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A gystem of residue classes
(1) a{modn), O0<Ca <, L<n, $=1,2,...,k%

is called to he m times covering il every integer belongs exactly to m of
these elasses, where m s o given positive iriteger.

Once covering system is usually called ewactly covering. This topie
is o subjeet of consideration of many papers, e.g. [1]-[9] except for [3].
It is evident that in any exuactly eovering system no residue class appears
more than once, but such a resiriction does not show to be useful for
m times eovering systems in general and therefore the repetition of residue
clagzoy will be allowed in (1).

~ In this paper we shall characterize the m times covering systems
containing exactly one r-tuple of distinet residue classes with respect
_to the same modulus while the moduli of the remaining distinet classes
are digtinet for » = 2, 3, 4, and 5. Thege results extend those to be known
for exactly covering systems and proved for » = 2 in [8], r =3 in [9],
roe==d4 0 in [7]. ¢ _

It i3 easy to check that m exactly covering systems form together
an m tiwes covering system, Bub on the other hand, there exist m times
covering systems which are not of this form. The following one was con-
structed by Choi during the Intermational Collogium on Infinite and
Finite Sets held in Keszthely (Flungary) in 1973,

The systen

(2)  1(mod2), 0(mod3), 2(mod6), 0(mod10}, 2(mod1s);- 1, 4,4, 5,6, 7,
8,10, 11, 12, 13, 14, 16, 16, 18, 19, 22, 32, 23, 24, 25, 26, 28, 28, 29
(mod.30)

is twice covering. Suppose (2) to be a union of two exactly covering gys-

tems and lot (1) be that of them which contains the class 1(mod2). Then (1)

containg neither 0(mod3) nor 2(modlb) hecause of their non-empty

intergection with class 1(mod2). Now the following two possibilities can
ocour;
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(a) The residue clasg 2(mod6) belongs to (1}. In this case 0(mod10)
cannot belong to (1), but then (1) does not cover the intersection of classes
#(mod 10) and 0{mod3) which contradicts the assumption that (1) is
exactly covering. .

(b} The class 2(mod8) does not belomg to (1) Then (1) does nof
cover the cornmon part of 2(mod 6) and 2{med15), again a contradiction.

Before proving the main results we give some preliminaries. Tn what
follows we whall suppose

Ny K Mg & oL & Mgy Ky,
and that
g =0} <y << mf =y

are the all distinet moduli of (1). Moreover, we shall uge the abbreviation

Drga )

e(afb) = exp(

The next lemma follows from Theorem 2 01" [6] for m times covering
systems.

Lrama 1. The following statements ave equivalent:
A. The system (1) is m times covering.

%
B. X m!
t=!
|.sn,;

where &, ’, is the delte of Hronecker and | the sign of divisibility.

“e(sayfn;) = MmOy, for every s =1, ..., 0, §=1,...,k

C. 2%‘? LB, (an) =m By, ;n =0,1,2,..., where B,(x) is the p-th

Bernouwlli polynomiol and B, = B,(0 ) the p-th Bernoulli number.

Part B, resp. C was proved in [5], resp. [2] for exactly covering
systems. In [6] these results are extended to general systems of regidue
classes.

. For ingtance we get
o1

bl 'ﬂl‘

from C for p = 0; this yields the well-known result for (,x,u'tly covering
systems, that is for m =1 (see [17).
The following lemma justifies our further results.

LoMMA 2. Let (1) be an m times covering system. Then (1) conimins

-t least'p distinet residue classes modulo ny, provided that P i8 the least prime
divisor of m,.
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Proof. We getb

(3) D) elafng) =0
) ﬂténk
from B for j =k and s = 1. Then
/3
(4) Z:Gj'ﬁ(ﬂij/ﬂk) = 0
J:::;

grouping the equal terns of (3) where

@ (modng), ..., a, {modng)

are the ol distinet residue classes modulo #y, of (1) and ¢ denotes the multi-
plicity of the appearence of clags cb,f(modw,,b) in (1). Consequently, ¢; # 0
for every j =1, ..., ¢. It follows from Theorem 1 of [4] thai ¢ = p, the
leagt prime divisor of .

In case of exactly covering systems Lemma 2 yields the result con-
jectured by Zném in [9) and proved in [B] and independently by Newman
in [4]. Zndm’s vesult presents a generalization of the well-known one
due to Mirgky, D. Newman, Davenport and Rado {see [1]) asserting
that every exactly covering system contains at least two residue classes
with respeet to the greatest modulus. Further generalization of these
regults ig given in [6). ' '

The following lemma will be important for our next considerations.

