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AQTA ARITHMETICA,
XXIX (1876)

On the distribution of arithmetic functions
by

G. JoamsH BARU* (Hugene, Oreg.)

1. Imtroduction. In this paper, for each ae(0, 1), a density called
a-density is defined for sets of positive integers. It is shown that if a set A4,
of matural numbers, has e-density for some o, then it has natural density.
A set of positive integers with natural density one is constructed, which
does not have a-density for any o. Some sufficient conditions are obtained
for a real-valned additive arithmefic function to have a distribution in
the sense of g-density. An example is given to show that this result iz -
the Dbest possible in some sense. In the last section of this paper some
remarks on smoothnesy properties of the distributions of arithimetic fone-
tions are given.

2. Notations and definitions. Let 4 Dbe a set of positive integers
and. let 0 < o<1 Define

N{w, A) = card{med: 1< m < a},
Nio, e, Ay = card{med: z < m < o-+2"},
D{o; A) = liminfe~"§(a, #, 4),
=]

=

D(a, A) =limsupe="N(a, n, A),

H—r00

D(A) = liminta™ ¥ (», A),

- 2-+00

D(4) =limyupa™ N (z, 4).

=00

Claarly

0< D(a, 4) < D(a, 4) <1, 0<D(A)< Dd)<1.

© We say that 4 has a-density if D(a, A) = D(a, 4); in this case we denote

the common value by D(a, 4). A is said to have matural density it D(A)
= D(4) and the common value is denoted by D{A).

* The anthor is. corrently visiting the University of Oregon, Engene,
Oregon, T.8.A. .
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A complex-valued arithmetic function f is called additive if
flmm) = f{m)+fn)

whenever (m,n). = 1. f is said to be strongly wdditive if, in addition, it
satisties f(p¥) = f(p) for all prime pumbers p and positive integers k.

A complex-valued arithmetic function ¢ is said to be maultiplicative
it g(1)=1 and '

| glmn) = g{m)y(n)

whenever (m,n) = 1.

A multiplicative function g is said to have an a-mean value if the
limit of @7 Y g(m) existy, as z—co. The a-mean value of g s

p<m<gtrT
denoted by M(a,q), whenever it exists.
A nmltiplicative function is said to have a mean value if the Timit of
3 g{m) exists, a3 x->oo, in which case the limit is denoted by M(g).

T<maEs

 We shall say that s-tuples {t;(m), ..., 1,{m)} of real-valued additive
arithmetic functions have a distribution in the sense of a-dengity if there
exists an s-dimengional distribution funetion F(C, ..., C;) such that

< G}

exists and equals F(C,, ..., C,) for all continuity points of it. Distribu-
tion in the sense of natural density can be defined in a similar way.

p,q with or without subscripts demote prime mmmbers and m, %
denote positive integers. For any real number «, [«] denotes the largest
integer less than or equal to .

{a, {m: hm) < €y o.y by(m)

3. Some properties of a-demsity. We shall, now, exhibit a set of

positive integers with nafural density one which does not have a-density .

for any. «. If

oo zk! 2!,’
. B — U {zhl _l" I:__:l+1’ 2 [____]__I_c) (J£+I)I}
k=3 ! .

then, clearly, B has natural density one, but for every ae(0, 1)
D(a,B) =0 and Da,B)=1.

On the other hand, if a set A of positive integers has a-density for
some ae(0, 1) then 4 has s natural density equal to D(u, A). To show
this, first note that for each » there exists g, such thab ¢,—+0, a8 &~>co and

N(a,2,4) =(D(a, 4)+&;)a"
Let

sup Isy{);

iy

b, = max((logw)“l,

icm
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Clearly, d,> 0 and §,—0, as #—oc0. Now we divide the interval (z4,, =]
into # disjoint intervals (e, b;], where

a = b, b,=a, a,t‘a;za2
and
Gy = by =a;+a] for 4=1,...,n-1
Note that
ng T,
Hence

¥ (@, 4} —eD{a, 4)| < w8+ ag+ 3 lola

=1
Lo Ltud o8 "
=@ (a" + 8, + 6,7

=o(®) as &-—>o00.

By a similar arguoment one can show that if a set has o-density then
it has the same g-density provided o< §. Also if

- U B0+ 2941, 28 2142, 90,

then it has e-density for every a> B, but D(a, 45) = 0 and D(a, 4p) =1
for every a< 8. :

Let g be a multiplicative function such that [g(n)| < 1, for all posi-
tive integers n. By modifying the above proof it is easy 1'.0 deduce that
M(g) existy if M(a, g) exists for some ae(0;1).

