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ACTA ARITHMETICA
XXIX (19786)

Sums of %-th powers in the ring of polynomlals
with integer coefficients

by

Tep CaxnBURG and MELVIN HENRIKSEN (Claremont, Cal.)

- 1. Introduction. Suppose B is a ring with identity element 1 and &
is a positive infeger. Let H (&, R) denote the set of kth powers of elements
of R, and let J(k, ) denote the additive subgroup of R generated by
H (k, R). It Z denotes the ring of integers, then

Gk, R) = {acZ: aR = J(k, R))

iz an ideal of Z. _

Let Z[x] denote the ring of polynomials over Z and suppose ack.
Since the map p(z)->p(a) is a homomorphism of Z[#]-into R, the well
known identity (see [8], p. 325)

sy k-1
(1) Blo = 3 (=107 () (o i

=
in Z[z] tells us that kleG(k, Z[#]) < G(%, R). Since Z is a cyclic under
addition, this shows that G(k, R) i3 generated by ifs minimal positive
element, which we denote by m(k, R). Abbreviating m (k, Z[«]) by m(k), -
we then have

mk, B)lm(k) and m{k)|k!.

Let H {enote an ideal of B, f an element of B and f the image of
J under the homomorphism E—E/H. Suppose # is a positive integer and
that ;eZ and g;eR for ¢ =1, ..., % I

.on
-

(2) f= Y a0 modH

{=1 .
then we call the ordered set W = gy gl o (B, B) set. for f mod H,
and if H = {0}, fm" fi Cleariy feJ (k, R/H) if and only if there is & (k, B)
set  for f modH. . ‘
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Suppose that ((a;, g;)0i1 18 a (&, Z[x]) set for [ == m(k)@, so that
(2) holds with H = {0}. Then on differentiating (2) with respect to »
we have that ki (k). Thus, i R is any ring with identity,

(3) Kim(k), mk, R)m(k) and m(k)k!.

The main purpoese of this paper is to give o readily computed formula
for m(k} as a function of & Our proofs also provide (albeit not efficiently)
‘a (k, Z[x]) set for m(k)zx.

Before giving our results we infroduce some notation and termin-
ology. Liet Z* denote the set of positive integers. If 5 <Z ™, let (k) denote
the set of primes <k,

Pk) = {pe? (k) p <k and plk} and Py(k) = {peP(k): ptk}.
Suppose p is a prime,  and m are positive integers, and m > 1. A number
’ me

of the form

is called a p-power-sum and sy is called its

index. We adopt the conventien that the preduct of an empty set of
integers is 1.
TeeorEM 1. If k is a positive integer then

() =k [ [ {050 ped (k) [ [ (p70: peapy(he}

where s
{a) ap{p) =1 if s odd;

: 2 if (27 —1)|k for some > 2
(b) R A

1 otherwise;
1 if some p-power-sum divides L,
(e} pu(p) = _—
: 0 otherwise.

Bections 2, 3, and 4 are devoted to the proof of Theorern 1. In the
course of the proof we indicate how (k, Z{x]) set for m(k)» may be con-
structed. ' _ .

In Section b, we diseuss briefly the behavior of the function m (%) It
and indicate the relation of its behavior fo some outstanding unsolved
problems in the theory of numbers.

In Section 6, after noting that J (k; R) == R if m (k) is a unit in @ ring B
with an identity element, we apply some of our results to obtain con-
ditions that guarantee that ecextain kinds of rings 4re commutative.

In an appendix, we give a table of values of wm{k) [k for 1 < k< 150,

The technigues used are elementary and we make use of properties
of finite fields and results due Lo Bhaskaran [3], [4], Batema,n and Stemmler
[2] and Joly [11].
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2. A reduction of the problem of determining m (%, R). For any prime p
24 Lo 7
and non-zero a, beZ let v, (3) = g if 7= —gp“, where (r, p) = (5, p) =1,
and let v,(0) = co. Then v, i3 the usual p-adic valuation on the field @
of rational aumbers, and as iz readily verified

(4)  ny(ab) =v,(6)-+o,(B) .amd  w,(a+b) =

if @, be@).

If R is a ring and mE = {0} for some meZ*, then the smallest such m
is called the characieristic of E. Tf no such m exigts, B is said to hawve
characteristic 0.

niin {o, (a}, 5, (5)}

n!
IE0<<m<n and m,neZ, we let, as vsnal, (:;) = T—F ez,
min—m)!

W = {(ag, gi)dis, define
WH+W = (&', g NE,

where (af, g} = (a4, g0) if 1<i<n and (af, ¢f) = (a}, g)) ¥ n+1<i
<n+n.

The fo]lowmg two lemmas will be used frequently.

Levma 2. Suppose b, r, kb and n are positive integérs, R is a ring with

identity element, f and f' are elemenis of B and H, H',H(1), ..., H{n)

are ideals of B. Let W and W' denote (k, R) sele for fmod H and f mod H',

respectively, and suppose W — (( iy G5 051~

(2) W+W' ds a (k, R} set for _f—{-f’mOdH—l—H Iff =f— ng
then W-L+W' is a (&, B) set for fmod H'. ‘ '

(b) If § denotes the image of geR wnder the homomorphism E—+RiH,
then W is a (&, B) set for gmodH if and only if W = {{a;, §)>i_, i¢ a
(k, R[H) set for g.

(¢) If H < H,then m(k, R[H)m(k, B/H'),
+H', then m(k, R[H') = m(k, R/H).

(@) Sujapose (f) (H)Y < KEG+1) = RE(E) for i = 1,
Lz=j=2 Then .
RH (1) = J(k, B)+EH(n), m(k, B/kH(1)) = w(k, B/kH(n)},
and if H = kLH (1) then from W we may consiruct a (k, R) set for fonod kH (n).

(e} If B has characteristic b then m(k, B) = (m(h,R), b). If b 4s
prime to L then .

H < J(k, R)+Hd",

and from W we may construct o (%,

and if also H < J (&, B)

ceey —1, and

ik, B/H) — m(lc,-R}H“)
) set for frood H™
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O IFR=HLoH?2)e... 0H(n) is the direct sum of the ideals
H (%), then m(k, R) is the least common multiple of{m(k H®)| i =1, ,n].
If fie H{t) and W (4) is & (k, H (1)) set for fy, for i = 1, ..., n, then W( )
oo +W(n) 45 @ (&, R) set for i+ ... ¥/,

Proof. The proofs of {(a), (b) and (¢) are left az exercizes.

In (&), suppose fye kH (1), so thatfl = khy for some hy < H (1). If h; < H (1)

%
and f; have been defined for 1 <i<{m < n,let f,, ., = ““‘2( )h;"u Then.

