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Structure of the Markoff spectrum below Y12
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Introduction. This work is a sequel to [1] and we refer there for all
notation {except that we have adopted the more usual English spelling
of Maxkoff’s name). Computations were performed using the APL work-
spaee described there, slightly npdated and with gome new functions added.
In Section 3 of [1] we gave some results based on an algorithm for deter-
mining the exfreme values of M(4) for certiain restrictions on the finite
strings which ean cceur in the double-ended sequence A. The algorithm
has its roots in the work of Perron [7], Batz 5, but our version appears
mueh gtronger than previous versions (cf. Cusick [3]). In this paper we
will use this method to give a systematic study of the portion of the spec-
trum defined by sequences of 1's and 2's, ie. the portion below Y12.
A subsequent paper will apply these methods in the vicinity of ¥21 in
order to obtain an independent verification of the results of Schecker [10]
that the spectrum contains all numbers greater than V21 = 458268
and has a gap which is a neighborhood of 4.52172.

The authors’s work in this area overlaps with recent work of Berstein
‘and Freiman (see [11]). Tn particular, Berstein [11], Section 2.9, summmar-
izes & computation of the division of the spectrum given here. He does
not go into much detail about the determination of the optimizing sequences
or the computation of numerical values, and we have noticed discrepancies
in Dboth types of result between his work and ours. An extension of the
methods described here to & completely algorithmic procedure for deter-
mining the structure of the spectrum would make such results more
reliable. :

Foundations. The following result allows us to deal exclusively with
the ease in which the supremum M (4) is attained. '

ProposiTIoN 1 (ef. [5], Theorem 2.2; [4], Lemma 3). If M(4)
== g < oo, then there is a sequence A” such that :
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(i) every finite substring of A* eecurs in A

() M(A") = My(4") =

Proof. Clearly (i) implies that M (A*) = ¢, 80 we need only assure
that M,(4%) =a and (i). It Mu(4) = a for some %, then A* — Ayr
does the job. Otherwise, we construet a sequence iy, 4,,... such that
M;, (A)~~a. The finiteness of a gives the fact that the o are bounded.
Hence, there arve only flmte]y many values for Gy, and one mmust occur
infinitely often. Let this be ay and replace iy, 4,, ... by a subsequence for
whwh @; 18 ﬂommm Continue in a similar faqhmn determining, in order,
at,, a;l,aff_z, ay, ... This sequence clearlv has the requwed properbies,

Given a finite string {b,: =ty Wwith 4, < 04, we associate
the collection of all 4 for Whlch @, = b; for i, < i <4, and for which
C M(A) = My(4). The set of values of M (A4) for all such A will he said
to be associated with the string By b;,». Our plam is to systematically
generate strings and to- compute the extreme valnes of the associated
subsets of the Markoff spectrum. In denoting strings we will omit all
punctuation except that we will delimit by by periods. Also, we shall not
distinguish 2 string from its reverse. Thus, the set associated with 2

is Initially partitioned into those associated with <1.2.1>, {1.2.25%, and.

{2.2.2).
Perron’s results are congequences of
PROPOSTEION 2. Suppose @; = a,_, for i =1, oyt —1 and et

¢ =[4:1, y=1[4;], _f(m)z[o;a’lw'-ra}nml:m};
If o>y, then .
(i) » odd implies M, ( y+f( <o+ fla) < My(Ad);

(i1} » even implies yﬁ—f(‘ HE L(A) < My(d) < aotfz)
- Comwersely, M, (A)<< My(A) implies x> y.

~Proof. Write f(») in the form {a@+b) = {cx+d) with 4, b, ¢, 4 non-

negative integers and ad— ba = (—1)" (Perrcn [8]; §6). Then f (2
= (—1) (cm—}—d“’. Thus |f (@) <1 for 43> 1. Since. My = z4-fly)
and M, (4) = y+F(=z), (1) Would iollow from m+f(m) heing an inereasing
function, ').nd (ii) from @—f(s) being increasing. Both of these follow
from |f(z @) < 1. The converse is similar to (ii).

CoroLrARY (Perron [7], Satz 5). If A contains the sir T gy +ony Bgpy
then M(A) > atl-a wheoe o 8 the number mprewmed by the periodic

continved fraction [ao, vony Gy

Proof. Applying the proposition with n = 1, gives M(4) z o+1-+a
for any @ == [A,;*] or [4; ]in 4. Now, since the given string hag odd length,
one of {m, [a, ..., ay, 2]} is always at least equal to .

