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A generalization of Lehmer’s functions
by
H. C. Wizrramg {Winnipeg, Canada)

1. Intreduction. The Lucas functions v, and u, are defined by the
formulag

Uy = 6"+ b", Uy = (6" —b")[(a—D),

where a, b are the zeros of the polynomial #* — Pa+-Q and P, @ are given

coprime integers. These functions and their many remarkable properties

have been discussed in detail by Lueas [11] and Carmichael T2].
Lehmer [7] extended Lmeas’ functions by defining the funetions

V=g, T, = (") a—p),

where a, 8 are the zeros of the polynomial 22~V Rop-+€¢ and R, @ are

given coprime integers. He then put
vn = mVﬁ)i: ﬁn = n/{]’/ja)l_1

where ¢ = n{mod2) and 0 < ¢< 1. The functions ¥V, and U, are always
integers for any non—nega:twe mteger n and they have properties similar
to the properties possessed by », and «,.

Generalizations of the Lucas functions have been described by Lucas
[11], Poulet (see Liehmer [8]), Pierce [12], Bell [1], Oaimichael [3], and
more recently by Williams [13]; however, none of these generalizations
includes Lehmer’s modification of these functions. In this paper we will
generalize Lehmer’s functions by extending the means by which Lehmer
modified the Lmeas functiong in order to obtain V7, and U,. We will
then show that many of the properties of ¥, and U, can be deduced
a§ special cagses of more general results. By using a special cage of these
generalized functions, we will show how to extend a result of Williams
[14] in order to obtain necessary and sufficient conditions for integers
of the forms 245" —1 (4 < 5™) and 247" -1 (24 < 7%*) to be prime,
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2. Definitions. For the purpose of generalizing Lehmer’s funetions,
it is more convenient o consider the four functions Vo, V1.4 Upps Ury-
We define these functions by putbting

TT(),n = Vﬂ! 'Ul an = Un:

i Vl,'n =0, Uﬂ,n == 0

when # is even, and
Vl.n = Vﬂ,: Uﬂ,n = Uw.: Vo,n =0, Ul,n =0

when % is odd.

Tt is not difficult to gee that if é = py— py, Where g4, 0, are the zeros
of #*— R, then ‘
o +p7 o
@’ +p8y o
(af =) (e —By) o }1 {af — B} (o — By)
(o — ) [(as—Ba) 0s 3 (o —B3) (ay— B)
Here o;, 8; are the zeros of mz—gi'm—l—Q (% =1, 2).. We will now consider
a generalization of these V,,, U,, (i =0,1) functions.

Let @ be a given non-zero integer and define the polynomials v, (),
u,{#) by the recursive formulas

o+ 8

8V =
ki3
* 4

H

1
’ 6V1,n = 1

(S UU,‘I’L =

,U?H—l (ﬂ?) = m'vln (m) - Q’U?L—-l (ﬂ.'r') H
un-f—l(w) = &, () _Q%ﬂ--]: (@},

together with the initial values vy() = 2, 9, (2) = @, uy(w} = 0, #, (@) = 1.
We have 9,(P) =, and u,(P) =u,. We use these polynomials in one
variable to define some functions in & variables @, &, ..., &,

Let:
2 Jo1
\1 @ oo ... @)
. 1 @, o wi?
O(1, Mgy ...y 8) 1 oz, o a1
2 k-1
1 o, o5 &y

and define for j =0,1, ..., k-1,

Gj,n(mlﬂ_ Bay iy mfc) = Gj,n(wlz Doy veey m}«:)/a(ml? Ty ---:mk):
=17

Hj,n(a’l y Wgy ooy ) _ i@y By ooy @) [8(@y, @y, .o @),

icm
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where G, . (2, ®, ..., m,;.), H, . (#, 2, ..., #,) are the determinants obtained
by replacing the {j-+1)th column of d&{®,®,, ..., %) by the columns

iy, () o, {2;)
'”‘n (wﬁ ) an a K H (mz )
.'u'u {QFR) 'v-n. (mk)
respectively.
It

k .
fla) = Y Pyl (=1

d=0

in a monic polynomial with' distinet zeros

i O1y B2y 0y B
and integer costficients P, (1 =1, 2, ..., k) such that
(PDPZ’ "':Pk:Q)‘z 1,