FoerekH (m11) since (;“) (Hm) = EE(m+1) it &3> j> 2 Hence there
is some f,., e H(m+1) for which f,,., = &hy.,,. By the binomial theovem,

frnst = Bl — (L +Rp)’ +1° o= fr — (L -+ hy)* +1F 3 1<m <.

n—1

Hence f; = f,+1—n+ 3 (1+5)5 so since f,ekH (n),
i=1

EH(1) € J(k, R)+EH{n). |
Since. kH (n) < kH (1), m(k, RkH(l) = m(k, R{k{H(n))] now follows
from (). If H = }'cH( ) and f-- Z JE = flekE(l) then

FEh

is a (%, R) set for fmod kH (n). : _
Xt bR = {0} then m(k, R)[b, so m{k, B) = (B, m(k R)). If b is prime
to &, then % is a unit of R. Hence if H({) = H'fori =1, ..., n then kH ()
= H (i) for all ¢ gince A (3) is an ideal. Oleamly :

(’.‘)H(@)J’ c H{)Y =

; KH (Y < RE(i-+1) < RHG) i i=1,..,m—1

and k=72,
so (8) now follows from (d).

Proof of (1}, Since m(k, H (4)) H (4)

c:J(;’G,
<2y and B =H1)d ... 2H{(n)

}, we have

H () :::J(k )for@ =1,

mR < J{k, R), where @ =Llem. {m(k,

H(D) i==1,2,...,n).

Thus m(k, B)|7m. '
+ Since R iy the direct sum of the ideals H (4), each H () has an identity
element ¢; and ¢ H(j) =0 if i' 4. Hence J(k, R)e; = J (b, H (i)} and

m(k, B)H (§) = m(k, R)H (i) e; < J(k, Rye; = J(k, H(i)).

Thus m{k, H (i )Im(k Ryfori=1,..

-y %, 80 Wim(k, ). Tt follows that
. m(k, R) = m, so (f) holds. .
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Lmmva 3. Suppose j,m and k are positive indegers, 2 < j
ped (k). Then

<k and

v, (k)40 << v, (( )) —I—j?’b ,

unless p =37 =2|k and n =1, in which case 'vz(k)-i-l = vz((g))—}—z.

Proof. Clearly v,(j) < p"<j since p22, so j—1—n,(5) > 0.
By (4), , .

2 k-1 E .
o () =G () (5) - mo -0

o ((£)) +m— (o) o} 2 G =D =0, () 2 -1 0, (5) > 0.

Then.

i—1

D ; ), strict inequality will hold if § < p’~. Note

Sinece j-—1L—w,(f) = %(

that (i-+1)/i <2 <p if > 9. Then if 2 < p and 2 < j,

=1 .
g =2HH;1 << pih

Hence strict inequality follows unlesg j = p == 2.
Now :

vﬂ((’;)) = v () +va(k—1) —1,
80
(( ))+2n—{fv2 )4 m} _fuz {k— 1)+'n 1.
Then
04 () -1 << 0, ((’2‘)) +2n

re

unless 23 (k—1) = n—1 = 0, that is unless 2|k and » = 1, in which case

w1 = ((§)+2,

which proves the lemma.
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If p is a prime in P(k), let

0 if  »==F,

(5) Sk, p) =11 if
2 if

p <k and p or k is odd,
p=2<kand ki3 even.
For any ring R, k<Z" and pe?(k), we abbreviate

, R /p{%(k)w(k.?)}lg by E(k,p).

ProrosITioN 4. Let R be a w:ng with ddentity element, & a positive
integer and f an element of J (%, B). If p @ (%), let f, denote the image of f
under the homomorphism R—R (%, p) and lel W(f, ,p, R) be a(k, Bk, p))
set for f,. Then '

(a) m(k, R) = H{m(k,R(lo,'p)):_peg‘(]c)}.

(b) v, (m(k, B)) = v, (m (k; BiFe, D)) < v, (k) + (%, p).

ey From {W(f, k,p, R): peP(k)} one con construct a (%, R) se
Jor f.
Proof. By (3), k!B < J(k, R).

RIEE = > @(R[p»™R: pP(k)}
So, by Lemma 2 ({¢), (£),
(6)  m(k, B) =m(k, R[E!E) =lem. {m (%, R/p”p(")R pe? (k)

=[] {m(k, Rips™R): peF ()}

If pe®(k), let fp denote the image of f under the homomorphism E—
Rp*™ R. By Lemma 2 ((¥), (b), (a)) and (1), to construct a (%, R) set for f,

it suffices to construct for each p e (k) a (k, R/p%"™ R) set for f,,.
Fixing pe?(k), let R = Rjp»™R. It 8(k,p) = 0, then v,(k)
= 2,(k!) =1, g0 .

(7) m(k, R/p”p<’=‘>1a) =m{k, R} = m(k, Bk, p)).
By Lemma 2 (G), m(k, R(k, p))lm (%, R). Then since R’
W(f %, p, R) we may construet a (k; R set for fj,. ‘
I (Tc,p) >0, let = —%(k')—%(k) d(k,p)+1 and H(4)

= p?®PHI R for =1, ..., n so that LH(n) = {0}. By Lemma 3, if
1<i<n—1 and k>g>2 then

ok, p)i—1< o ({)) #3100k, 2) +i-1)

Now

and  m{k, R/p”ﬂﬂ‘(m)RN.p”p(m) .

Hence

(7;) H@H = pup@”)ww(k,pm—n R’ < pre®et®n)+ B g1,

= R(k, p),' from
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and clearly kH (¢1-+1) < kH{z). Then by Lemma 2 (d),

m(k, B") = m(k, B'|LH (n)} = m{k, B [kH (1)).

Now E(k, p) and R'JEH (1) are isomorphie, so (7) holds in all cases, and
(a) follows from (6} and (7). _

We now apply Lemma 2 (b) to construet from. W(f, &, p, £) a (k, B
set for f;,modkH (1). Since kH(n) = 0, we may apply Lemma 2 (d) to
construet a (&, B') set for fp as required to establish (e).

For any pe#(k), p™ i EDR (L, p) = [0} Hence

m(ks E(k, ?))Ip%(k)w(k’m:

so from (a) we have w,(m(k,R)) =fe=p(m(k,,_R(k,p)));€wp
and thus (b) holds.

The next corollary follows immediately from Proposition 4 (b) and
the definition of d&{%k, p).

