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is
o(n(logn)™").

Now the lemma follows from (4.3).
To complete the proof of Theorem 3, first note that for any k=1

(£.8) . Nz N, k) -4, k).

Now the theorem follows immedintely from (i1.8) and Lemmas 5 and 7.
Without mueh diffienlty we could obtain an asymplotic formula
for ¥ (n) even il we only assume :

m
B(z) = o (—___.._,,__ )_

logzloglog "

‘We hope to return to this problem on another oceasion.
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Some remarks on IL-functions and class numbers
by

5. Cuowra (University Pavk, Pa.)
and J. B. FRIEDLANDER (Princeton, N.J.)

§ L. Let & denote the discriminant of the quadratic field K = Q(I/E),
and let x denote the associated real primitive character. ¢; will denote
a positive computable eonstant. We simplify matters slightly by assuming
i2] > 4 so that K contains no eomplex roots of unity. Dirichlet’s formulae
now give for the clasg number #(d),

ap

__;,,mj;(l, ¥y for d <0,

B for d>0,
where ¢ denotes the fundamental unit of 7.

Hecke [5] was the first to connect the magnitude of L(1, y) with the
question of the existence of real zeros of L(s, y) near s = 1. For those
&< 0 for which no such zero exists he was able to give a good effective
lower bound for h(d).’

Recently, Goldfeld [4] has given a simple proof of the celebrated
theorem of Siegel [§]. His argument is easily moditied to give » simple
proot of Heeke's result. Furthermore, if we let ¢ be fixed with t=ta<d 1,
then an affective Jower bound for L(1, y) {(deponding on «) can be given
under the aysminption Lia, x) > 0. Tn particular, we have:

(A) Lot 4 < o< 1 and assume, Lia, g) 3= 0. Then, there emists oy (a)
sueh that '
Ll ) > e a) |1
(B) Lot 5 >0 and assume L(}, x) 22 0. Then, there emists 6,(8) such
that :
L (L, 2) > 0o(8) (logd* " 1d| .

Tt is to be noted. that the bound gets progressively better as « increases,
approaching the Siegel ound as o appreaches 1.
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For 4 <0, the class number formula combines with (A) and (B} 4o
give lower bounds for & (d). Furthermore, for special elasses of real quad-
ratic fields, where the regulator is relatively small, results may also be ob-
tained. For instance, we may consider the following conjecture of
S. Chowla:

Let p be a prime of the form &* 1. For &

From (B) we ure able to prove:

=46, hip) == 1.

(G There emists ¢, such that if © > ¢ and h(p) = 1, then L{L, 2) <2 0.

Although the case @ == § iy seen to give the worst hound, it iy never-
theless of interest for other reasons.

In [7], Selberg and Chowla proved that if there existis o tenth solution
of h(d) == 1 with &< 0 (a possibility since disproved by Slark [9] and
Baker [2]), then L(}, )<t 0. This type of result can now be extendlod
to larger class numbers. Using a theorem of Tatuzawa [107], we get:

(D) Let &< 0 and let hy be o positive integer. Theve ewists o,{hg) suoh
that there is at most one sobwtion of h{d) <X by with d<< —ey{hy)
and that, if such o solution d emists, then for that @ L{%, 7} < 0.
Another interesting point about the case @ = } ix the recent dis-
covery by Armitage [1] that certain Artin L-funetions vanish ab . This
leads oue to hope that perhaps, by wsing one of thess, o function might
he constructed which could give an effective lower bound., Fhis iden has
" been used recently by Friedtander [3] to give an effective lowoer hound
for the class numbers of totally imaginary guadreatic extensions of cer-
tain totally real fields (those whose Dedekind zeta-funetions vanish at ).
The proofs of the above results, as will be seen, involve n simple
application of Cauchy’s theoremn. By modifying the integrand it is possible
to give easy proofs of other results. By way of example, wo give simple
proofs of the following well-known results.

(B) L1, ) >0
(B)  If d>0, Smyim)< 0.

Mz
§2. We sghall have need of:
Lemma. (1) Let —F o< 0,
& (o ity Lo ity 2)| = e (o) [dIME (L [t
{I1) Let 0 < 0K }. ‘
(o +if) Lo+t y)| <

(TID) VL =L, )] < o [ (L o]y
Proof. These are special eases of Theovems 3 wnd 4 of [¢].

es(a}1d" (2 1 [t]),
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Prool of (A). We consider the integral

" 1 2
C(s-a)l(s+ =— ; ——
j st g s{s1)(s+2) 2L w e

where b (m) (1&1101@.\ the number of integral ideals of Q( V&) having norm o,

Since (1) =1 and &(m) 2z 0, we have, for 222, I'» 1 /8.
L

On shifting the line of integration to ¢ = — (-ng), we geb
T ( x) aph i f','r(rx) L(a, x) +
' (:1.-~a)( ca) (3 —a) 2
1 : w’
e f L(84a)L(s e
T omi (s B0 Ay

(“11_")
Uking the tirst part of the lemma we can bound the sbsolute value

of thix Iatter mteﬂm] as

[Z SN E]

e
Lepl)ld) T

Cloosing @ = |d|, this ix dominated by 1/16 for |@ > dy(a). Using the
hypothesis L(ua, ¥) = 0, the result follows im [€] > dy{a) and adjusting
the constant gives the regult for all d.

