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Conjugate algebraic numbers on circles
by
VEIKKO HNNOLA and C. J, SMyTH (Turka)

L. Iniroduction. In 1969, R. M. Robinson [4] posed the following
question :

(T) Which cireles |o—y| = R contain infinitely many sety of conju- .
gate algebraic integers?

In order to answer this question, we have asked, more generally:

(1I) Which algebraic numbers have all their conjugates lying on
& circle? . _

In this paper we give a complete answer to the second question
(Theorems 2 and 3). We also tind all circles ‘which contain nfinitely many
sety of conjugate algebraic numbers. This enables us to show, towards
angwering question (I), that the following holds: '

Fuporem 1. For every n > 1 there ave algebraic numbers y of degree n
such that there is a circle of centre y containing infinitely mony sets of conju-
gate algebraic integers.

There is & method which should, in principle, enable one, from The-
orem 3, to give a complete answer to (X}, but so far we have only worked
out the details when y is of degree at most 4.

revious partial answers to (I) and (IT) have been as follows: Robin-
son [4] answered (I), under the assumption that v 18 rational. Question (IT)
is very easy when the centre y is rational — seo [2], Theorem 3. In [1] the
fivet suthor answered both (I) and (II) when y is totally real, and in [2]
we did tho same for ¢ not totally real and of degree 3 or 4. '

When considering (I) and (I1), we can, because of the above results,
consider only circles with irrational centre. Hence, since any rational
or quadvatic £ lies, with its other conjugate (it any), on a circle of rational
sentre (of course they lie on many circles), such g can e excluded from
congideration in answering question (IT). Fuorther, these § are cleaxrly
of no interest to question (I). We can therefore confine our attention
to the set & of all algebraic numbers §, of degree at least 3 over the ra-
tionals @, whose conjugates (including ) all lie on a circle with irrational

~eentre y(f). It iz eany to see that »(f) must be a real algebraic number.

i
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For convenience, we divide # into disjoint subsets, which we treat
separately:

ﬁ‘* = {Be%| some conjugate of f iz real},

= {fe| § totally imaginary, y(f) totally realj,
and, :f01 each n 23,
B, = {feAB| f totally imaginary, » (B} of degree n» and not totally
: real},

We have
( U '%?l)‘
-qye=Y
The set @, has been characterized in [1]; %y and 4, ave given by The-
orems 2 and 3, respectively.

H = .@*U.‘%’tru

_ 2. Statement of results. The letters s, b, ¢ will denote rational num-
“bers such that €2 > 4b. We let Py << 0y be Lhe real yools of a2 4-cx -+ b = 0.
Put K = Q(p,), so that [E:¢] = 1 or 2. We take » to be an inficger 2= 3,
and define .
& =s—mng (i=1,2),
d = 82--nse+nb = & §,.

We shall assume throughout the paper that d = 0. If d > 0, we let /I
denote the open interval (—2Vd,2Vd), and « be the set of all totally
real algebraic numbers e, all of whose conjugates g; lie in A. Further,
we define :
1) glay = ga(z; 8) = (52(2““ o)t —&le— Qz)n)/( §a— &),
which is monic of degree » in Q[z]. We pﬁt n=4§/E& and x =1 or 2
aceording as n is odd or even. :
We can now state . .
TumoREM 2. Every fed has minimal polynomial of the form g(z),
for some n 2 3 and some 8, b, ¢c<Q sabisfying o* > 4b, d + 0, and '
(2) i K for each odd prime pln, and, if » is even, d > 0, cl‘q.’(,)”_.
Conversely, given n = 3 and s, b, ¢ Q) satisfying o > 4b, d # 0, and (2),
the polynomial g(2) is irreduoible over Q and has all its seros By tying on o oir-

cle. Furthermore, x of these zeros are real, and the ma?m of the circle has
degree nfx > 2 over §. So B;ed.

The condition (2} is equivalent to g(2) having a real zero und being
irreducible over @ (see Lemma 7). For %, we have '

TEEOREM 3. Hvery fe®, has minimal polynomial of the form

(3) Pz An 52 z—el)-‘”+ &1 (% p))*" '-—-a 2 - o2 - ”),
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Jor some acsd, some rationagl sonstant A, and some s, b, ¢<Q) satisfying ¢ > 4b,
d >0, and (2).