CoROLIARY B. If & is o positive integer, end p is & prime less than k,
thew

(k}+ o(k, p)

: k
(a} If p or k is odd, then v, (%) <1l

b) If & is even, then vz(mi(f)) <2

3. Computation of the exponents j,(p). If p is a prime let Z, denote
the ring of integers modp and Z,[z] the ring Z [«]/pZ[z]. We now make .
use of some known properties of Z,[X] and of finite fields (for general -
background, see [1], Chapter 5). For every prime p and jeZ~ there is
a monie irreducible p(w)<Z,[«] of degree j and a unigue finite field of
p’ elements, which we denote by GF[p’]. The map p(#)Z,[z]<p(2) is
a one-one correspondence between the non-zeroe prime ideals I = p (#) %, [w]
of Z,[x] and the irreducible monic polynomials p(x)eZ,x]. If p(a) is of
degree j, then GF[p’] and Z,[#]/T are isomorphic, and I is said to be of
degree j. Every ideal of Z,[#] is principal, and Z,[#] is a unique
faetorlmhon domam r = f(w V2, (2] is & non-zero proper ideal of Z,{#]

and f( ~anwwm%mMe%mp

aeZ,, and m, eZ+ for i =1,2,...,n, then Z,[z]/I is isomorphic to the
direct sum of the xings Z,[x] /If‘r, where I, = [p;(2)1Z,[=].
The next lemma is proved by M. Bhaskaran in [3], [4]. See alzo [11],
Liemva 6 (Bhaskaran). If p.is @ prime less than o positive integer ky,
then for any positive integer § > 1, J(k, GF(p")) = GF (p) if and only if &
has no p-power-sum divisor of index j. :

oy Prl) are irreducible in Z,[2],
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PrROPOSITION 7. Suppose p is & prime less than o positive inleger T
that does not divide k, and that k has a p-powér-sum divisor. Then

'vp(m(k)) = fp(p) =1
and W{m(k)z, &, p, Z[x]) = <(0,0)> is a (k, Z[2](k, p)) set for
mlk, Z[&](k, p)).

Proof. Sinee peBy(k), v,(k) = 0 and v,{m(k)}) = v,(m(k, Z,[2])) < 1
- by Proposition 4(b). Hence if v,(m (k)] =0, then (p, m(k, Z,[w])) = 1.
So, m(k, Z,[2)) = 1L and J(k, Z,[@]) = Z,[#] by Lernma 2 {(e). By assump-
tion, & hag a p-power-swmn divigor of some index 7 > 1. So by Temma 6,
J(k, GF[p’']) is contained properly in GF[p’], which contradicts the
above since GF[2'] is a homomorphic image of Z,[#]. Hence v,(m (k)
= fp(p) = 1. Clearly <{0,0)> is a (k, Z,[x]) set for mik, Z,[e]) @ since
m(k, Z,fe))o =0 in Z,[«].

The vest of this section is devoted to determining f,(p) in case &
has no p-power-sum divisor,

The first part of the next lemma is proved by J. Joly in [11], pp. 82-53.

Levma 8. Suppose p is o prime and r is o posifive integer pmme 0 B,
_ (a) (Joly) The dimension of %, o @]l (v, Z, [m]) as & vector space over Z,

does not emeeed (r—1)°. If ¢ = {w b=1, .., rr—r—1 and 7 = Omodk}
and D denotes the span of ¢, then given a%y Flm)eZy [w], there 48 a finite
procedure for finding om h(w) e D and g(v)ed (v, Z, [2]) smh thatf(z) = h(a)+
+g (). _

(b} There are integers t >35> 0 such that

“,'.Urt:l-m_$rs-i—wz€J(T’ Z_,p [CU])
Jor il nonnegative integers m.

(c) There 48 a non-zero proper ideal I contwined in J (v, Z,[)). Given
any g(®)el, one may effectively determine a (k, Z,{wl) set for g(x).

Proof of (b). Let A = Z,[o]/J(r, Z,[])} and B he the direct sum
of r copies of A. For each s > 0 let;

G(s) = (@, 2™, .,

< {r—1)% we have. ‘
_ 4] < p('r-:t}‘l and |B| < Pw(r-—nﬁ .
Hence there exist 0 < s < t < pt— +1 for which G(#)~—6(s) = 0 in B.
Moreover, if for each j, 0 < j <p’(”“1) +1, we uge part (a) to express
' the components of G(j) as elements of D+.J(r, Z o[@]), then we may
effectively determine s, ¢ and a set of g,(@)eJ (7, Z [m]) for which "+ —
— o™ = g(2) for ¢ =0,1,...,7—1. Hence if m =i for some
nz0and ¢ =0,...,r-1, Wehave

g g (0) T 1, 2,100,

wver""'l)eB.
 Bince dim4 <

&
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Proof of (¢). I g(o) = Za o™ eZ,[e] and ¢ and s are as in- (b),
t]len =0

w

2 = Za‘m(wrﬁm___

m=0

g(®) (o™ — @ty e (1, Z,(2]).

Henece we may let [ = (a" — ") Z,[6] # 0.
ProrositioN 9. If p is a prime less than o positive integer k, p does
not divide &, and & has no p-power-sum divisor, then wp(m(k)) = f.(p) = 0.
A (b, Z[z)(k, ) set for m{k, Z[x](k, p))w can be effectively determined.
Proof. By Lemma 6, J(k, GF(p")) = GF(p’) for all j=1, so
m(k, Z,[2]/P) = 1 for any non-zero prime ideal P of Z,[%). Since pt &, we
have by Lemma 2 (e) that

1 = m{k, Z,[2){P) = m(k, Z, (@] /P")

whenever P iz a non-zero prime ideal of Z,[»] and meZ*.

By Lemma 8 (¢}, there is a mon-zero proper ideal I < J (&, Z,[=]).
Moreover, as noted at the beginning of this section, there are prime ideals
Py, ..., P, and g, ...; myeZT such that

= D ®2,[2)iPys.

i=1

ZylellL

Hence by Lemma 2 (6}, (f),

mlk, Z,[w]) =m(k, Z,[2]/I) = Lo {m(k, Z,{0]}[P] i=1,...,0} =1.

8o, by Proposition 4,
' Z,[a])) = 0.

By Lemma 2 (b}, {a) and Lemma 8 (¢), to determine a (&, Z,[])
set for o it suffices to find a (¥, Z,[«]/I) set.for #. Then by Lemma 2 (f),
(e), (b) it suffices to find a (k, Z,[#]/P;) set for @ for each of the prime
ideals Py, i =1,..., n. Since each Z,[»]/P, is finite, we¢ conclude that
a (k, Z,[x]) set for  can be effectively determined.

Propositions 7 and 9 establith (e) of Theorem 1.

ﬂk(p) = _'p(m(k)) ;wp(m(k?