4. TororeEM. Suppose fi,...,f. ore real-valued _strongly additive
arithmetic funcmms satisfying the followmg conditions:

(1) ' Z —[i(p) converges for i =1, ...,8,
izt
1
(2) Z —filp) comverges for i =1,...,8,

17 mi=t
and

(3)  for every > 0,

2 1 =o(a").
Ifi(ﬂJ)l?e

Then the s-tuples {fi(m), ..., fi(
of a-density.

(m)} hove a distribution in the sense
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Proof. We need the following
Lesyia ([1], p. 48). Let the s-dimensional random veslors
X, = (Xazla EALE! Xn.&.) and X = (Xyyenny )
satisfy

8 g
D Al
2 Ky Z i Xy
i i

as n—oe, for all s-tuples (7, -..
denotes convergence in d@smbumn
In view of this 1emmm, it is sufficient o prove the theoruu when.

¢ = 1. 8o we drop the suftfix and write f instead of f;. Fivst we note that
{3) implies

) of real m.'mbms Then JL“ma-.l fwhem i

1l
(4) : — < 0.
. . P
fp)z=1

TIn view of (1), {2) and {4), adopting the usnal probabilistic methods
(see the proof of the sufficiency part of Erdés—Wintner Theorein in [5],
pp. 79-81) and using a slight modification of Turdn~Kubilins ineqﬁal‘ity
(see [5], Lemma 3.1, p. 81), it is easy to show that there exists u istiri-
bution funetion ¥ such that

7 N{a, 2, {m: fuim) < C}-F(C)
a8 @—co, ab each continuity point € of F. Here we used the notation .

fimy = X itw)

pt
Blm

So to complete the proof it suffices to show that f01 every &> 0
) - ‘N(a:w;E)to(m)s
where

= {me{m, & +u*1: him, o) > 8§}
and

him, z) = |f(m) —fou{m)].

For any > 0, let
= {pela®, z-+a"]: p prime and |f(p)| > &}
and. ' . '

= {me('m,w«-{mm“"]: ptm for every ped(e)t.

icm

(8) _ " *N{a,z, B)—=0
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Note that, for any fixed 4 > 0 and for every &> 0,
E < {me(x, z+2"]: plm for some ped(ed)}
U ({me(e, 3+ T{m, #) > 8}n B(ed))
= FE vl (say).

‘(learly by (3)

wune 354 2

162 (&6) pEp+at
Ppedisd)

< en® for every @ > ®(sd).

Since each me(®, x4+ "] is divisible by at most ([1/e]-+2) primes g > &°

and since, as a result, for each meB(sd),

B(m, @) < e8([1/a]+2),
we have

card By < 677 Wi, @) < 6" ed([1/a]+2)a".

meB(ad)

So, for every o > x(zd),

Nia,,B) < (a—i— _a(-%——]—2))w”.

Sinee & is arbitrary it follows, for every 4> 0, that
ag  @—>o00.

This completes the proof of the theorem.
Remarks. We can, of course, replace (3) by 2 weaker, but clumsy
looking condition.

(6) for every s> 0,

Z Q(Eri}'—: 2te ) =O(WG))
m Vi

mecgt—®
where
Qe 7, y) = card{pe(r, y]: ()| =

For, in the proof of the theorem, mekE, iraplies m = ap, where
a << e+1, p > 5% |f(p) = ed. Hence

. ' o4 a"
cordB< ) Q(s,%,- ”_)=o(w“‘>.

z, for some 4}.

@
gt S 41
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Of course, (3) elearly, implies (6). Now we ghall give an example {essen-
tially due to Erdos) to show that, in general, (6) does not imply (3). Let
“ae(%,1) and let @ =3, 2 =21, ..., 2., =2} ... Note that m,-»co
a§ k—oc, Define a strongly additive arithmetic function f hy
Flp) = 1 it m,ﬂ.<p < oy, + wplog iy,
0 otherwise.

Sinee a> 7/12, we have the nwmber of primes in the interval
(2;, @+ oglogm,] to be (see [3])(3) '

(1-Fo())af = F(my -+ wgloga,)®  for all sufficiently large k.
Hence (3) is not satisfied. Now we shall show that (6) is satisfied.
Suppose ze[#,, z;logay], then for any & > 0, the left hand side of (6)

iz equal to
7 v wtat - -
Z EQ(E’;E,W_) = 0( Z m"(mlogm)".l)

ni(logz) mag(log ey
= O{x"loglogz/logz) = o (%),
since f(p) = 0 for p in (m,_, +2f_,loga,_, &) and

Q( x pa®

Ey—y m

)=o it me((loga), 4,

as for any sueh m,

HY
o @ o2
— =2 ay =0, > 8.