Conversely, given aes?, w2 3, and s, b, <) satisfying ¢ > 45, & > 0,
and (2), the polynomial P (2) of (3) is wveduczble over @, and all ils zeros ﬁl
are now-real, and lie on the circle (¢ —y|* = b0y 2. Here y 15 the only
real zero of g(2) if n is odd, and the real zero of g(2) further from —3c'if n
is enen. So pieB,.

Theorem 3, comnbined with the earlier results ([1], Theorem 1, and [2]
Theorem 3) for circles of totally real centre, immediately gives all circles
which contain infinitely many sets of conjugate algebraic numbers. To
see this, it iy sufficient fo remark that no cirele with irrational centre
can contain infinitely many sets of conjugate quadratic irrationals. Indeed,
# gimple argument shows that any such eircle can confain at most one
of these sets.

In these theorems we see that the polynomnl g(#) oceurs in two
different capacities. First of all, when ¢* > 45, d % 0, and (2} holds, its
zoroy are elements of #.. But When {(for odd ») also d > 0, one real zero
of ¢g(z) is the centre of a circle containing elements of %, .

There is an alternative form of (3} which we used for » = 3, 4 in [2].
It is obtained by replacing a by

o = —ne—nd(6®—4b)[(a— 28 —ng).

‘We sholl use this form in the proof of Theorem 1.

The proof of Theorems 2 and 3 occipies the next four sections. The-
orem 1 is proved in Section 7. The methed we use in the proof of Theorems 2
and 3 is nmot the same as in [2], which employed automorphic functions.
That method can also he used here, though the proof is somewhat longer.

3. Fundamental lemmas. For this section let fe#, and suppose
that all the conjugates B; of £ lie on a circle &F:lg—yp|* = &, where y I§
not totally real, and of degree n (= 3). B0 fedy or feB,. AS was shown
in [2], Section 3, Qe (y). Taking y; (§ =1, ..., ), with y, =y, to be
the conjugntios of y, and £, the carrespond.ing elamem; of ¢ (y;}, we define,
following [2], the linear transformations [y: Cu{ec}—=0u {0} by

([)z 'J’j)(ﬁ"‘”"'Vj) - Qj (j = 1, e )

or, squivalently,

“”jz = (Wz'i“ QJ"‘V%)/(E“W) {J = 1, ...n).

wooym). Let H denote the group
genernted by the Ij. Since I' permutes the conjugates of f and ['¥ = &,
it is ousy to show (see [2], Section 3) that every Iy also permutes the

* conjugates of § and that % = . Hence these facts hold for any /eH.
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However, any number 2¢@(y), 2 > 0 can be used to define & circlo &,
and linear fransformations I';, and in this general situation one can prove,
using the fact that 't = 2 if and only if zes: ' :

Lestvua 1. We have I =Pﬁ» if and only o [ =5
The details are in [2], Lemma 1.
Returning to our particular situation, we have, from the lernma,

(4) =TTy (j=1,...,n).

Hence, choosing y; non-real, we see that H is non-abelian, Irnrther, sinee
any linear transformation which keeps three elements fixed. is the ident-
ity, and the elements of H permute the finite set of £, H must be Finite
(see [27, Lemma 2). ’ -

We now mneed o basie fact:

LEMMA 2. Any finite non-abelian group of linear transformations
whieh keeps a cirele invariant must be dihedral. .

Proof. We use some results from Sections 51-37 of Ford [3] (The-
orem 3 in particnlar). We summarize these resulfs as follows: Any finite
non-abelian group of linear transformations is ecither dihedral, tetrahe-
dral, octahedral or icosahedral. Furthermore, & group of amy of the latter
three types is conjugate, in the group of all linear transformations, to
one of three particular groups 7 (¢ = 1, 2, 3) of linear transformations,
obtained in the following way: ' '

Let @2 8—+Cu{co} be a stéreographic projection from a spheve §
in &% Then x maps circles on § to circles or straight lines in C'u {oo}.
L 6:8-8 is a rotation, then '

mha™t: QU {oo} >0 u{ec}

is @ linear transformation. For any group @ of rotations of &, let &7 he
the corresponding group of linear transformations. Then, by inscribing
a tetrahedron, octahedron or icosahedron in' 8, the group of all ‘rigifi
motions which carry this body into itsolf gives a finite group ¢, (i =1, 2, 3)
of rotations of §. This defines G, ' '