4. Computation of the expoments a(p). If f(#)eZ[#] and >0, let
o(i, f} denote the coefficient of &* in f(x)

Lemwma 10. If & 48 @ positive infeger, p 48 & prims, n = v,(k) > 0,
and g(x)eZ(x], then '

o(p,d") = (1,)' 0(1;59*) modp”.
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Proof. We may.write g{a) = by--b,2+x*h(x) for' some by, b eZ
and h(z)eZ[x]. We abbreviate b,--b,% by a(2). By the binomial theorem

k

(8) [g()]" = 2(;'7) [a (@) 17 [h{w) Y o™
: j=0-
and
k ke R
® [w(@) = D (a) EIbl’
. i=0
Hence
(10) e(1, g% = o(1, a¥) = kb,
If
N+1 i p=2¥+1is odd,
r(p) = ) o _
1 if p=2-
" and |
r(p) . N
t(d’?) Z ( )[a ‘]k“‘"] [h( )]sz_-,’
=0

then o(p,¢*) = o(p, ). Since r(p)<p and v,(k) =n, if 0< i< r(p)
then (f = Omod p". Hence '

c(ﬂ:é’k) = 0(p,y 1) =o(p, a®) E(i) bE2 B mod p™

k
by (9) Since v,(k) = n, (p) = 0modp™!, and by Fermat’s Theorem
([7], p. 68), By P8 = bf~'b,modp. Hence

By (B -1y (B 6(1, ¢ N
09 = (17, = () 4 e
by (10). '
PROPOSITION 11. If ]r 8 posm:we indeger, p s @ prime, p < k and
plk, then
(&
al’i:(p) =.IU.‘1) (""‘7(_))——2 1.
. v
Proof. Suppose m(k)e = Za”[gr1 T ois an identity “for m (k) m
in Z[w). Since plk, » v () —w,>0 $0 by Lemma 19,

g 14 A .
0= colp, _:_(k) o{l, 47) _:(k m{k) n

i=1 i=1

. Sinée ¥, ((;)) =n—1, we have a,(p) =w, (m(k))?, 1.
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Proposition 11 and Corollary b together imp.ly
COROLLARY 12. Suppose & is a posilive integer, » < k is a prime, and
plk.

I
a) If p is odd, then ay(p) =u, (ﬂ;i:_)_) 1

(b) 1< a,(2) 2.
In the remaining cases, & == 2™, where # is odd.
ProroseeoN 13, If &, n, r and § are positive inlegers, & = 2", j = 2,
7 i odd, and r is divisible by 27 —1, then
m (k)
'Uz ( k

Proof. Let p{w)eZ[»] be an irreducible of degree j(mod2Z[x]),
so that GF[27] and Z[z]/{p(@)Z[e]+2Z[x]} are isomorphic. Let I

= p(2) Z[x]+ 2" Z{n]. If '02( I(uk)) < 1, then gince m(%k, Z [21/I)[m(k)
and m(k, Z[w]/I)|2”+.i we would have
m(k, Z[2]/D)2*"  and 2"z (k, Z[2])modl.

‘We will prove the proposition by showing that th.is cannot oceur.
If ¢ 3 0 ig in GF [27], then ¢¥~* = 1. Since (2 —1)|r, a” = 1. Henece
if g{®)Z 2], then there is an m(x)eZ [®] such that either :

) = 0,{2) =2.

(11) 9@ =1+2m(z)moed]
or . . '
(12) _ g(®) = 2m(z)modlT.

(11} holds, 'then

[9’(90‘)] = 1+ 2" () + [m(2)]*} mod I,

while if (12) holds,
[g (@)™ = 2" [m(2)]"™" = 0mod
since ¢ > 2. Moreover,
m(0) +[m(0)]} = m(1)+m(1)]* = 0mod 2Z [x]
foi" any m(s)eZ[z], so, in either case, '
(13) [9(0)]* = [9(1)]*mod 1.
It gty = Eq’ a,[g:(®)T* is an identity for 2°" 'z in J(k, Z[dvj)modl’,

o ]

then suceessively replacing « by 0 and 1 yields 2"+ = OmodI The con-

tradiction proves the proposmon
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Next we consider the case when & = 2"r, where # ix 0odd and has no
factor (27 —1) for j > 2. We need a serdes of lemmas, the fivgt of which
is proved by L. Dickson in [5], p. 45.

Lenva 14 (Dickson). If pis a prime, § ond v are positive integers and
d = (p’ =1, #) then the number of non-zero r-th powers of elements of GF[p?]
is (pP—1))d. :

Recall that if R is a ring with identity, H (%, k) is the set of Lih
powers of elements of R. If n, r«Z™ and #, m and a<R, define

B(h, m, a,1,r) = m-+m’ad,
Dby, G, 0, ) = K" ‘m+ 0" mdata® i w1,

Levwa 15. If n, 7, are posilive integers, § >1, (27 —1)1r and
beGR[27], then there are h, m and a<GF[27] such that

' %0 b =D, m; a,u,r).

Proof. By assumption, (2/—1,7) < 2'—1, so by Lemma 14 there
is an " =teH(r, GF[27]) other than 0 or 1. Since the multiplicative
order of ¢ divides 2/ —1, "' £ 0 or 1. Hence if f = "' — 2" 7"~ then
f#0. Let m =7""b and o = "Ly, Then

fmtatar = (e T ) 2

and

and

- T __ ith /-
N L T e P

But fm =b, 80 b = @(h,m,a,n,r). Since A" =1 % 0 implies h =0,
the lemma follows. :

COROLLARY 18, If ¢, n,r are positive integers, (2/—1)tr for any

122 end I,,..., I, are distinct non-zero proper prime ideals of Z,[w], end

a
I, =[] I, then there emist (@), h(z), m (%}, a(x) n Z, (0] such that i(x) is a
T=1
wnit mod Iy, and @ = G (h(s), m{a), a(2), n, 7)+ [v(2)]" mod I,.
Proof. Since Z,[2]/I, and >®Z,[x]/I, are isomorphic, it suffices
i=1

to prove the lemma in case ¢ =1 and I, = I,. Now Z, [2]/1, and GE(2%)
are isomorphic for some j= 1. If § =1 and I, = (@--1)Z,[2], we may
take h(w) =v(®) =1 and a{#) =m(s) = 0. Otherwise I, = nZ,[2]
and we may take h(z) =1 and a(2) = m(z) = v(x) = 0. If j> 1, then
by Lemma 15, there ave h{w),m(®), a(#) such that ¢ == D (h(z), m(w),
a(z), 1, r)mod T, snd we may take v(s) =0, so the Corollary holds.

. ProrosrutoN 17. If k ==2"% > 2 for some positive integers r and n
such that (3’ —1)1r for any § = 2 and r 43 odd, then

@(2) = v, (M) - 1.