TemMA 8. Let ¢, by, m (4 =1,...,1) be integers with t<{H and
0<h <by<...<<by<<m and 0 < ¢ for every &+ =1,...,1. Let the sum

¢ .
(5) Doe(b;im) =0
4=1
hawe the following property: if
: ¢
(5" Sage(byiny =0 with ¢=d>0
=

then elther (i'J, == g, for every J or dy = 0 for every j. Then t = & is impossible;
if b= 2,8,0 then ¢ =g =1, ¢ divides m and residue class
by (modam/t ) ooauams ema.etly those integers which belong o the sysiem

= Gy BT

by (modim), ..., b(modm).

l’tooﬁ Agsigning the vectors o complex numbers ¢, e(b; jfm),
ey e(by/m), ..., ¢.e(b/m) in the uzual way the relation (5) can be inter-
preted as a convex i-gided polygon. A polygon (B) with property (8
is called minimal (atter Mann [3]). From Theorem 6 of [3] 1t follows that
the only #-sided minimal polygons with < § are regular polygom with 3

5.~ Acta Arithmetlea XXIX.2
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or & sides. In case t = 2 it follows from Theorem 1 of [3] that the men-
tioned wvectors ave.conversely oriented. Hence

27 2T 2w
—bjlmqn,bng for j=1, 1 t—1
and
27 27 27
Ty =gt
m - 9y ]

and onr lemma immediately follows.

The followitg notation will be used to simplity the formulation of
our next results. We say that system (1) has proper W Pim, r) if:

{i) it is m times covering,

(ify it contains exactly one r-tuple of distinet residue classes with
respect to the greatest modulug while the moduli of the remaining distinet
classes are distinet.

Owing to Lemma 2, r = 2 may be ﬂ.%sumecl in (i)

The mnext lemma collects to thiz time known characterization of
the above stated exactly covering systems ([7], [8], [9]).

Lenmnea 4. Let (1) be g system having property T (1, #) with » = 4,38,4,
and 5, Then :

(a) mg =20 for i =1,...,k—r ond fy_,. =...=mn =27 §f

cp == 2,3, and B
by =24 A=,k g = =y =25 oy =2,
T=1,..,k—0; 0y, =32 my_ ;= ... =ny =3-25 iy case v = 4.
TuBOREM 1. Bvery system of residue classes having property Plm, 2)
consists of m copies of a syslem having property P (1, 2).
Pr oof Let (1) be a system having property P(m, 2). Then (4) implieg

(6) Gre{ay 1) + ey 6 (g ) = 0,

where @, (modny) and e, (modn,) ¢ are both distinet vesidue clagses modulo
Ry, In (1) Tor the clecompomtmn of (6) into minimal polygons ean consish
only from “twosided” minimal polygons, ¢; = ¢, (= ¢) and

e(ay /ng)+e olay, /ng) = 0.

Usmg Lemma 3 every pair of classes ay, (modr), @, Jmodag) ean be
replaced by residue class oy, (modng/2). 'l‘hm after the ¢-told rapetition
of this step we obtain a system having property B(m, 2) buat with & —e
classes. The fact that this new system has property P (m, 2) follows from
Lemmas 2 and 3; the former a;ecmd.mo every 4 times. covering system
containg at least two dlstmeﬁ residue clagses with respect to the gr(-amwt
modulus and thevefore n)_, = nk/B
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Now the proof follows by induction on k. Then this new system con-
sists of m identical systems having property .P(1, 2). Since each of the
clasges modulo #;/2 is one of two classes with rexpeet to the greatest modu-
lus in these systems having property P(1, 2), it follows ¢ = m. Replacing
the classes modulo ny,/2 by the original ones &y, (mody), a,(modn) we
get that system (1) also consists of m copies of '1. sybtem having property
(1, 2).

Tt remaing to prove that our theorem hold,s for systems having prop-
erty P(m, 2) with minimal possible %. Tn. this case ny, = 2. (and hence

. the all »’s of (1) are equal to 2), because in the opposite case using our

rednction method we get a system having property P{m , 2) but with
less classes which contradiets our hypotheses. This system with minimal &
is therefore evidently formed by m complete residue systems module 2
and ow proof is complete.

