, a result of Erdős [1], also dealing with Carmichael numbers, gives the better estimate

$$N(F, x) = O[x \exp(-c_2 \log x \log \log \log x / \log \log x)]$$

for some $a_2 > 0$. In the present note, borrowing somewhat the methods of Knödel and Erdös, we prove

(2)
$$N(F, x) = O(x^{2/3} (\log \log x)^{1/3}).$$

In fact we prove a more general theorem for which (2) is a special case. Indeed, in [6] we considered the sets

$$F(a) = \{n \colon n = a (\operatorname{mod} \varphi(n))\},$$

$$F'(a) = \{n \in F(a) \colon n \neq pa \text{ for each prime } p \nmid a\}.$$

where α is an arbitrary integer. We prove that for any α ,

(3)
$$N(F'(a), x) = O(x^{2/3} (\log \log x)^{1/3}).$$

Since $F'(1) = F \cup \{1\}$, by taking a = 1 in (3), we have (2).

The proof we present below is fairly simple. In a paper to appear using more complicated methods we shall prove an estimate stronger than (3). We record the following

Conjecture. For every integer a and every $\varepsilon > 0$, we have

$$N(F'(a), x) = O(x^{\epsilon}).$$

§ 2. The proof of (3). From Theorem 328 in Hardy and Wright [2], p. 267, it follows that there is a constant a such that

(4)
$$a > n/\varphi(n) \log \log n$$

for every $n \ge 3$. We now restate a lemma from [6]:

LEMMA. Let a be an integer, c a natural number, and p_1, p_2 primes with (i) $p_i \nmid c$, (ii) $p_i > 1 + 2a \log \log c$ if $c \ge 3$, (iii) $p_i c > 64a^2$, and (iv) $p_i c \in F'(a)$ for i = 1, 2. Then $p_1 = p_2$.

We now show that (3) holds for every a. We first note that (3) is true if a = 0. Indeed, Sierpiński ([7], p. 232) showed that

$$F(0) = \{1\} \cup \{2^i \cdot 3^j \colon i > 0, j \geqslant 0\},\,$$

so that $N(F(0), x) \sim (\log x)^2/2\log 2\log 3$. Hence we may assume $a \neq 0$. Let now x be large, $n \leq x$, $n \in F'(a)$. We may assume that $n > x^{2/3}(\log \log x)^{1/3}$. Consider the two cases:

- (i) there is a prime p|n with $p>x^{1/3}(\log\log x)^{-1/3}$;
- (ii) every prime p|n satisfies $p \leqslant x^{1/3} (\log \log x)^{-1/3}$.

Suppose case (i) holds. If $p^2|n$, then $p|\varphi(n)$, so p|a. Clearly this fails for large x (since $a \neq 0$), so we may assume n = pc where $p \nmid c$. Then $c < x^{2/3}(\log\log x)^{1/3}$. Note that for large x, the lemma guarantees for such c at most a single choice for $p > x^{1/3}(\log\log x)^{-1/3}$ with $pc \in F'(a)$. Hence the number of n for which (i) holds is less than $x^{2/3}(\log\log x)^{1/3}$.

Suppose now case (ii) holds. Then n has a proper divisor m with

(5)
$$x^{1/3} (\log \log x)^{2/3} < m \le x^{2/3} (\log \log x)^{1/3}$$
.

Note that

(6)
$$n \equiv 0 \pmod{m}$$
 and $n \equiv a \pmod{\varphi(m)}$.

For each m there are at most (using (4))

$$1+x/[m,\varphi(m)] = 1+x(m,\varphi(m))/m\varphi(m)$$

$$\leq 1 + |a|x/m\varphi(m) < 1 + |a|\alpha x \log \log x/m^2$$

choices for $n \le x$ for which (6) holds. Hence the number of n for which (ii) holds is less than

$$\sum' (1+|a| \, ax \log \log x/m^2) < (1+|a| \, a) \, x^{2/3} (\log \log x)^{1/3}$$

where \sum' denotes the sum over all m satisfying (5).

We thus have for sufficiently large x.

$$N(F'(a), x) < (3 + |a|a)x^{2/3}(\log\log x)^{1/3},$$

which proves (3).

References

- [1] P. Erdös, On pseudoprimes and Carmichael numbers, Publ. Math. Debrecon 4 (1956), pp. 201-206.
- [2] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers (Fourth Edition), Oxford 1960.
- [3] W. Knödel, Eine obere Schranke für die Ansahl der Carmichaelschen Zahlen kleiner als x, Arch. Math. 4 (1953), pp. 282-284.
- [4] D. H. Lehmer, On Euler's totient function, Bull. Amer. Math. Soc. 38 (1932), pp. 745-757.
- [5] E. Lieuwens, Do there exist composite numbers M for which $k\varphi(M) = M-1$ holds?, Nieuw Arch. Wisk. (3) 18 (1970), pp. 165-169.
- [6] C. Pomerance, On the congruences $\sigma(n) \equiv a \pmod{n}$ and $n \equiv a \pmod{(n)}$, Acta Arith. 26 (1975), pp. 265-272.
- [7] W. Sierpiński, Elementary Theory of Numbers (translated from Polish by A. Hulanicki), Warsaw 1964.

DEPARTMENT OF MATREMATICS UNIVERSITY OF GEORGIA Athens, Georgia

Received on 12. 3. 1974

(544)