. %
A (k, Z[@](K, 2)) sat for m{k,Z{x](k,2))a can be effectively. ‘aonstméted.

a
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Proof. By Proposition 4 {b) and Corollary 12 (b)), it suffices to show
that m(k, B)|2"*™, where B = Z[2]/2""?Z[#]. We will show that 2°+lp
eJ (&, E) by constructing a (%, RB) set for 2"z, To simplify notation,
h,g,m,a,?, and s will denote elements of R. Recall that Zy[r]
= Z[ #]/2Z [x], s0 that Z,[«#] and R/2R are isomorphic. : '

By Lemma 8 (¢}, there is a non-zero proper ideal I of Zy[w] contained
..y I, and positive integers
g g ~
My veey g Such that I = [T 1% Let Iy = [ ]I, and let I, be an ideal of B
=1 . .

qul

containing 2K sueh that I, = I,mod2E. '
By Corollary 16, there arve i(x), m (@), a(z), (@) in Z,{w] such. that

w = (), m(x), a(x), n, )+ [v(@) ' mod I,
and k(z) is a unit modl,. Choose &, m, a, veR such that
h—h{z) =m—m(a) =e—a(®) =v—v(x) =0mod2R.

Since Zy[#]/I, is finite, b, m, a, and v may be effectively detérmined.
Because h(x) iz a unit modl,, I, = I jinod2R and 2R c f,,, we know
that % i3 a unit modl,. Since

@ (h{w), m{@), a(®), 0, )+ [(@)] = S(h, m, o, n, )+ 4" mod 2R,
(14)
which on multiplying by 2" vields

o =Pk, ma,n, r)-l—'v’modf,,,
(15) 97ty = 2m LG (), m, @, n, r)+2" T mod 27 T,
Now if » =1, then clearly‘

(16) g ed (&, B)+2"H T (r, B) + 2T,

If »> 1, then since r and h are units mod I, we can find an seR
such that rsh" ' = mmodI,. Hence if § = 2125, we have

§ = B 2kt = h’”+2mmod2i’0.

Bxpanding g* = (¢')" by the binomial theorem and using Lemma 3

shows thatb _

17) g =R = QM RIE Dy L D) B o g P T

Since 2" R = {0}, we have from Temma 3 thab
(1+20)* —1F = 9" L g2},

The sum of the right hand side of (17) and (18) is

2 B (h, My a, n, ) I00d 2V T,

(18)
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50 summing (17) and (18) and substituting in (15) gives
~1]°—|-2"'+11;"5J(]c, R)+2n+1J(lr’ R)
' wod 2™+ ],

(19) 2™ty = g* —BF 4 (14 2a)"

Hence (16) holds for all cases.

If j = max(ny, ..., ny), then by Lemma 2 (e), I, < J(r, Z,[a]) +1I].
Sinee Ij = I = J(r, Z,iw]), we have I, = dJ(r,Z,[@])

Now I, Efo and J(r, Z,[z]) = J(r, R)mod2E, so I,= J(r, B)mod2R.
-Thug, since 2"7*R = {0},
(20) 9"t f, = 9t T (e, R).

It f ¢R, then by the binomial theorem and (18),

n~1

2 (i_i_zfm’:)znr -
§=0 .

Hence 2" f"ed (k, R) and so
2™ (r, R) = J(k, R).

n-+ 2n+1 {f: _l_fk} ,

(21)

We now apply (20) and (21) sequentially to (16) to have 2"+ ¢ eJ (%, R).
By our previous remarks, this establishes Proposition 17.

In summary, Theorem 1 follows from (3), Propositions
Corollary 12 (a), Proposition 13 and Proposition 17.

4, 7,9

5. Arithmetical properties of m (k) /k. In this section, we give a number
of results concerning the eomputation of and distribution of values m (k) /k.
To describe them, it is convenient to inftroduce some aunxiliary number-
theoretic functions.

If ksz+, let

= [[{ : peo,(h)},
and let s(k) denote the square free part of k. (That is,
k=1, and k = ]]p # i3 the prime power decomposition of k, then s(%)
= ‘]_rjl pi._) By T]::zérem 1,

=[] @™ : peoy (i)},
$(1) = 1, and if

(22)

mik) [k = a(k)b (k)
and :
1 if k% is prime,
(23)  a(k) = Ye(k) it kis compomte and 2(27—1)1% for all § =

2&(k) otherwise.
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To compute #(k) it suffices to determine when a divisor d of % is
a p-power sum for some peP,(k); that is to determine if the exponential
diophantine equation

pl‘le_l
- = 1 R
o ek F A

(24) d = + Y
has a solution when d|k and p ey (%).

The following proposition helps to determine when (24) has a solution.
Reecall that if eZ*, then p(x) denotes the number of positive integers
<« that are relatively prime to @. For a discussion of the properties
of p, see [8], Chapter 5.

ProrosITION 18. Suppose a,y, 8,2, b are pdsitiwe integers, e>>1,

da 1
1’ and d is as in (24).

P 18 a prime, ¢ =

a

(a) a =
(by “dd—i—a is a p-power swm of indev (s—}— 8) a.
(€) If e> 641, then (d—a¢)p™ is a p-power sum of index (s— &)a.
(@) If bld, then & = O0modd or (e, p(b))> 1.

(e) eld if and only if dle.

() If 4 and p arve odd, then p*(p°+1L)(d—1) and p*|(d—1—p°.

(g) If d is even (where p is odd), then (1+p%)d.

Proof. Parts (a), (b), and {¢) follow immediately from the defini-
tions of p-power sum and index.

Suppose that d = 0modd and that y is the multiplieative order of
p*modb. By Fermat's theorem ([8], Chapter 6), yip(d). Since p™—1

v, (d—1) > 0.

= (p°—1)d = 0modd, we have that p|¢ and so y|{g(h), ). If y =1,
then by (24), & =4 = 0modb. Otherwise {p(h), &) =y > 1, and so (d)
holds.

Suppose ¢ =1d+# for some infegers iz 0 and d > 8 2= 0. Clearly

fda
(p% L))" —

1) soe

_1 . Then since

ida 80
P -1 sa D —1
d =
(29'“—1)29 T

<3

¢|d if and oniy if al pu

m]j:. Sinee 0 <C ¢ < 4, this holds if and only if

s =0, and so (e) fellows.

Suppose 4 and p are odd, so that & > 2. Then by (a) and (¢}, (d—1)/p°
is 3 p-power sum of index (¢—1)a. Since (d—1)/#* is even and ¢(2) =1,
part (d) implies that ¢ = 0mod2. Hence by (e), (d~1)/p° is divisible
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by (p—1)/(p*~—1) =1+p° Hence p*(p°+1){(d~1), and by (c),
p*|d —(1 4%, so (f) is established.

It d iz even, then by (d), & = 0mod2, s0 by (e) d in divisible by
(P —1)f(p°—1) =1-+p% so (g) holds.

In Section 7, we present a table of values of a(k), b(k), and m(k)/k
for 1< k< 150. It was computed by the following “sieve-like” method.
First, compute a(k) over the indicated range. Next, make o list of all
p-power sums for primes p < 160. Such a list is given at the end of 1&10
table. Note that in this range, they all fake the foem p--1 if p >
Observe that if d is a p-power sum, then for any positive integer #, plb (mZ
unless pln (i.e., unless pla(nd)). In thiz way, if (k') is emn;pute("i for all
k' < k, all of the prime factors of b(k) can be recorded with the possible
exception of those primes p for which & itself is a p-power sun, and using
the table of p-power sums will supply these as well.