we define the 2k functions V,;,, U, (§ =0,1,..., -1} as

' Vj,n =Hj,n(91: oy -vey Ok)s
Uj,w.' = Gj,v}(@l? Q25 «--1 Op)

| (j=0,1,..., k—1).
Also, we put

8 =08{01; 090 0)y 4 =0

Since, for any integer # > 0, v, (%), u,(z) are polyﬁomials with integer
coefficients, it is clear that V,,, U;, (j =0,1,..., k—1) are integers,
If 4, is the Kronecker delta, we have

Voo =280y, Upy=0 (3=20,1,..., k1)

and

Vii=13, Uir = 8401 (i=0,1,..., k1)
We will be mainly interested in determining the divisibility properties

of the three functions

An = (UD,'IH Ul.'lb’ Ug,n7 LIS LT.'.t-—l,u) (1)5
Bn = (VU,?IJ V‘l.n: Vz,n? L] Vk:—l,’n.))
Gn = (Vl,nl Vz,m Va,nr LAY V?s~1,ﬂ.)'

() We use the notation (@, , ¢, ..., #) to denote the greatest common divisor
of a@,b,¢,....,n and [&#,b,¢,...,n] to denota the least common multiple of
A, b, e, .0, :
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1t is not difficult to see that when f(z) = a*— R, the Vo, Vin Uonr Uin
functions, arve those given at the beginning of this section; thus, in this
cage, we have

4,=T, and B,=7,.

In order to investigate the fumetions V,, U;, (£ = 0,1,...,k—1},
it will be necessary to use many of the well known properties of the poly-
nomials 4,(#) and w»,{z). We list the results which we will requirs in

. Hection 3.

3. Some properties of v, (v) and w, (»). All the identities satisfied
by the functions v,(s) and «,(») which are given in this section can be
found in Tmeas [117. '

65.1) By () = 0, () 0, (8) — Q™0 (),
Uy (B) = V(@) 4y (@) — Q1 (@)
5.2) D 0) = 0, ()0, () + (02— £Q) 0, (@)1, (),
' D (B) = Uy ()23 () + 0, (0) Uy (00
(3.8) 0,(@) = Q@) Uyld) = —Q u_(@);
(3.4) 0, ()2 — (02— 4Q) i, (o) = 4Q";
vzu("ﬂ) = (m2_4Q)un(w)2_|_2Q" = Wn(m)z—ZQn!
(3.5)
s () = 1, ()0 0);
(3.6) UL (@) — g () g () = Q"
[n/2] :
» M fner -1 ™y, n—i’.r
) ,,,m(w)=§(~1)7(,ﬂl @ ooy,
(3.7) (7;1)/2
(@) = 3 ("7 @U@ Q) @ (nodd),

)

Tet y,(x) be the polynomial whose zeros are 2cos(2jm/2m--1)

{§=1,2,...,7m); we have
Ynia (@) = 0Y, (@) =Y, . (&),
where .
Yol#) =1, yi(@) = w1

and we also have

m(2n+1)(m) ={-1) @y, (—”2m

Q" Y (V30| Q™) i, (0)

(3.8) @) Q") v, (@),

m(2n+1) w)

(i =1,2,...,
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We also need some resulte on v,(#) and w,(®) modulo a prime p.
Using (3.7}, it is not difficult to show for an odd prime p that

(8.9) v (@) =, u (@) = (22— 407" (modp).
Since ‘
0,(m) = o (mod?2),

we gee thalb

n—1
(3.10) = H v;(@) = o°(mod2),

qe={)
where

n—1IL
s = 2 2%,
=]
It 27Q and s,(%) = tgn,, (@) then

Sppn (@) = a5, (@) +1 (mod 2)
and

Ugn, () == ﬁn—{»vmﬂl’”zi(modz).
+1

a‘-—=1
4. Identities satisfied by the V. s and U;, funetioms. Let
hj(m) = o —gz-+Q

F(z) = H ZR

i= =0

(3.11)

and put
-1 )i mEFS'—‘ﬂ .