Using these results, we can prove the lemma, Assumo that wo have
2 group of linear fransformations which keeps a eirele invavivnt, and
15 conjugate to G7. Then G keeps & circle on 8 invariant, But ench of
these groups conbaing two rotations 0, 0" of order > 2, whieh votate wbout
different axes, and therefore have different invariant eircles. This proves
the lemma,. : ' |

In particular, H is a dihedral group. In fact

LEI\'H\D} 3. The group H is dihedral of order 2n. Iis clements are I
and I (f =1, ..., %) ' ‘
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Proof. Applying an antomorphism ¢ of Q(y, y;, ..., 7,) which talkes
y 1o y;, wo obtain, from (4) with y; = o™y,

{5) Iy =T, (i, k =1,...,0),

where I depends on ¢ and k, and & 4k if y; is non-real. This shows thai
no £y belongs to the centre of H, It also shows that 7000 = I, #o (as H
is generated by the I7) every conjugate of I, is of the form 1Y, for some h.

Suppose that I ix dihedral of order 2m. We must show that wm = n.
The second assertion of the lemma then follows easily.

Consider firgt the case m odd. Then all m involutions of H are con-
jugate. Tlence the I ave the only involutions of H, and m = n.

Now take m even. Then the m non-eentral invelutions divide into
two conjuguey classes. Since any conjugacy class containing some I
containg only clements of the form I, it follows that either m = n if
there ave I’ in hoth conjugaey classes, or m =2n if all I7s lie in one
conjugacy class. The latiter possibility eannot oceur, because in that case
all the Iy wonld belong to a subgroup of index 2 in H. This completes
the proof. _ _

We now quote Lemma 4 from [2]. Tt iz clear from the preceding
argnment that the hypotheses of this lemma are satisfied. Se we have
the following rognlts: |

Layvia 4. (1) There exist rational numbers b, ¢ such that 2 = b1 ey 422

{i1) The rools gy, ps of the equation #* +ex+b = 0 are veal and unequal,
and ave inverse with respect to the eircle &, 7

(1) Bach T interchanges g, and g, so that g, and o, wre fized points
of D™ (§ =1, ..., %) :

(ivy The fiwed points of 1y lie on &.

We can now show

Tomma 5. The minimal polynomial of » is of the form g(z), where

K
b, o ave as above and s = D y;. Furiher 4> 0.
Feal
Proof. Define the linenwr transtormation L by
(0 Le = (s — o) fle — gs).

i
Then Ty = LETL™Y (f =1,..., %) has fixed points 0 and oo, S0 that
% is of the form Az for some AeC. Bub I7 =1, 8o 4 iz an nth root of
unity. Further the 4, are all distinet, so we can relabel the y; so that 1; = w ™t
(§ =1,...,n), where w =exp@nifn), :
Puiting p = I, woe have

(1) Ly = L0 = DT = Tip = o/ 'a . (f=1,...,%).
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n

Writing G(%) = [[(Z — Ly)), we thus deduce G(Z) == Z"— u" Putting

i=1

Z = Lz and noting that ¢(2) is monie, we obtain

g(2) = ({2~ 00)" — p™ (5 — ga)"} /(1 — ")
Since the coefficient of 2" equals —s, we easily find that
(8) ut o= &gy =1,

which gives (1). As regards the assertion d > 0, sce Lemma, 6 (iii), (iv)
helow.
For future reference, we note that

(9) LD =o' tufe (§=1,...,%).

This follows easily from (7} and the fact thab LITL™ interchanges 0
and oo

4. The polynomial g(z). We now take a closer look at g(z), defined
by (1)forn = 3and any ¢, b, ce@ with ¢* > dband d # 0. Lety, =y, ..., 9,
be its zeros. Define L by {6). The condition d = 0 iy no essential restrie-
tion, because for d = 0 the polynomial takes the degenerate form (=)
= {z—p)" (i =1 or 2}

Liexma 6. (i) The numbers s, b, ¢ ave uniquely determined by g(z).

(i) The zeros of g(z) all lie on @ virele, provided s s — L ne.

(iit) The zeros of g(2) are all distinct. Bwactly 1, 0, or 2 of them are
real according as o is-odd, n is even and d << 0, or n is even and 4 > 0.