To extend the table, or to compute. individual values of b(k), Prop-

osition 18 can be quite useful as ig illustrated by the following example.
- Exampere 19. (i) Suppose & = 567 = 3*-7. By (23), a(k) = 3:7 = 21s
The divisors of 567 are 1, 3, 9, 27, 81, 7, 21, 63, 189, and 567. By the
table in Seetion 7, the prime divisors of b (k) are 2, and those primes p # 2,3,
or 7 for which either 189 or 567 is a p-power swn. Now 18% —1 =188
= 22.47, and 567 —1 = B66 = 2-283, so Proposition 18 (a), (f) eliminates
the possibility that 189 or 567 is a p-power smm for any odd prite p.
Henee b(567) = 2 and m(567)/567 = 3-7-2 = 42.

(i) % = (97)* = 9409, then a (k) = 97, and by the fable in Section 7,
5{97) = 1. Since (97)2 =1 = 9408 = 2%-3-7%, if 0409 is a p-power sum,
then by Proposition 18 (a), (), p= 2 or 3, By Proposition 18 (a), if I is a 3-po-
wer yum, then for some e %™, 3°=(3 ~1)(9409) 41 = 18819 = 0mod 3% Simi-
larly, & is not a 2-power sum, so b(9409) = 1 and m (9409)/9409 = 97,

(iii) If & = 372 = 2°-3-31, then the divisors of % are 1, 2, 3, 4, 6, 12,
31, 62, 93,124,186 and 372. By (23), a(k) =2%3-31 = 744 ’I‘hc mble
‘in Section 7 shows that the prime divisors of b(%) are 5, 11 61 and those
D 2,3,5,11,31 and 61 for which 186 or 872 iy a p- powm sum, Now
186 —1 = 185 = 5-37 and 372 —1 = 371 == 7-53,50 by ]’ropcmbwn 18(a),
(g), there are ne primes of this latter type. Hence 5(372) = +G1 == 3308
and m (372) /372 = a(372)5(372) = 2°+3-31:5-11-61 = 2,496,120.

Next we will prove & result that will yield information about the
exponential diophantine equation {24) and will imply that if &> 1 is

;[.‘l‘!n
~odd, then the sequence {m(: )} is bounded.

The next lemma ir clogely related to a result of . Suryanarayana {157,
T I'is a set of primes, let §(I") denote the multiplicative semigroup of Z™
generated by I' and let T'(I") denote the set of o > 1 in Z for which there
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isa d>1in Z* such that {a®—1)/(a—1)eS(I). H a >1, 4> 1 are in Z
let f,(d) = (a®*—1)/(a—1). .

LeMMA 20. If I'is any set of primes and aeT (I'), then there is a prime
P such that (¢® —1)/(a—~1)eS(I") and p = 2 or plg—1 for some gel

Proof. Suppose a<T'(I). X d,, d,eZ7 and d,|d, then f,(d)If,(d,).
Hence if f,(d)eS8(I") and p is a prime divisor of d, then f,(p)e8(I%). Tf
p =2, we are done, 5o assime p i3 odd.

If - gel’, glfo(p), and d £ 1med a0
ploplg) =g—1. If g =1 mod g, then fulp) =p mod g, 50 g = p. Thus if
ptg—1 for all gel”, then [ (p) = p" for some 2 1. Sinee a"—1

= (6 —1)f,(p) = 0 modp, Fermat’s theorem implies ¢ =1 modp.

Now f.(#) =14+a+ ... +a"" = pmodp® so n= 1. But a>1
s0 p == fu{p) > p. This contmdietion establishes the lemma.

Let k(1) =1 and for » > 1 in Z*, let h(n) denote the largest prime
factor of #. The following lemma is proved by G. Polya in [13].

Lemwa 21 (Polya). If f(z)eZ{w] has more than one compler sero
and all of ils zeros are distinct, thm lim & (f(n)) = oo.

b et

then o =1 modgq Hence

The next theorem yields some information sbout the distribution
of values of m (k)/k. Recall that a prime iz called a Mersenne (resp. Fermat)
prime if p = 2%—1 (resp. p = 2"+ 1) for some integer n > 1.

TuroreM 22. Suppose I i8 o finile set of primes.

(a) (1) is the union of a finite set and {acZ: a > 1 and (a1 1) eS(I’)}.

(L) If 2¢7, then {ael(I'): a is odd} is finite.

{e) If 241", then {m(k)[k: keS(I')} is bounded. In particular, if k> 1
s an odd tndeger, then {m(E™)[E"} is o bounded sequence.

d) If w > 1 45 an integer, then m( 2”)/2””’1 ig the product of all the Mer-
sewme pmmes less than 2™,
(e) If p is a Fermat prime, then m(p™)fp" = 2p for every integer n > 1.

Proof. By Lemma 20, there is a fmlte zet ]"‘D of prlmeh such that if

aeT(I), then
af —1 1 -
‘a 1 =14a+ ... +aP7eS()  for some pell.

If p = 2, then a-+1e8(IM. If p is odd, let f(#) = 1+x+ ... +2°" and
note that f(#) satisfies the hypothesis of Lemma 21. Tf {a<Z: f(a)eS(I)}
were infinite, then the sequence {4(f(#n})} would have a bounded subsequence

- confrary to the conclusion of Lemma 21. It follows that {acT(I'}: a1

1)} is finite, which egtablishes (a).

Clearly (b) follows immediately from (a).

If keS(I'), then by (23), a(k)< 2s(k) < 2]]{p: pel, and by (b}
: BeS(IN} s bounded. Hence (¢} holds by (22).

If 2" has a p-power sum divisor, than, by Proposition 18 (a), (g),

{B(k)

_ (1--p%)2° fo_r some a2 1. Hence 2™ = 19" for some n,eZ where 1 <,

8 — Acia Arithmética XXTIX.3
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< n. But as was noted by J. Cassels and W LeVeque ([6], [12]), 21 = 1 4 p°
implies « = 1, so p is a Mersenne prime, and hence (d) follows from (22)
and (23).

Part (e) Tollows easily from (22), (2
i proved.

AVe conclude this section with some remarks and unsolved problems.