0
It ms.{_mklogm,c, m,r_F{), then the left hand side of (6) is less than the number
of primes p < @, with f(p) = 1. Which in turn. is less than -

2y -+ (2, + 53log By) — (@) = O(af) = ().

Here = () denotes the number of primes not exceeding 2. Hence (6) holds |
_NOW we shall give an example to show that our theorem is the beﬁ:
Dossible, in the semse that (6) can not be dropped. h
Let a be a positive real number less than 1 and very close to 1. Lot
. {yk}‘b.e an inereasing sequence of positive real numbers tending to 'iﬁf-initv’
sufficiently fast. Let o, < 4, < ... be the set of primeg in the infeﬁ’ﬁfﬁ

(Y Yt
(t’ ; ’, k"’“":l?_zﬂ-'-: 1€ﬂ€y35"“~

t

(1) Infack, if 2 > h > 2712+ it follows from (28.27); (28.32), (28.33) (seep. 121)

that y(m+h}—wiz) ~h Henee + ) — =
otes the number of primes p < ;f(m PH T = et oliblogs, whesa ) de.
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Qlearly, Yai' < co. Let b be the natural density of the seb of positive
integers mot divisible by any a; (which, clearly, exists). Erdds ([2], see
p. 179) has shown that the number of integers M e{Yp, ¥+ Y5} which are
not divisible by any a, is less than (b — 5}y for a fixed % > 0. So from the
results of Section 3, it follows that the set of positive integers not divis-
ible by any a; does not have g-density. If we define a strongly additive
arithmetie funetion f by :

1 if

0 otherwise,

5 = a; for some 7,

flp) =

then clearly (6) is violated and f does not have distribution in the sense of
a-density, eventhough (1) and (2) ave satisfied. On the other hand a more
detailed analysis tend to show if « is very elose to 1, then (6) ig algo nec-
essary for the existence of the distribution of an additive arithmetic fune-

tion f in the sense of o-density. But we are unable to prove it rigorously.

5. Tn this section we shall remark on the smoothness properties
of distributlons of additive arithmetic functions. As has been already
pointed out, if an additive arithmetic function has a distribation in the
sense of o-density, then it has a distribution in the sense of natural density
and both the distributions coincide. Let f be a real-valued additive arith-
metic function having a distribution . It is shown in [4} (see, in par-
ticular, the proof of Theorem 1 of [4]), that T iz absolutely continuous
(a.c.) if and only if the distribution correspending to the characteristic
funection (c.f.)

rald) = exp [ o0 — 1 —ita)

n=3
s a.e., where
f(_'pn) lf if(_’pn)l < 1! ‘Jsl'ld 0 2 3?

@, == )
" 0 otherwise.

Tere p, denotes the nth prime. By using am argument gimilar to that
in [4] and ohserving

S 1 1
2 (—-~ — - ) << oo
LA\ Dy, nlogn
we can easily deduce that F is a.¢. if and only if the distribution corre-
sponding to the c.f.

e

Po(1) = &xP ( {(6"%n — 1 —ita,)/nlog n))

[

)
G

ig .0,
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In some sense, this observation eliminates the difficulty caused by
primes {whose behaviony is rather irregular) to a certain extent, in deter-
mining the smoothness properties of 7.
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fessor K. Ramachandra. The author wishes o express his sincere thanks
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The largest subset in [1,n] whose integers
have pairwise l.c.m. not exceeding #, II

by

8. L. G. Cmor {Vancouver, Ganada,).

L. Let g(n) denofe the largest nmumber of positive integers not -

- exceeding n such that the le.m. (lowest common multiple) of any two

of them does not exceed n. A conjecture of Brddés [2] states that the ex-
tremal sequence consists of the integers from 1 to (#/2)"” and the even in-
tegers from (n/2)"* to (2n)"%. Thus at any rate

g(n) > (3/2V2)n1? —2 > (1. Oa) W2 g,
Tn [1] it was established that O
(1) : g(n) < (l+l—l*)411’2+0('n1/2),
where 2, A* ave given by
(2) A= 2((j+1)1/2 —9"2)(3'-[—1)‘“1
=1
(3) o= TP G0 4 S -2,
j=z

In this paper we shall improve substantially upon the constant .1+ A — A"
in (1) by a method which, while retaining certain features of the method
in [1], is in some essential respects a different and considerably simpler
one. 'We prove fwo theorems of which Theorem 1 gives the desired im-
provement over (1). We have included Theorem 2 becanse it is of related.
interest and is in any case essentially best possible. :
TurorEM 1. We have
(4) n Mg (n) 1+ p—pt+o(ly,

where u and p* are given by

0“0

(3 - p= 2co,'((j+_1)”2mj”“)<j+1)-’
. F=1
(6) - po= (GG,