(iv} If n.is odd and y is the veal zero of g(2), then btey+y2>0if
and only if d>0.

(v) If n is oven ond 4 > 0, then b+ oy -+ y% = 0 for precisely one ehoice
of y as a real zevo of §{z), namely that one which is Surther from — Je.

Proof. (i) Caleulating the first few coefficients of ¢(2), we golb

gl#) =" —s" T~ F(n—1)8" e — L~ 1)(n —2) 8" 2" e .,
where
' § = sc4nb, 8" = {c?~B)--nbo.
Then

d=s*t+ns'y, b= (s2—s8"))d, ¢ = (a5 +-ns") fd,

whenee the result. :

(i) .Obviously, the Iy, ave the roots of 4" 7, and so adl lio on o circle
of centre 0. But L~ maps any such civcle, except the unit cirele, to a eircle.
Since » is real and 1, the exceptional case occurs for 1 = -1, which

Implies s = — }ne.

icm

Conjugats algebraic nwmbers on ciroles 153

(ili) Since the Ly, ave all distinet, so are the y;. As I maps the real
axis inbo itself and sgny = sgnd, the latter assertion follows readily.
(iv) If # is 0dd, we have, using the fact that b-+ oy + 42 = (7 — g2 Iy,

bteyd92 > 0wly > 0en> 0ed >0,

(v) Suppose that » is even and that d > 0. Now g(¢) has two real
zeroy y, ¢, say. We have Ly’ = — Ly, The choice is determined by the
condition Ly > 0. From (6) we see that y and 4 lie outside and inside
the interval (o,, o), respectively, The result follows eagily.

Liemma 7. The polynomial g(z) has a real zero and is irreducible over 4]
if amd only if (2) holds. If this is the case, then ils zeros lie on a virdle whose
centre has degree nix over Q.

Proof. By Lemma 6 (iii), g(#) has a real zero if and only it d > O
tor even n. We therefore assume that this condition is satisfied.

Suppose tirst that # == ¢, where p is an odd prime divisor of % and pek.
Then . '

(g} = ((2— 0" —p (2 — go)""} /(1 — p)

divides g(z), so that g(z) has a zero of degree < 2n/p < n over ), whence

g (=) is redueible over . (It is in fact easy to see that h(z}eQ [2].)
Next let # be even and Vd (). Then

(Vi (2— 00" — & (2 — 0o J(Vd — &)

belongs to @ [2] and divides g(z). - :

Oonversely, let g(z) be reducible over . We contend that (2) does
not hold. Leti % (2) be & proper monic divisor of g(z) in §[2]. By relabelling
the y;, we may suppose that yy, ¢, ..., ym (L <m < n) are the zeros
of #i{#). Multiplying the equations (L))" =# (j =1,...,m), we obtain,
by (6),

(71(01)/’1"(92))?1 ="

Lot % == (m, n) = wm-vn, soy. Writing =, = h(g)" & {i =1, 2), we geb
7% = (7, /ra)", whenoe :
(10) = k(T fra)™h.
If an odd prime p divides n/k, then neK?, and we are finished. Suppose.
therefore that w/k = 2". Now d > 0 implies 4 > 0, so that we must have
the plus sign in (10). Bence & v} = &/ =, say, where r is rational.
S0 d = v (g7 (), und the proof of the first part is complete.

For the second part, let g(e) be irveducible and have a real zero y.
By Lemn 6 (i), the zeros of g(z) lic on a circle %y, because the excep-
tlonal ense § = - 4ne leads to % = —1, which contradicts (2). Since L
maps £ to lz| = |Ly|, we find that :

ve =y +I7(=Iy)) = (y*—D)}(2y -+
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ig the ecentre of Fu. So [Q(1):Q(y:)]1< 2. Thus degys == if n I8 odd.
Suppose that # is even. Then 9’ = L~'(—Ly) is a conjugate of y (cf.
the proof of Lemma 6 (v)). Clearly y, = [ —0)/(2y"4-¢). Bo v has
less than % conjugates, whenee degy. = §n. This completes the proof.