Exawpims. 1. If A contwing (N, M{4A)> [N]+1+[FN] = M(F).
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Hence (N> is a sequence representing the minimum value of M (4) for
all A containing (. B
2. The set associated with {2.2.2> eonsisis only of M(2). Write 4 as
(w2.2.2y7, then Mo(A) = M,(4) implies, y < [222] and Mo(4) = M_,(4)
implies 2 < [22y]. Thus < [2] and M(4) = My(4) < 274102, [B]]
== M (2). But example L shows M(4) > M(2), This is typical of the cal-
culation of the largest value of M(A) associated with a string in those
cases in which. the maximum value i3 given by o periodic sequence {(1.2.23,
L2425, <ULZILY, (22.2.11), bub not (12.2.12)). After showing that
the maximum for {12.2.11> containg {211.222112.2.111%, this too is covered
by Proposition 2. Nete that (ii) gives an npper bound on the maximum
value associated with a siring and. (1) gives a lower bound on the minimum,
This may also be wsed in the other direction; if the maximum M (4)
is known to exceed m,, then (ii) gives a lower bound on  for the maxi-
mizing sequence. Similarly (i) gives upper bounds on  for minimizing
sequences, :
3. Minimum 1.21. Let @ = [A]], v = [4;] Then z>=y implies
that 2@-2 3 M,(4) = 2y —2. Thus, M,(A)< My(121) implies that
¥ < [21]. We then have ¥ = [211v], which is a decreaging function of .
M_y(A)Y < Mo(A) says » < o, and %> y says = [211v]. Ii follows that:
v < [Eﬁ} implies M (A) = 2[2112]—2, a decreasing function of w;
P > fﬁﬁ.]_implies M(4)=v-[011v], an increasing function of .
Thus @ == v = fﬁi] must provide the smallest value. :
' Actually, this argument conld be made to show that any occurrence

of (121> in A forces M(A) =M (.‘i—ﬁ). This sort of result allows us to

. exclude certain strings in some computations (cf. example 5).

A new result. The significance of the method used here is that if
allows one to synthesize the solution of an extremum. problem. At each
stage it ig clear what restrictions are needed on the a; that remain to be
chosen. The full implementation of this depends on being able to express
M, (4) < My(4) in all easos. This i accomplished by

ProrosriroN 3. Take [Ag] = m, (A, ==y and define a,b, ¢, d by

{a b &y 1) (an__l 1)
(a ol) (1 0 0
Then, if o—y2=e = (b—c)+~a and denoting f(z) = (o@+d)=(as--Db),
g(m) (b d) -~ (aw+¢) - we have
i) for n odd: My(A)= o+flz-—e)=y-+gly+e) = M (4),
(11) Jor n even: w--f(m—e) > Mu(fl) > My (4) > y+g(y~f—6)._
Conversely, M,(A) = M, (A) implics v=y-+e. -
Proof. The outer inequalities follow directly from My(d) = o+f(¥)
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and M, (4) =y g(2). Theremaining inequality in (i) follows from writing

it in the form

o -+ e+ (ad— be) = (ax-+'¢) = ay +b-- (ad — be) < (ay -+ b)

and applying the fact that ez s inereasing for positive z to (az--¢)

2= {ay+b). The middle inequality in (ii) also reduces to z-+1-z being
increaging. The rymmetry induced by e;—a,_,; interchanges the follow-
ing paivs: (My(A4), M,(A)), (%, 9), (b, ¢), (f,9). Thus y—2 3 —e implies
M, (A) = My(4); whence the converse,

COROLLARY. If My(A) = p, then az+e3= Slap+V (a2 +4)) for n
Ve

If M(A)< p, then aw—+o< Blou-+V(a*u?—4)) for n odd.

Proposition 3 leads to the question of generating the continued frac-
tion of (g#+4-p)—=-¢ from that of ». This is a special case of the general
problem of relating the continned fractions of # and (a» + b)-={ex+d).
" This has received & fair amount of atbention recemtly [2], [6], [9]. Our
workspace contains a crude function for generating the continued fraction
of a fractional linear transform of a number given by a continued frac-
tion. A 2 x 2 matrix is congidered to be reduced if the difference of its
rows contains a positive and o negative number. Reduced matrices with
positive entries represent transformations which take (0, co) into itself
with Lerange. An arbitrary matrix with non-negative entries may be
reduced by removing factors of (f 3) or (37, 2) trom the left. In the
former case, 4 becomes % new term in the output list; in the latter
case, d is added to the last term. The terms a of the input list give rise
to factors (a 1

10

procedure, the last term of the output list hag the pOSHlbll]TV of being too
small, and special properties of the imput list are not used. However,
it seems adequate for its applications.

"Exavern 4. Consider the maaimum associated with (12.2. 11} Since
[A5]1< [447), the maximum must have the form (yL12.4> and, by Prop-
osition 3, ¥ <o —1+3. M,(4} is an increasing function of both. = and y.
We tentatively choose each as large as possible when calculating the
restriction op the other. Bach possible M, (A) will give a lower bound on #
or y via various applications of Proposition 3. Thus, our tentative choices
may be shown to be essential after they have led to a posgible optimum.