The R;(i=0,1, , 275) are all integers, B, = 1, Ry, = Q% B; = P,(mod@)
k), and R; = 0(mod@) (¢ = k+1; k~-2, ..., 2k). Since, the
Vo and T, functions can be expressed as linear combinations of the
zeros of ¥(m), we see that
2
V.’n",n~|-2k = 2 (
i=1
ol
Uj,n+2k = 2 (—1)% £ Uj,n-l—zk 1"

fe=l

—1)+ Ry Vi mron—ss

(4.1)

If D ig the diseriminant of F (), then

k
D = qﬁ'aiglﬂ (8:)

and

ai a’i. Hh:,‘ a):

e
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where «;, f; are the zeros of %(2). Hence,

_D s (_l)kEAQ,QIc(k—I),
where
i%/2] {Fe~1/3]

(2 2%@11);5_4) iy ( 2 222’4«1@7‘1)10_”_1)2'

J=0

B =foVQ)f(—2

From the definition of the functions T,

i
k—1
2 Trj',n&)?& = {uﬂ(&;)
5=0

k—1

2 Uj",né’:'. = 1y, (0y)
F=0

and &7, , it iy evident that

(i =1,2,..., &),
(4.2)
i =1,2,..., k).

Thus, any identity involving @, (@) or #,(») can be converted into an ident- -

ity involving the V;, .ot U,, funclions by substitnting the above .ex-
pressions and eliminating the p/s. Since 4 # 0, we can always eliminate
these p’s. We give below several identities which will be useful in oh-
taining the properties of 4,, B, and ¢,, which are given in subsequent sec-
tions. In order to derive these identities we make use of the % auxiliary
funetions Z;, (j =0,1,.,.,k—1), which are defined by the equations

= M Zel (i=1,2,..., k).
=0
It should be noted here that
Ziy =90 (0] <k),
Z,, = (—1y=p,

and
(4'3) ZJ,?VH& 2 P “1 Zj,n%-k—-i'
fesl
From. (3.2), we deduce the identities
k=1 J1
‘) TL,n+m = Z v (V'L, g,m/h,ﬂj - 4@ Ui.n Uj,mzh.'bl-:f -+ .
(4'4) . + U1’,n Uf.mzh,i w[-:i—M) H
. . E—=1 k-1 ' .
2Upnim = ) 2 an Uit Vi Uia) Zniny  (h=0,1, ..., k=1},
i=0 j=

and from (3.3) we easily see thatb

(4:5) . QH.V.'L—% = Vj,n? ""Qﬂ Uj,-.-n = U,‘i.n;

icm
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Putting m = —m in (4.4) and using (4.5), we can produce formulas for
Vh,n-nm ﬂJﬂd Uh,'n—m‘
By (3.1) we have

k—1 F—1

Vh,:»H—m Z 2 Vj 7 Vz nZh i+ Q V?a S—MY
R

(4.6)
Uf!,?H-m 2 E Vj,m U1',nzh,i+j - Qm Uh,n—m'
=0 =[] .
Putting m = 1 and using the values of U,,, V,, and Z;,, we have
(4.7) Vomgr = —1)** P, Vic1n—@ Von-1s
' Vins1 = Viern+( —1)* P, Vicin—@ Vh,n—; (> 0).
Putting » = m in (4.6) we get
=1 k:’l
Bl - .
Vk,‘zn = 2_, 2‘ Vm',n-pj,nzh,i-[-j_2611,()@?J
i=6 3=0
(4.8) k-1 k=1 -
Upan = ) D) VinUinZisng (R =10,1,...,5—1).
=0 =
We can obtain another formula for V,,, by using (3.5)
B—1, k=1
(4.9) Vh,2n = Z 2 Utnan(zha+1+2_4QZh1,+.1)—{ zahﬂQ
i=0 J=0

From the relation (3.6) we obtain the rather simple result

(4"10) Vh,n = UI.',,H—H - Q Uh,‘n—l .