Trool of (B). We use the above argument with the tollowing dif-
ferences. Since b(m?) 2 1, we hove

» 'm

i ,/’—" 1
2 m It
matg!

Sl 1 1y

S
gL o
masplih -

LR
> wee (Tor o 16)
G ded  MH

mzp i

1
o,
i O

Ansame, without loss of generality that 6 = & Chousing
(log |d|y* -7

and shifting the line of integration to ¢ = —4(1 4 4),
ay hefore.

fhe rosult follows
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Proof of (0). Ibis easily geen that in Q(l@), m~+]/13 I8 the fundamen-
tal unit, whence

loge < log2Vp < logp  (for p > 2).

From the clags number formula it follows that

Wp) > WL, pflegy
and, applying (B}, with any fixed § < 1, gives the result.

Proof of (D). By Theorem 8 of [10], there exists &,(k,) H‘u(zh that
< —ey(hy), B(d) < By, has at wmost one solution. Applyi:ng»{B) with,
say, ¢ =1, there exists ¢p(hy) such that d< —oy,(hy), M{d) < hy, buplies
L(%, 7)< 0. Choosing ¢, = max{e,, ¢,,}, the result follows immediately.

Proof of (E). We consider the integral,

1 a o1 ‘ m\* . "
I =—-: f L(s) L8, g) — oo dlg == Zb{fm) (1 —n-'-‘——~) =0
2mi (515, s{8 1) (s -+-2) 2 & . @
(since B(m2) = 1).
On shifting the econtour to ¢ = § where § > 0 is small, and applying
the second part of the lemma with @ = 6,5(8) ¥, for snitablo e,,,

L{L, x) > e5(0) @02,

Proof of (¥). We consider the integral,

1 " L "
T =—'§*TE?IT h)fL(S, x) '-S—(';:f“:*{)“dg = 2 x(’m.) (1.—' '{'}"')-

(2 MEx
Shifting the contour to ¢ = —§ and applying the third part of the lemna,
I =L(0, x) 40 (a~ " @").
From (H) and from the functional equation for L(s, x), it follows
immediately that L{0, y) is positive and, moreover, for # > e,d% I > 0.
We can choose # to be at least this large wnd still demand that  be
a multiple of d, say @ = dr. Then,

" Lo
0 < Z x{m) (1 — q) = 2‘: ey ()

ty i -
mesdy Wy

whence Y my(m) < 0.

msdr

Since for any integer s,

my(m) = Z (m +sd)x(m e gdl) 2 e () 4

) sd<m<(s+2)d mesd ' s
the result follows.

Soime remarks on L-functions and olass numbers 417

References

[11 J. V. Armitage, Zetn functions with a sero af s = > Inventiones Math. 15 (1972),
pp. 199-205,

[2] A. Bakor, Linear forms in the logarithms of algebraic numbers, Mathematilka
18 (1966), pp. 204-216. .

[3] J.B. Friedlander, On the class numbers of certain gquadralic extensions, Acta
Arith., this volume, pp. 861393,

[4]° D. M. Goldfeld, A simple proof of Siegel's theorem, Proc. Nat. Aecad. Bei.
(U, 8. A (to appear.)

(6] E. Londauw, Uber die Hlossencabl vagindr-quadratischer Zahllorper, Nachr.
CAkad. Wiss, Giteingon, Math. Phys. KL, IX (1918), Pp. 285-295.

[6] H. Rademacher, On the Plragmén-Lindelsf theorem and some applications,
Math, Zeitsehr. 72 (1959), Dp. 192-204.

[7] A. Selberg und 8. Chowla, On Bpstein’s sela funetion, J. Reino Angew. Math,
227 (1967), pp. 86-110.

(8] C. L. Siegel, Uber die Klassensahl quadralisoher Zallkirper, Acta Arith. 1 (1935),
- pp. 83-86..

[9]1 H.M. Stark, 4 complete delermination of the comples quadratie Ficlds of class
number one, Michigan Math. J. 14 (1967}, pp. 1-27.
[101 T. Tatuzawa, On a theorem of Siegel, Japan J. Math, 21 (1951), pp. 163-178.
PENNSYLYANLA STATH UNIVEIRSITY
University ark, Pa.

INBTITUTH POR ADVANCHD STUDY
Prinecton, N.J,

Received on 27, 4. 1974 {567)