5. Proof of Theorem 3. Let ¢4, {n = 3), and put v = (). Then
by Lemma 5, » has minimal polynomial of the form g(z) for some ¢, b, ¢e(}
with ¢? > 48, 4 > 0, By Lemma 4, the circle & op which the conjugaties
of f lie has the equation [z—y|* = @, where £ = b4 oy Now define

(11) oy == &(Lf)" + & (LF)™

for each conjugate §; of f. From. the fact that &2 = (y-—g;)(y— 0d), Wo
see that ‘

(12) DV = Iy VR —a1lf Iy £V @ — 0] = (Ip)* = p*,

80 that I maps the circle & to the circle [2|* = p. It now follows eagily,
by (8), that for z on &, £,(Le)*+ & (Le)™™ is real and lies' on the cloged
interval [—2]/701, 21/3]. Hence a,.e[_mfé,- 2Vd]. We relabel the B wo
that a,, ..., o, are distinet and form o complete set of conjugates. Define
a monic polynomial P (2) by (3), where j ranges from 1 to ¢. It is then clear,
by (11) and (6), that the minimal polynomial of 8 divides P(z).

To show that P(2) is ixreducible, we look fivgt at the equation

a = &e"-F  or M (aff)ed -y =0,

for any complex valne of a. The roots of thiz equation are clearly o' 'z,
and o 'ufe (4 =1,...,n), where 2, is one root. Hence, by (9}, these
roots can also be written as LI 'z, and LIVL ™% (1 =1,...,%).
Hence, replacing # by Lz, we see that the roots of o = & (Te)™ -+ &, (L2)™"
are I, % and Iz (¢ =1, ..., n), where g, is one root. Since the I permute
the conjugates of § (see Section 3), it follows that, for j =1, ...,1, the
roots of

(13) ay = Ey(Le)*+ & (Le)™"

are all conjugates of §;, and hence of 5. If these roots are all distinet for
every j =1, ..., 1, the result follows. If not, then some £, iy a fixed point
of some Iy, Le. I8 = f,. In a suitable normal extension of ¢, apply
an antomorphism which maps v, to . Then we obtain / By == By for some b
But now f = y+V 02 is real, which contradicts the hypothesis. .
From the fact that the roots of (13) ave distinet, it also elearly follows
that a; % +£2Vd, so that ayesf, This proves the first paxt of Thoorem 3.
To prove the converse part, let # > 3, and s, b, 6¢Q) satisfying e* > 45,
4> 0 and (2), and some acs? be given. Then by Lemmas 6 and 7, g(z)
is irreducible, and has a wnique real zero y with £ = boy+32> 0,
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ag specified in Lemma 6 (iv}, (v). Using (6}, it iy easy to deduce (8) from
#(y) = 0. From (12} we infer that I maps &: jz—p]®* = @ to the circle
[#l? == p.

Now congider the eq_u_ation & — (/&) = 0, for any conjugate o
of a. Since a;ed = ( —2V4d, 2Vd), all roots of this equation lie on {2[2 = g,
and none of them is real. Applying the transformation L7', we see that
the roots of (13} lic on &, and so, defining P(2) by (3), all zeros of P(z)
are non-real and lie on &. By the remark made in Section 2, at least one
zero of P(z) has dogree = 3 over @, and so belongs to #,. Then since
{Lemma 6 (1)) the parameters s, b, ¢ are deterniined by v, we see from the
fivst part of the theovem that P(2) is irveducible over . This completes
the proof of Theorent 3.

6. Proof of Theorem 2. Let fe,. Consider fivst the ease when
v = () is not totally real. Let &, b, ¢ be the parameters connected with Vs
given by Lemma 5. Let g.(2) denote the minimal polynomial of f. From
the argament in the preceding section it follows that ge(z) [P{2), where
P () in formed with e; = +2vd (either sign or both signs according as
deQ® or d¢¢*). Moroover, it is easily seen that each root of (13) is now
repeated twice, whence the argument gives P(z) = g, (2)2

Tor deQ?, o, = 2eVd (¢ = 41), we then have

9,(8) = ((z— 02" — ¥y (e — o)) (1 —eV/7),

a8 18 easily veritied by squa;ring; S0 gu(2) = g,(2; 8+ 6Vd) for § = esgn £,
hecanse

(8+ VA —ngy) J(s -+ OV d —nog) = (Er4 8(& Ea)'2) J(Ear+ (8 EN2) = eV

If d¢@* then g¢4(2) is a product of the above polynomials with & = 41,
and so we get

gu(2) = (52("""“" o) — £ (e — @z)m}/(fzm &1) = gop{2; 28).