We dednce the identity

B—1 fi— -
(4. ]1 2 Vj n V'r nZIz i + 4@ U’é,nZ}J,H—j " UJ‘,% Uf,nZ?!,’H:'H-Z) = 467»!;0@”

=0 j=0

from the formula (3.4). .
For a given f{z) define the polynomial functions in % variables
Y, (my, @, ..., 5, (0=0,1,..., k1) by the equations

Te—1 Re—1

0n( ) @icf) = 3 Yinl@or 00, s mi)gf G =1,2, ).
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and
Yong {0, @py ooy B51)
Rl k-1
= 2 Z B Y0y Bap ooy B 1) 250y — Tnnea (1) By ooy Bp)
i=0 §=0 .
Algo
. Yon(2,0,0,...,0) =4,(2) == 2n+1.
Referring to (3.8), we derive the idenbities
k-l k=1
Vh,(2ﬂ+1]m. annZ Z Y@ n Vﬂ,2m/Qm3 ”V1,2m/Qm? ety
. j 0 .
(4 12) - Vk—I,Zm/Qm) Vg‘,mzﬁ.,iml«j?
k-1 f—
Uh,(m-}-l)m"‘ Q Z Z i@ Vl,ﬁ'm/Q 7. Vﬁ:—-1,2mf@m) Uj,mzh.t-l-j-

=0 J=0
By using (3.7), we are also able to deduce the identities

[nf2} . k-1

. - 7 —2p!
) Vh,ﬂm = 2 ( -1y — (ﬂ " ) Q’m § —'_(_")"““‘
Tol iyl gy !

r=0 Fe=0t
(4.18)
' (n iy . (n—2r—1)/2 - /
f— — —F— (’1'1—-2?"-—1] 2 - (n—ar—2g—1)2
Uh,ﬂ.m Z T( )an Z ( P )( 4@)”’ T X
r=0 §=10
(n— 2?) .
X DT g hers ] [ (n0dd),

Joeld

where the last sum in each formmula iz taken over all sety of non- neg«,bLW(a
integers {4, ?,1, <o~y g} such that

=1 . k=1
o Z@, =n-2r and

J=1 j=0

5. Prellmmary results on 4,, B,, and C,. The functions U, and
V, have some remarkable divigibility properties. We will show in the
following sections that these properties are also possessed Dy the more

general funetions A, and B, . We will algo show that J, has some interesting
lelSlb]llty prope.rtles '

icm

-Putting j =1, we see that p|PZ, ., ;.
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Throughout the following sections we will use the symbol » to denote
2 positive integer. We define

‘Dﬂ = (Zk—l,m Zk—l.'n+17 ZJ.:—l,n-{-:n sy

where Z;,_, ., is defined in Section 4.
Ienva b.a. If p is a prime and p D

Zlc—l,n+k—l):

s Bhen P |(Pyy Pyy ooy By

. Proof. Let p|D,. Since Z;, = d;; for n< k, it follows that # =
From, (4.3) we have

P
Ly pytog = E-Pi(_l)i+lzk—l,n+k—i-j'
=
If ?TZ};—U;—U then p [P,
and if j =2, .

0= Zk~1,n+k—2 = (_"1}kPk—~1Zk—1,n--1(nl0dP);

thus, p|Py_,. Pulting § = 3,4, ..., & and repeating this argument, we
deduce that plPy_,, 0| Pr_s, ..., 9| Py; that is, p I(Py, Pay ...y Py).

If p|Z,_, . 1, then p|D, |, and we can apply the above argument
again. We must finally conclude that p|(Py, Pe, ..., Py or plZ, 5 1.
Since Z;_; ;. = 1, the lemma is proved.

TEmOREM B5.1. (4,,B,) =1,2.

Proof. From (4.11) it is clear tlhiat if p?|(4,,B,) when p =2 or
if p|(4,, B,) when p is an odd prime, then p|@. From (4.4); we also see
that p|U;. ppm for m =0,1,... By definition of U, ,, we have

_ (=k<j<k);
thus, if |Q, it follows from (4.1) and (4.3) that

‘Uk-ml,j = 5;;-1,3'_1

Uk—l,n-]—m = Zk—l,n+m_—1 (InOdP) . .

Hence, if (4, B,) #1, 2, there exists a prime p such that plD,.; and
Pp|@; but, by Lemma 5.1, this means that p|(Py, Ps, ..., Py, @), which
is impossible.