(step 1) ~ We fake o = [2111u]. Then u < [2211y] and y < 22,
(T2 4 8) = (w4 4))]- o

(step 2) — Trying y = [220] gives v Lo —1281 = [211, ((34u+33)
~+ (264 —4)}|.- Finally, - '

which are right multipliers of the matrix. In this
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(step 3) — u = [22w] glves w £ [11220],
v < [2112, ((117w+4.6)+(2w+9))].

(step 4) — Taking @ = [21121], we are now reduced to ($211222112.
2.111%)» which we have already noted to be sovered by Proposition 2.

We now need to show, nsing the Corollary to Proposition 3, that owr
choices were forced. We now know that

My(A) 3= M,y(21112211222112) = p = 3.017028 ...

From the form (y112.2)> we getdo+2 2 .5(5p +I/E§5,uﬂ ~|—Z)) which requires
that » exceed a continuoed fraction [21112211...] which justifies the assnmp-
tions about 2 in steps 1 -and 3. Using the form (¥112.2.111s) gives

[2211y] = [22112221122111]
which justifies all assumptions about y.

Another tool. By [4], Lemma 4, every gap, (a,b), in the Markoff
spectrum is characterized by certain strings. The strings occur in A iff
M(A4) = b In particular, ¢ is the largest value of M (A) when these strings
are excluded. It is a simple matter to construet such numbers. One heging
by listing a sufficient number of <{a,, ..., &), with §—¢ at least egual
to the length of the longest excluded string, to include all strings which
could belong to the waximum. Then, for each, one maximizes [AF] and
[A;] independently subjeet to exclading the given strings. The one which
gives the maximum: My(4) must have M(4) = My(4). In our system-
atic study of the Markoff spectrum we are able to determine those strings
which give values larger than an inberval we are considering. Excluding
these and finding the maximum. can be done as sketched here. If we are.
not dealing with a gap in the specfrum, the quantity calculated in this
way need not be the largest value in the set associated with the {a;... a;>
uged. in the caleulation. .

Examrrn 5. We take as known fthat mind1.2.1) > max (2.2.15.
Thus, 121 8 o be excluded in any study within (2.2,3>. We partition
(2.2.1> into (22.2.12), (12.2.12), ¢22.2J1> and {12.2.11>. We ex_pect
the first three to be larger than the fourth. Bocluding {121 (222125 (122125
(22211) s equivalent to excluding (121><{2125(2221). In <12 2.113)% (the
only remaining m1.0rval) this determines o mawimum of (2112.2.1112215.
However, the maximum (12.2.11) was shown to be larger than this (it
containgd the siring (22215}

. Expressions for endpoints. It follows from [4], Theorem 1, that the
endpoints of the gaps in the Markoff gpectrum have expressions whigh
arve the sum of two solutions of quadratic equations. The examples which .
we have already computed all have much stricter forms: either purely
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periodie or what we call “bridged symmetric”, i.e. of the form
{za ... b; =25

The periodic seqmences give an M which is the square root of a rational
quantity ; the bridged symmetrie give the root of a single quadratic equa-
tion. From [4] we note that periodic contimued fractions correspond to
local maximum values, axd certain types are locally isolated. This will
allow ns to show that certain of our extreme values are isolated values
of the spectrum (e.g. any periodic minimum).

The examples discussed so-far all lead to periodic continued fractions.
In those cases where the extremse value is of another form we need to com-
pare the conditions arising from M, (4) < MG(A)“am varions «.

@0ty by o Dy By .. ap3)  Where —g ®

Suppose
‘ a b _fa b} {p q
("J d)11+2k a (G d)ﬂ('r ‘(’:)J
then ‘ .
(b"’:" a’)n+2k - (b - a’)n = (’f@i -+ (8 —P) anbﬂ - an) - (a"n %z-{-i’c)
and
(0+ a’)n+2k - (G - a’)n = Q(ad - bc)n+ (an a"n,+2k) .

If we a,lso.ha.ve

aby  fab D q

e dl, \e &), _pp\7 5]’
| (ra* + (s ~ p)ab — gb¥), = (p3 — ) (ra*+ (s — ) ab — g%y, .
Binece ps—gr =1, it follows that
a,,+2k[{(c—b)+a)n+mm((c—b)+a)n]_—. nwzk[((c—b)—:-'a)n-——((a—b)-:—a)n”z,c].