(A) P. Bateman and R, M. Stemmler show in {2]; p. 152, that if {p,}
is the sequence of primes such that p,, is & g-power sum for some prime g,
where gpn iy repeated if it is a g-power sum for morve than one prime g,

3} and Lemma 20, so the thecrem

_then 2 prl* < oo, Hence such primes arve sparsely distwibuted. Indeed

they wnte that there are mﬂy 814 suech primes less than 1.25 x 10" and
251 5—1
2-1
iz the only prime that is a g-power sum for more than one prime g.
For any prime p, m(p)/p is the product of all primes ¢4 such that p is a g¢-
power sum. It does not seem to be known if there is & pogitive infeger V¥
such that m(p)/p has no more than ¥ prime factors for every prime p.

they exhibit the first 240 of them. In this range 31 =

n

[m
{B) Can the sequencel
m (2™}
{d), {m@r‘
senne primes. What if & is even and composite? By Theorem 22 (a), if
we write & = 2"a, where » > 1 and ¢ is odd, this amounts to determining
if there are infinitely many primes p queh that (p¥--1)|(2"a)* for some
weZ™,

{0 By Theorem 22 (c), if I' is a finite set of odd primes, then there

} is bounded if and only if there are only finitely many Mer-

8 a mmllest posgitive integer M (I") such thnpt——(—'i)- & MY for every

8eS8(I"). By Theorem 22 (e), M(I) = 2p if I' = {39} and p iz a Férmat
. 35_ ' ‘

prime, and since (11)2 = il M({11}) = 33. I8 there a general

3
niethod for compubing M ()% What if [I"} = 1%

(D) The enrrent state of knowledge a.bou ‘rhe e"tponanm 1.] diophan-
tine equation ‘
rd
25 e

¢ —1 _

_Where P, q are primes and ¥ >1, d > 1 arve infegers iz summarized by
H. Rdgar in [7]. If follows from Proposition 18(a) that p, n and g deter-
mine 7 and @ uniquely. As is indicated in [7 ], there are many problems
agsociated with (25) even if v = L. .

P =

51

k . ‘
——H—)} be bounded if & is even? By Theorem 22
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rd

The numbers —-
_fp."__

are gpecial cases of what are called Lucas

numbers or Lehwmer numbers; see [14] and the references therein where
A. Schinzel shows that many positive integers of this form have a large
number of factors. _

In a subsequent note we expect to make a more extensive study of
the distribution of values of m(k)/%.

6. Some applications to the theory of rings. Clearly if R is a ring
with identity element, k<Z* and (k) is & unit of R then B = m (k)R
cJk,RByc B so J(k, B) = :

The following proposition gives a sufficient condition on a ring R
in order that m(k, R) = m(k).

PROPOSITION 23. If R s o ring with identity element and theaﬂe 8 @ homo-
morphism @ of R onto Z[x], then

m(k, B) = m(k)

for any positive integer k. In particular, if {®,} is any non-empty collection

of indeterminates, then
" ey Z[{w}1) = m(k).
Proof. By (3) in Section 1,

: ‘ wm(k, B)|m (k).
Since Ry = Z[z],
| m ks R)Z{x] = m(k, k)

By = J{k; R)p = J(k, Z[#]).

Hence w(k)m(k, B), so m(k) = m(k, R). Since there is a homomorphism ¢
from Z[{=,}] cnto Z{el, mik) = m{k, Z[{z}]).

The ring S of “polynomials® over Z in a single indeterminate with

non-negative rational exponents shows that the requirement in Prop-
osition 23 that there be a homomorphism of B onto Z [#] eannot be replaced.

by the assumption that the only units of B are {j:l} For in thxs case,
m(k, 8) = 1 for every keZ™.

I. Kaplansky has shown that if R 18 a ring such that for every acfz,
there is an n(a)<Z* such that ¢™® is in the center of B, then there is & nil
ideal I of R such thad; R/T is commutative. See [10], pp. 218-219.

The following proposition, which relies on more stringent assump-
tions, but eliminates the need to reduce modulo a nil ideal, follows lmmech—
ately from the remarks at the beginning of this section.

PRrOPOSITION 24, If R is a ving with identity element, k> 1 is @ posm- :
tive integer such that 4" is in the center of B for every yeR, and m(k) is o
wunit of R, then R 18 commutative. '
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7. Appendix.
Table of values of a(k), b(k), and m(k)}/k for 1 k < 150
& _a(k) b (k) e (k)i
1 I 1 1
2 1 1 1
3 1 2 2%
4 2 3 4
5 1 2 2
i 4-3 = 12 i1 40
7 1 2 2
8 2 3-7 =21 4.2
9 3 2 3
10 2-5 =10 3 30
11 1 1 1
12 4:3 =12 511 = 55 680
13 1 3 .3
‘14 4-7 = 28 13 364
15 36 =15 2 30
18 2 37 =21 42
17 1 2 2
18 43 =12 5-17 = 85 1,020
19 1 1 1
20 2:5 =10 319 = 57 570
21 37 = 31 2 42
22 211 = 22 i 22
- 23 1 ' 1 1
24 4.3 =12 5:7-11-23 = 8,865 146,260
25 5 2 10
26 2:13 = 26 35 =15 390
27 3 2 8
28 4-7 = 28 3-13 = 39 1,092
29 1 1 1
30 4-3-5 = 60 29 1,740
31 1 25 =10 10
32 .2 . 3-7:31 = 651 1,302
33 3+11 = 33 2 66
34 217 = 34 1 B4
35 57 = 35 2 70
36 48 = 12 B5-11-17 = 935 11,220
37 1 1 1
38 2-1% = 38 37 1,406
29 3:13 = 39 2 78
40 2:5 = 10 2-7-19 = 309 3,900
41 . 1 1
42 4-3-7 =84 5:13+41 = 8,665 223,860
© 43 1 1 1
44 211 =22 343 = 129 2,838
45 B-5 = 15 2 30
46 2:23 = 46 1 46
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~ Table (continued)

% a (k) b{k) m (k) [k
47 1 1 1

48 43 = 12 5+7-11-28+47 = 416,185 4,994,920
49 v 2 14

50 2+5 = 10 87 = 21 210
5l 317 = 51 2 102
52 2:18 = 326 8.5 =15 390
53 1 1 1
54, 4-8 =12 51753 = 4,505 54,060
55 511 = 55 2 110
56 4-7 =28 3:13 = 39 1,002
57 319 = 57 2.7 = 14 798
58 229 == 1 58
59 1 1 1

60 4-3-5 = 60 '11-19-20-59 = 357,590 21,455,940
Xi)l 1 1 1

62 431 = 124 561 = 305 37,820
63 3.7 = 21 2 .42

64 2 3:7-31 = 651 1,302
64 513 = 65 2:3 =8 390
66 4-3-11 = 132 5 660
67 ' 1 1 1

68 2:17 = 34 367 = 201 6,334
69 3-23 = 69 2 138
70 4-5-7 = 140 3-13 = 89 5,460
71 1 1 1