CororLrary 5.1.1. If 2|Q, then 21 (4,, B,).

Proof. If 2|@Q and 2|(4,,, B,), then 2D, _, and 2|(Py, P,,

CoroLLARY 5.1.2. (4,,RB,,Q) =1.

We are now able to present several gimple properties of 4,,, B, and C,.
We do this by giving the following sequence of lemmas.

- Lmyma 5.2, (4,0, @) =1

Proof. If p is o prime and p|{4,, C,, @), then it follows from (4. 11)

that p|V,, and consequently that p|(4,,B,, @)

vers Ppy Q).
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Levma 5.3, B, |4d,,, 4,|Cs. :

Proof. The first result follows from (4.8) and the second froim (4.9).

Lamwva 5.4. Aﬁ.lAmn.! GnlommBnIB(Em—I~1)n? where i 18 Yy _’8705'7:1'57:%
inieger.

Proof. The results follow by using formmulas (4.6) and mathematical
induction.

Lenmaca 5.5. (Bm @) = (Am Q) =1.
Proct. If m|B,, then mld,, snd m|{C,, d,);
proof that (4., @) =1 iz similar.

Lamya 5.6, If 2|4, then 2|8,
Proof. From (4.6), we zee that if 2|4,

Uh,u-;-l = Q Uh,n—l(lnc'd2) (h = 07 1? cee k'—l) .
Putting this result together with (4.10), it is clear that -
Viw =0(med2) (A =0,1,...; 5—1).

thus, mAQ. The

We give below three lemmas which describe the divisibility of 4,, B
and ¢, by powers of 2.

Lemma 5.7, If 2B, ( ) then, 2* I Bamoiyn 0n@ 2] By,
Proof, Using (4.8), we have '

Voan, = —2Q"(mod2™).

nt

Since 21@), 21/ B,,. Using (4.13), we see that
Visgminn = (—1)"(2m +1) @™V, , (mod 2™*2);
hence, 2*|| By, 1y, - '
_ Leyva 6.8, If 21(*,,” then 4|Cy,,. If 2|B,, and 4|0,,?, then 16|0,,,.
L 218 10, (> 2) thon 991G 1f 248,y 3G 3> 1) v

me

Proof. Follows from the fact that if 2*|C,,, we have fiom (4.8) that
' Viaem =2V Ven(mod2®) (A > 0).

LevMA 5.9. If 24| A, then 24| A, . If 4|C,, and 2*|4,, (i>1),
then 2M1j4, .

Proof. Follows from (4.8) by a method similar to that used for pr oving
Lemmsa 5.8,

CoroLLARY. If 4|C,, and 2*|4,, (4> 1), then 2""’“HA2um.

6. Further properties of 4., B,, and ;. We begin this section with
the following .

DurrNrrion. It A, is the first term 6f the sequence

. VO T
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in which the integer m appears as a factor, we call @ = w(m) the rank of
apparition of m.

In the next two sections we will investigate the properties of w(m)
and the numbers analogous to o for the functions B, and C,. The most
important result concerning m is that of Theorem 6.2; however, we must
first give .

Lmmma 6.1, Let m be an indeger and let w = wo(m). If m{d, . (07
< w, g > 0), then m|4,,_,. '

Proof. Putting n = quw, m =r in (4.6), we get

1 k-1 ’
__ s *TT
Ul!,mqer - Z Z V; i U{,mqwg qu—mr'

i=0 j=0

Since {m, @) =1 and m!_/lwq, we see that if m|d,,,,, then m|d,,_,.
THREOREM 6.1. Let o == ew{m). If m|A,, then win.

Proof. Suppose wfn; then n = quw-+r (0 <7< w, ¢ > 0). From the
preceding lemma we see that

Ay yopu—r = O (modm).
Ifg= '1, we have m|4,..,.; if 4> 1, we apply the lemma again and get
Ayt = O(modm).

We continue this process until we ultimately have either m|4, or m|4,_,.
Since 0 < r << w, nelther of these resnlts can be true by definition of &;
hence wln. :

CoroLLArY 6.1.1. (4, 4,) = 4, -

We wish at this point to 1nvest1ga.te a function which is sum.laa
to w(m).