Once we have qp;léuia,ted two periods of length 2% we determine whether
{(e—b)+a}, increases or decréases over a period. If it increases, it will
“econdinue to inerease and the limit can be calculated in terms of the eigen-

then

valaes of (1; q) We can check 1f this allows a larger value for [4;]

Bimilarly, if it decreases over one period, it will continue to decrease.
Again we note whether a smaller value of (4;) could ever be forced. In
the decreasing case, the condition reduces to M,(4) exceeding M (periodic
part). One should note that every spot in the period needs to be checked
separately.

_ Examrre 6. Max{12.2.12%, We write in the form (w ly). This

cgives ¥ <@ and M, <o+ [01lz]. In particular any example with Y =
gives a lower bound on possible. values of . We try o = 2211%, ie.
¢H112. 2.1y, ~which gived

< [20y]— 146 = [2, (By+5)+ (49 —1)].

icm
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We. also have
' M,y <2 (6[21y]+2) -1~ (5[21y] +2).

It we take o = [220], w» < [211, (1704 8)--(v—1)] which saye that u
may nob begin with 21 but any expression beginning with 22 is aceeptable.

Now we try « = [22w], glving

w e [21y] - 1581 = = (100 —M].

Thus w == [2111¢] will work, but nothing beginning with [212..
Axpuming w == [21111] given

P [2ly]—10+41 < [21y]—1=3.
«.] works, the next step will be
[21y]—20 -+ 599 < [21y]~1231..

Thus, we are in the deereasing case. This requires that we cheek that

[212, (690 +34)

.]is possible,

If ¢ = [22

M, (1222112.2.122112221) > M(211123).

Thig is true. At the same time this justifies all choices made for #. Tt remains
to show that we are forced o take y == [22v]. This follows from the lower

- bound on M, given hry our sequence.

Tables. We Ligt strings of 1’s and 2's in a systematic order and deter-
nine maxima and minima associated with those strings. When the opti-
mizing continued fraction is periodic we list the period beginning with a,.
In the bridged symmetric case {may, ... a.a,.0, ... b,n_lanal v @2y will
be abbreviated by replacing a, ... a,® at the right by '.... Where con-
venient we give the exact form o:E optimizing value of M The numencal
equivalent is rounded to b decimal places.

la.  (L2.1> max (21) ¥12 3.46410
b. (ex.8) min (211) Vio 3.16228
90, (1.0.2) max (é‘fii) 4V30+7  3.12984
b. min (2211) Vo210 2.97321
3. (2.2.95(0x.2) (2) Vs 2.82843

Omitting {{N>| N > 2} leads to 16 o4 maximuin; omitting (121}
gives Za; omitting <12> gives 3. Isolated. points: Lh, 2a, 2b 3.

Within {1.2.1> [3. 16228, 3.46410|

4. <212.12)  min (21221) Y2003  3.40588
CBa. (122> wax (212111) V136511 3.35872
b. min (21123221 ) V6898 3.28110
6. (1l2.11) max (2111) V963  3.26599
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Omitting only {{N>| ¥ > 2} and (21212 gix}es a. Omitting (2121
gives 6. Isolated points 4, ba, 3h.

Within (1.2.2) [2.97321, 3.12984]

T (92.2.12) min  (22221221) 3.11610
Sa.  (12.2.123(ex.6) max (1229112.2.1...) 3.09149
b. min  (221) V853 3.07318
9a.  (22.2.11) max  (222111) V3360-19  3.05082
b. min  (222211) V7565 29  2.99921
10 12.211)(ex.4) max (21112211222112) 3.01708 -

Note overlap of intervals 9 and 10. Omitting (121> and (222125
gives 8a. Owitting (121> and (212) gives 9a. Omitting {1215, {212,
{2221 gives .

11. . (ex.5) (2112.2.111...) 3.01688

This shows 7 y 8D, 9a o be isolated. Since 9 is less than 3, it must also
be isolated. .

Within (2.2.11) = [2.97321, 3.05082)

12, 222211 min  (22223111) V229 +5 3.02655
13, <12.2111> min ($11112) VIBL7T 13 2.99605
14, (22.2.112) max (201221111111291122) 3.00576
15, (12.2.112% max  (2211) V221 -5 2.97321,

Note that these are the only endpoints not already computed. Algo
note that interval 15 rednces to a single points (cf. 2b). All values heve
are locally isolated. We have not computed far enough to determine if 14
is actually isolated in the spectrum. '

Further computations have been performed without encountering
any mew - type of behavier. All of the intervals agsociated with strings
of the form <{u_ja_,1.2.14,4,> have been compuied. The intervals
{111.2.122) and {111.2.121) are the only ones which overlap. When the
intervals (a_,111.2,124;> are formed (2111.2.122% is contained within
{2111.2.121), and there are no other overlaps. The largest interval whickh
has not been partitioned is (11..2.111> == [3.22490, 3.26599].
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