72 4-3 =12 5-7-11-17-23-71 = 10,887,985 128,255,820
%3 1 2 2

74 2-37 = 14 73 5,402
75 85 = 15 3 30

76 2:10 = 38 337 = 111 4,218
77 711 =77 2 154
78 43413 = 156 5 780
79 1 1 1

80 2:5 =10 3-7-19-79 = 31,521 315,210
81 3 2 8

82 2:41 = 82 3 246
83 1 1 : 1
84 437 = 84 5-1L-13-41-83 = 2,433,145 204,384,180
85 B-17 = 85 2 170
80 243 = 86 1 86

87 . 3139 = 87 3 174
88 2-11 = 22 3:7-48 = 903 19,866
89 1 1 1

90 435 = 60 17-29-89 = 43,877 2,632,620
91 7-18 = 91 2:3=6 546
92 2:23 = 48 3 138
93 3-31 = 03 2:5 = 10 930
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® ok b (k) m (k) &
94 2-47 = 94 1 94

95 5-19 = 95 2 190

96 4:3 == 12 5-7-11-23-31-47 ==-12,901,735 154,820,820
97 - 1 1 1

98 47 = 28 13-97 = 1,261 35,308
99 3-11 = 33 2 66
100 - 2.5 = 10 3:7.196 = 3,990 39,000
101 1 : 1 1

162 4-3+17 = 204 5-101 == 505 103,020
103 i 1 1
104 2-13 = 26 '3-5-7-108 = 10,813 281,100
105 - 3-5-7 = 105 2 210
106 ° 2-53 = 106 1 106
107 1 : 1 1
108 4-3 =12 5-11-17-53-107 = 5,302,385 63,629,620
109 1 ’ T ' 1
110 2+5-11 =110 3-108 = 327 35,970
111 3-37 =111 [ 222
112 4.7 = 98 3-13 = 239 1,092
113 1 1 1
114 4-3-10 == 228 5-7-837-113 = 146,385 33,364,380
115 5-23 == 115 2 230
116 2.29 = 58 3 174
117 3-13 = 39 2 78

- 118 2-59 = 118 1 118

119 7417 =119 2 238
120 4-3-5 =60 7-11:19-23-20-59 = 57,573,430 |  3,454,406,340
121 11 ' 3 S 33 "
122 2-61 = 122 11 1,342
123 3-41 = 123 2 240
124 4-81 == 124 3-5-61L = 215 113,460
125 5 2 10
126 4-3-7 == 84 5-13-17-41 = 45,305 3,805,260
127 1 e 9
128 2 3:7-31-127 = 82,877 16,354
129 3448 = 129 2 258
130 2513 = 130 1 130
131 | S 1 1
132 4-3-11 = 132 5:43-131 = 28,164 3,717,780
133 7-19 = 133 2-11 = 22 C 2,026
134 267 = 134 1 134
135 35 = 15 2 30
136 2-17 39-87 = 1,407 47,838
137 ‘ 1 ‘ 1 Tl
138 4-3-23 = 276 5-137 = 685 189,060
139 1 . 1 1
140 - - 4:5-7 = 140 3:13-19-139 = 102,999 14,419,860

icm
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Table (continned)

I alk) (k) m (o) {k
141 347 = 141 2 282
142 271 = 142 13 142
143 11-13 = 143 3 424
144 43 o 12 571117284770 = 502,335,205 6,028,023,540
148 {529 = 145 2 290
146 2073 = L4G 1 146
147 37 = 21 2 42
148 287 = T4 373 = 219 16,206
149 1 1 1
150 4-3+:5 = {0 7-20-149 = 30,247 1,814,820

Table of p-power sums for primes p < 150
P | 2 } 3

ppower sums | 3,5,7,0,15,17,21,31,33,63,66,73,85,127, 129 | 4,10,13.28,40,82,01,121

P

| 5

’11

|13“7J19!23|29§31|37|41\4%

P-poOWEr RN | 3 2b,Sl 128 ‘ 8,50,57 l 12,122 l MJ 18 ’ 20 ‘ 24]

P

38| 42| 4

|47 | 63| 59 | 61[67]71{'73 : 79|83|39|97|1(-)1|m3| 107109 113

P-poOWer HIng ‘48

P

| 127] 131‘ 137 [ 139* 149

ﬁo]62[b's[72}74'80[84’90[98]102[104]108]110|114

p-power El.:lllﬂ ‘ 128 [ 132! 138 l 140| 150

Added in prool, Fune 20,

1875, Part (¢) of Lemma 8 follows easily from

Theorem LI of B. Paley’s paper, Theoreins on polynomials in o Galois field, Quart.

J. Math.

4 (1933), pp. HA2-63.

Moeation of Lowmma 2038 made in papors of A, Rotkicowics, An elementary
pronf of the existence of « prime, priwitive divisor of the number at — b (Poligh), Prace

Matomatyesne 4 (1960),

. 21-27,

amd K. Szymiczek, On the equation o b®

w (g b) e (Polikh), Windomodeld Matcmatyesne 7 (1964}, pp. 233-236.
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A note on Fermat’s conjecture
by

K. Inxnwrr (Torku)

Introduction. Recently Everatt [2] has proved the following theorem.

TrroreEM 1. Let an odd prime p > 3 and an integer v = 1 be fized.
Then theve wre at most a finite number. of relatively prime, positive integer
pairs (@, y) on the line y = w-+v such that 5+ y* is the p-th power of an
intoger. ‘ '

The proof is based on Roth’s famous theorem, stating that a real '
algebraic irrational is approximable to no order higher than 2. It is sur-
prising in the proof that 2'% works as the irrational. '

Some time ago, the author [3] stated the next theorem,

Tymsorint 2. Let p be o prime > 3. Then there ewist at most & finite
number of positive integer triples (@, y, #) which satisfy the conditions

(1) WLy o (Y, ) =1

and for which some difference o —y|, 2 —2, 2 —y is less than a given posi-
tive number M. )
Theoren L is contained in the cage |2 —y| < M. Theorem 2 can be proved
most naturally by the general method given by Inkeri and Hyyrd [5].
Because they only discussed one case (albelt a typical one), we give a eom-
plote proot in Hection 2. Further we will state a generalization of this
theorem. The proof of Theorem 2 given in [3] is of interest for that part
which coneerns the so-called first case of Fermat’s conjecture (payz).
The wmiethol wsed is completely elementary, and yields also an upper

Dound in termy of p and M for each of the numbers @, y, # of every solution.
~ On account of Theorem 1, a footnote on p. 52 in [3] is worth mentioning.

Accovding to this note, the proof of Theorem 2, excluding the case z—y
< M, phye, can be carried out elementarily, using only Thue’s theorem
concerning (like, Roth's), the approximability of an algebraie nuraber
by rational numbers, Sinee Roth’s result is fairly deep, we will, in Section 1,
prove Theorem 1 by means of Thue’s theorem, Our proof ig simpler and
shorter than that of Everett. In Section 3 our results, and a result of