Ience g..(#) is of the form (1) with the parameters #, s replaced by either
Ty 8 Vd or 2, 29. 'With the corresponding new wvalues for 5 and 4,
(2) then holds, by Lemma 7, and so the first assertion of Theoremn 2 ig
true, for p () not totally veal. . _

Now loti Sedy, with y = ¢{(f) totally real. Then § iz of degrea 4,
and s given in [1], equation 10 (if), p. 342. (quation 10 (i) is not rel-
evant here, ns degf = 3.) Using the notation of [1], we have that § is
of the form g = v, 2}*(§ = 1 or 2), where y = y, is real quadratic with
conjugate y,, vy s a rafional number such that y, lies between y and p,,
and 8 = (y,— v}y, —yp) for any permutation 4,j, % of 1,2,3. Take
015 03 = g =1 V2, and define s == 2y, 42y, b = 0,04, € = —py— 05 = —2¥s.
It ig then easy to check that the minimal polynomial of 7 is g,(z; ¢). Clea-

4
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rly, 62> 4b and d 70, Finally, Lemma 7 shows that (2) holds. Thig
completes the proof of the first part of Theorem 2. The converse part
is an immediate consequence of Lemmas 6 and 7.

7. Proof of Theorem 1. For the proof, it will he sufficient to show
the following result, which is in fact a generalization of an example in [2]
(Section. 11, Example 3).

Lovma 8. Letnwn=3,0 =0,¢ =1, s = 8/q, where § and g are posi-
tive integers such that (8, q) —1 and 8 z=ntgd Then the corresponding
polymomial

() = & —(8ug) ((+1)" —2")

8 ‘irreducible, and has a real gero v such that the circle |o —y|? = ¢y
contains infinitely mony sets of conjugate algebraic integers.

Proof. We have g, = —1, gy = 0, d = §¥-ns8 > 0, # = (8--ng)/S.
Suppose that n<Q* for some natural number k > 2. Put » = (&, n). Then
8 = ru¥, §+ng =" for some natural numbers w,». But now

S4ng=ra+1 > 84+rkwf ! = 8 4-2ru™ = 5421782 > Sobong,

which is impossible. Hence 5¢Q" for & = 2 and also d = & ¢Q2 Thus (2)
holds, so that g(#) is irreducible. It hag o unique veal zero ¢ with 4 y2> 0,

From Theorem 3, iti remains oply to show that there ave infinitely
‘many wes’ guch that the polync-mial P(z) has integral coefficients, Hor
our example, P(=z H Fyiz), where

Py(2) = (s(z—{— 1)M+ (s +n)e™ —as(22+2)") /(28 +n—ay).

It is comvenient here to change variables, and put

a;= (no; —2ns}/( —a; 25 4-n).
(Cf. the remark at the end of Section 2.) Then — a; is the coetficient of 2 A
in Py{e). It is easy to check that ejed is equivalent fo aje A', where A’

(23-2]/d 25+ 2Vd). Then substitubing for
_ = ({284 n) a; 4 2ug) [{ o} - 1)
in Pi(#), we get ' )
Py(2) = (*+2)"+ (o5 -+n)n (s (2 4-1)" — (5 - m) 2"} (2 - 1)" — 2},

But now A has length 41d > 4s > 4nt q, 80 (see e, (2], Lemma 21)
we cant choose infinitely many o of the form o = %qu-w% where
is an algebraic integer, such that all the conjugates of o' lie in A’ If a,
is of this form, then the coefficients of P;(2) are algebraic integers. Thus

each @ gives a set of conjugate a.]wcbmuc infegers om |z--p|* = 9} o2,
and hence the proof of Lemma 8 ig complete. :

i

~ the following simple proof of Lemma 2: Lot N =
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Note added in proof. We would like to thank J. H. Conway for poinfing out
deg 8. Since each Ae¢H permutcs
the conjugates of §, i4 i3 camy to see that H is isomorphic to a subgroup eof the
gymmelrie group on N symbols. Further, ns each AeH preserves {or reverses) the
order of the f; on &, H must be o dikedral group. :

‘
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