Remark. Sometimes is convenient to consider the set of integers
as a residue class modulo 1. In this case we may continue the reduction
of the systems above and we get m copies of the set of all integers,

COROLIARY 1. Let (1) be a sysiem having property P(m,2). Then
(v+1)m =k and '

ny =2 for §=1,2,...,0

Admitting no repetition of the residue clagses in systems having
property I(m, 2) we get v = k—1 apnd consequently m = 1 is the only
possible value of m in this ease.

TuroreM 2. Bvery system of Tesadue classes having property P(m, 3)
consists of m copies of a system having property P (1, 3).

Proof. We get

3 .
(7) : D) orelayim) =0
. =1
from (4) for our system (1) having property P (m, 3). Decompose polygon
(7) into minimal polygons. These minimal polygons can be of one of the
follnwmcr two forms, either
|

(8) oy, fivy) +G(ﬂ¢;/’f’*ru)+6(“¢3/ﬂk) =10
or _
(8%). e (ay, [ y) -+ e (g fny) =0

with 1 :5j < f< 3. We now show that (8') cannot occur. If there occur
two distinet polygons of the form (8') then we get

ot /my) = efay fng)  with  §<s

by their subtraction, which is ]h’]p()ﬁ‘ilble because 0< o, < < My
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If there exist (8) and (8') together in the decomposifion of (7) then by

subtraction we get e(ay [nz) =='0 for some % =1,2, or 3 which is again -

impossible. Since the all ¢’s in (7) are positive, the only possibility how
to decompose (7) into minimal polygons ig to use polygons of the form (&),
But now the remaining part of this proof is similax to that of previeus
theorem and therefore it will e omitibed. .

COROLLARY 2. Let (1) be a system having property U{m,3). Then
(v4+-2)m = kand

wy =2 for 4=1,2,...,9~1 " and my =3-2"",

The next lemma is itzelf of some intierest.

LeMma 5. No m times covering system (1) sotisfles the following three
conditions :

(a) system (1) contains ewactly two distinct residue classes with vespost
to the greatest modulus my;

(b) there is @ modulus ng 5 ny, among the moduli of (1) with ny, 5 2% n,
for every integer w = 0 and (1) contains at most two distinet vesidue classes
modulo n,; '

(c) system {1) does not contain a couple of distingl residue closses with
respect to the same modulus which is distingt from ny, or n,.

Proqf. Suppose the contrary. Let dy (modn,) and ay, (modng) he
two distinet elasses modulo ny, in (1). Following the first part of the proof
of Theorem 1 we may replace every couple of classes L (modiag), a, (modn)
by class a, (modmn,/2). '

Let » he an integer with

Ny, Ny

'—‘j.— > Mg = E'r——}-l“

Bince n, = 2¥-n, for every w > 0, the equality can be exeluded. After
the (r4-1)-st rednction we get an m times covering system with grent-
est modulus n,. (By the way, we see that (1) must contain two distinet
residue clagses modulo ng.) Note that n, 27 hecause ny > 2 and n,/2"
= 2. Thus we gel an  times covering system with less than & classes.

K

Binee n, < ny, also #, % W'zt for every integer = 0; and our lemma

can be proyed by induction on % If (1) would be & system rebinfying
our conditions with minimal possible %, then m, — 2. If n,> 2 then

our reduction leads to a system with less classes which comtradicts the

above minimality. But m, = 2 implies #, = 2 which is inypossible too.

THEOREM 3. Every systom having property P(m, 4) . consists of

™

icm
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copies of @ system having property P (1, 2) and of m —m, copies of o system
having property P (1, 4) where 0 < m, < m.

Proof. Let (1) be a system having property P{m, 4). Let o, (modnyg),
i =1,...,4, be all distinct classes modulo n; and let a;(modn,_;) be the
clags modulo #é_, in (1). Furthermore, let (1) contain o, copies of class
ay(modn)_,). '

Again

4 ,
(9) Do elayfng = 0.
j=1

Reagoning as before we see that a decomposition of (9) imto minimal
polygons eannot contain twe twosided polygons having a term in cormmon.
Now distinguish the following cases: _

(a) The decomposition of (9) contains also triangles. If two distinet
triangles appear in this decomposition then these must have two terms
in common which yields the equality e(ay,fng) = e(ay Jry) for some @ = 4.
But this is impossible for a; £ &, (modsyg). Similarly, o friangle and
two distinet twosided polygons yield the contradictory equality e(a, /i)
= 0 for some 1 == 1, 2, 3, 4, bécause in this case the triangle must contain
one of these 2-gons. Flence the only possibility how to decompose {9)
into minimal pelygons using a triangle is to use the triangle (after a proper
renumbering if necessary)

e (ay, ) + ey, frg) + ey [} =0
together with
‘ e{ay ) + e{ay, ) = 0.

for some j =1, 2,-or 3. After the reduction we get a system possessing
only the m times coveripg property (but notb necessarily property (ii))
in which nh., = n,/2 (Lemma 2) and one of the moduli of which is n./3.
Lemma b shows that this is impossible. :

"~ (b) The only minimal polygons appearing in the decomposition of (9)
are tworided polygons having no term in commeon, o.g.