DaupiniTioN. Let B, be the firet term of the sequence

BhBaa ---aBm

in which an integer m occurs as & factor. The value of the function o{m)
is defined to be o. :

Tn the next two results we give some properties of o(m} and its
relation to w(m).

LEMMA 6.2, Tet @ = wl
positive integer, then m B ..

Proof. Lebt g = 2h--1. From (4.4) and (4.6) we have

m). If 2|w and miBy,,, where g is .an odd

0= 'I'j gofs = _wa 4yl — ruj"(ln()dwb);

thus, m|B(g_2)m,2. We repeat this process until we have m|B,p.
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TAEOREM 6.2. Let m (> 2) be an integer. If o (= a(m)) and w (= w(m))
ewist for m, then o =20. Also, if m|B,, then o|n end nfo is odd.

Proof. If m|4,, then m|B,,, ©|20, and we put 20 = gow. If g were
even, we would have m|(4,, B,) = 2, which is not possible; thuq, ¢ Is
odd, w is even and m|B,,;. By Lemma 6.2, m | B, consequently o < o /2.
Hence, o = 20.

If m|B,, then mid,,, o|2nr and ¢|n. If n/c were even, we would
have miB,pupe and |4y, which is imposgible, consequently /o
is odd.

The behaviour of the sequence {C,} is not as simple as that of {4}
and {B,}. We give two results concerning this ﬁequcnoe in Lemma 6.3
and Theorem 6.3. :

Lenvmra 6.3. If (m, Q) =1, o = o(m), and m|C,, then mlO’_wﬂ”n,
where a, b are any integers such thai 2wa --dn = 0.

Prooi. From (4.4) and (4.5), we see that there exists a non-negative
integer g such that

e
2QQ V]&,an-l—bn =

i=0

1 k-1

Vi,zaw Vj,dozzfz,'i+j:|: 4‘@ Un:,zem U.-i.clnzk,vi-w =+

=0

u

=+ U’ﬂ 2cw

where ¢ = |a| and d = [b]. Since m|4, and m|C,, we sce that m|4,,,,
M, M0y, I m is 0dd, we have

dn/k, (SN 1)

2Vh,2am+bn = O(inodm) (h > 0);

hence, m [02m+bn

Ii m is even, 2m |4y, , 2m [Chyy 2]V 40,3 bence,

2V7z,2am*+bn = 0(m0d2m) (h - 0)
and m|0mm+bn

DErmITion. Liet m be an mtegen such that (m, @) = 1. Let O,
be the first term of the sequence '

(%) _ - Ciy Oy iy Oy .
in which m ocenrs as a factor. We define the increasing sequence of integers

o 707.711--'-77:)'?"'
by sa;yi'ng that ¢, ; is the first term of the sequence () such that = | C' and
Ty (6 =0,1,...,§~1). We call these 7'y the orders of apparition of 7.

THEOREM 6. 3 If (m, @) == 1 and =; is any order. of apparition of m,
then ;| 20, where o is the rank of apparition of m.
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Proof. We select a, b such that 2aw +br; = d, where d = (20, 7).
If d = 1;, then 7;12w. If d # 7, then d < 7; and since (Lemma 6.3) m |y,
wemusthaved = s7;(4 < j). Since d | 7;, this is impossible by definition of z;.

We end this section with a theorem degeribing those members of
the sequences {4,,}, {B,} and {C,}, which are divisible by odd prime powers.

TarEoREM 6.4. Let » be an odd prime, m an @nﬁeger such that p-m,
A (= 1) an integer. If p* llAn, then p* || Apaym; o 9 B, then P || Bpeyy;
and if p*1C, then p***|0,

Proof. Let {{;,%,...,
such that

ik_l} be a,nj gset of & non-negative integers

k=1

Z iy = p—2r,

i=0
for o fixed integral value of 7 < (p—1)/2. Since

k—1

H U%, =0(modp*) (r=(p

j=0

—1)/2) = 0(mod p®~

when p'l4,, we see by the second. formula of (4.13) that

|

k1
- _ P 23—(19—1)/2-1) n{p—1)/2 7. a1
Uh,:pn - (P __1)/2 ( (p~1)/2—1 Q 1=20 Zh.z U‘,n(modp )
.= pQE-UR T, (modp’t?).