6 (0, ) + € (g, ) = 8(ay, [ig) T ey fry)) = 0

Now we may replace the classes modulo =, of (1) by say, My classes
o, (0d 1y [2) and, m, clagses @y (modmn,/2). The classes @ (modny/2)
and a,ta(moda?,;,,j,?) are distinet. Suppose 0 < @y < @y, < Mg, If ther.se t*‘ivo
clagses coineide then a; = & %y /2. On the 'other hand, Lemma 3 :_melles
a, = afl—]~nk/2 or o, = g, + (2, that is o, =y OX Gy = Gy, T
which ix a contradiction, becanse a,i(1110c1n;£) are digtinet clasges.

(ba) Let ny_, == m /2. Distingnish: . -

(baa) If @; = a; (modn,/2} then we get a system having property



166 8. Porubsky

P{m,2). By Theorem 1, this new systém consists of m copies of & once
covering system, and hence m, +my = m, = m. Moreover, in these once
covering systems the classes a, (modn,/2) and ty, (modn,/2) ave the only
distinet residue classes with respect to the greatest modulus. Tf NOW,
in e, copies of the mentioned once covering system we replace only class
&y (modn, /2) by classes ay (modm,) and g, (odng), and if we similarly
split both classes & (modn,(2) and gy, (modn,/2) in the remuining om,
copies of the above stated once covering system, then we get the original
system having property P(m, 4).

(bab) If a; # o, (modn,/2) for ¢ = 1, 3 then we get n system having
property P(m,3) which all distinet residue classes with respect to the
greatest modulus are a,(modmn,_,), g, (odn, [2), ty (moday /). Thuos
My = My = My = M. By arguments similar to the above ones we see
that the given system (1) consists of m copies of a gystem having property
P{1, 4).

(Db) #y_y 7 74/2. Bvidently /2 >t . Now we get o system
having property P(m,2) in which the regidue clasges with Tespact to
the greatest modulus are ay, (mod g [2), oy, (modn,/2). In this case the
given gystem (1) consists of m copies of a system having property I'(1, 4).

CoROLLARY 3. The moduli of each system having property P (m, 4)
satisfy one of the following three relations '

(a) ng =20 for  §e=1,2,..., 0
(byng =2° for i=1,..,0-2;

(c) ng =2 for d=1,..,0-1; nl=get
TumoREM 4. Tet (1) be a system having property P (m, 5). Then either (1)

My_y = 3-207% g 3281,

consists of my copies of a system having property P(1, 4) and of m, copies -

of a system having property P(1, 3), where My, My are Positive infegers
with my+my = m, or (1) consists of m oopies of a system having properly
P(1, 5). '

Proof. Tet a, (modn,), ¢ =1,...,5 be all distinet vesidne clagges
with respect to the greatest modulus. Let ay, (modi,_;) be classes modulo
Tigy for § = 1, 2, and 8. Moreover, let m,; denotes the nwmmber of clusses
modulo ny_;, 4 = 1, 2, in (1). Then we have

H

oy 2 o elay ) = 0.

i=1

First we may exclude all decompositions of (10} into minimal poly-
gons containing three distinet twosided polygons. In the opposite case we
should have two 2-gons having one term in common which is impoasible.

Assume a decomposition of (10) containing two distinet friangles.

icm
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Since they cannot have two terms in common, they have exactly one
common berm, e.g.

&(ay, ) -+ el ag () +- e (ag, ) = 3(“13/47'17.:)‘}'3(5‘:4/%;:)+3(¢55fnk) = 0.

Then
ey, rig} -+ e (g, ) — e{aty, fivg) — elag fmy) =0
Or
£(2ay, [2iy) + 6 (20, [200) -+ ol (20, -+ my) [2my) - e{( 20y, + 1) [2my) = 0.

Acecording to Lemma 3 we can decompose this fetragon by means of
twosided polygons only. The use of

e(Eatlen,h.)—I—e(2at2/2nk) =
implies e{e,/n,) = 0 which is impossible. Let
| 6(2%1/24@,6)—[—@((2@54 ) (20} = 0.

Then Lemma 3 gives: 2, = 20y -y, +2m/2 i 20, > 20+ or
2y, + e = 20y 2 [ 3E Day < 2oy, Ny, Le. ay = a54+f’:bk or -(Lgl]_:ﬁ &,
hut this is impossible for a; (modny) and e, (modny) ave different ¢ ARSES. . -
Therefore a decomposition of (10) inte minimal polygons can contain
at mogt ome triangle. . - ‘

A decompogition of the form

9(“51./%)+3(“'¢2/”k)+@(“c3/”%) = ¢(ay, /i) +e{tyfny) =0

can be ruled out after the reductions using Lemnfxz?, B. _ .
Now it ean be shown that the only possibility for using a friangle
in a decomposition of (10} is of the following type: .
& (ay, ) ‘l"ﬂ(“tg/"‘%l) +e (g, fny) = 0,
{11) 6 (g, ) -0ty f1) = 0,

6{ay, [n) -+ 6(ag fmy) = 0.

Tiot this decomposition contain m; such tri&ngles, ainy and my *tm.romded
polygons of the first and second form respectively. After redue“mo;:t ‘:;ve
get mg clagses a,l(modnﬁ,/.?)), Mg gmsses. a-ﬁi(mod_wk/?f) m?d m:L, cajseq
a;, (mod.ny/2). The classes ay, (mod/2) and a, (tnoda,/2) are again
dmufll‘(ilr:; ense i, wemy/2 (le. my.y << y(2) is fmpossible according to
Lemma b. -
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(a) My = /2. The cage ;= @, (modng/2) may be similarly
verified to be impossible. Hence a, 3£ t (mod g /2), 4 =1, 2. Now we

get an e times covering system having three distinet classes with respect

to the greatest modulus, namely ay (modn/2), a o (modn,/2) and
azl(modﬂ-ﬁ,‘_l); thus my = m, =m,. This new system contains also #n,
classes @y (modm,/3). Sinee 2, and 3 divide ny, /2 > m{3 > 0,6 = 1,
and we may continue our reduction. The m,-fold using of Lemma 3 yields
my classes ay (modn,[6). Now /3 > /6, and therefore @y, (od 1, /3)
and paﬁz(modnfq) are all digtinet residue classes with respect to thoe grent-
est modulug n,_, = n,/3, and also m; = m,. These classes we may replace
by m, classes a, (modm,/6). Thus we get m,+m, classes a, ((modng/6).

(a) If 75,/6 =1 then we get m coples of the set of all integers. The
reverse procedure shows that the initial system (1) consists of m, copies
of a system having property P(L, 4) (by the way, with classes efther
modulo 3 or modulo 6) and m, copies of a system having property (1, 3)
{with moduli 2 and 6) where m, +-m, = m. 7

(aba) The case #y_; = n,/6 can be excluded, because then we should
have an m times covering system with one “distinct clags” with respect
to the greatest modulug which contradicts Lemma 2.

(abb) #y_; = m,[6. Reasoning as before we get ) o (Mod,[6).

Now we have a system having property P(m,2) which consists of m

copies of a system having property P(1, 2). By arguments as in the pre-
vious paragraph we get that (1) consists of m, copies of a system having
Pproperty P(1,4) and m. copies of a system having property P(1, 3)
with m, 4-m, = m. ' .

The last possibility how to decompose (10) into minimal polygons
consists in using pentagens. A pentagon together with a p-sided polygon
with p < 5 leads o a contradiction with the definition of minimal poly-
gons. Following the proof of Theorem 1 we may show that merely penta-
gonal decomposition of (10) into minimal polygons gives that the initinl

systent (1) having property P(m, 5) consists of m copies of a system having

property (1, 5). :
CoROLLARY 4. Let (1) be a system having property P(am, 5). Then
one of the following alicrnatives holds:

i1

(2) ny = 2% for ny == 5o

(b) nf =2° for

t=1,...,2~1 and ;

EQy

. - " el
t=1y 0,02, W, =3-2"3, g¥ = g.ovE

Our theorems suggest the conjecture that every system having

property P(m,r) consists of exactly covering systems, but this is not
irue in general ag it is shown by example due to Choi. '

I am indebted to the referee for pointing out the incompleteness
of my earlier Theorems 3 snd 4. : :
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