Thus, if p*[| 4,,, then p*** || 4, and by induction p**[Aye,. P " Ao,
then p** ™ [(Ayeily, Ayuyy) or p* *H | A, which is 1ot so. The proof
of the other statements of the theorem is similar te that given above.

The results in Theorem 6.4 and Lemmas 5.7, 5.8 and 5.9 are called
collectively the Laws of Repetition for A,, B,, and C,.

7. The Law of Apparition. We have not yeb shown (apart from direct
ealeulation) how the value of w(m) may be determined for any given
m, @ and f; indeed, we have not shown under what conditions w(m) even
exists. In this section we give those values of m for which w{im) exists
and we give a function @ of m, @, fsuch that when « (m) exists, w{m) [P (m).
We first define @ (m) for a fixed § and f.

Darmrrion. If @ and f of Section 2 are fixed we define the function
@ in the following manner.

(i) Let p be any prime,
It p|4d, let

| Fla ]—[% )% modp)

T
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be the Schinemann deecomposition of F{z) into irreduecible functions

w, (i =1,2,...,%) modulo p. Let the degree of u; be u; and
€ = MAX(ty, g, - .., &,). If pis an integer such that p* < e < p™", we define
S o) =P ph L, pR 1 ped],
If p4 A, let
== ﬁ ) (mod p)

where the g, are irreducible modulo p and the degree of g, is v;. If ¢, = (F;[p),

where E; = ¢,(2VQ)g;(—2VQ) and (F;|p) is the Kronecker symbol,
we define
. . D{p) = [P~ &y, " —&a, v P el
(ii} D(p™) = p™'@(p), where p is a prime.

(iii} @{mm) = [P{m), D(n)] When m and w are 1ntegers such that
(m,n) =1."

TaEorEM 7.1 (The Law of Apparition). If p is any prime such that
ptQ, then o(p) exvists and w(p)|P{p).

Proof. It p|4d, the theorem follows from (4.1) and general results
of Engstrom [5].

T¢ pt A, consider f(w) to be a polynonnal in the (finite) Galois Field
GF(p) and let K = GF(p"), where » == [y, ¥5, ..., v,], be the field which
containg all the roots of f(a#) =0. Let ‘r.hese roots be denoted by
oy (4 =1,2,...,4; j=1,2,...,%), where, for a fixed value of ¢, g,
(4 =1,2,...,») are all the roots of ¢, (@) = ¢. Since ¢; is irreducible in
GF(p), we have ' ' '

i1 .
oy = Qﬂj and  gfi" =gy
in K.
If we put
8 = 3011y G125 crey-Opgs Oury voey By v oy Qiny)y
ij,n = H; (011 012 -+, Quoys @1z v= v Qaugy oe ey Cany)y
U;n = G (011, 019, -y Quogy Qa1 ooy Qungsr +on1 Oin)) s
then Vi,, U5, <GF{p) ) and ¥y, = Via(modp), U,, = U n(mocl;w).

Cage 1: p an odd prlme Using (3.9) we see that in K

el

=[] ¥

1=

.__. 4Q)}UJ'-1)/3

ws(gy) = (of—4Q)le -V

4

={[] (<}

F==1"

“ ___4@)(114)/2

_— Eﬁ(})-l)[ﬂ
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Now if
u;
(7.1} 2} = 2 aywi,
. jm=0
we have
[#i/%] [(rs—1)/2] :
S T P
=0 j=0
hence, H;, =1, 0(mod4) and EP ™ = (E|p)=1¢e=0, —1, L

We also have
ﬁpv,i(gu'j) = Q%I = Oy~
From (3.2), we gee that if & 0, Q"iuﬁ_p(gﬁ) = (; thus, since u,,,{x)

== U, (8) Yo (B), WHeETE g, () 15 & polynomial with integer coefficients we
have g(g;) =0 for all 4, j and consequently U;, = 0(modp)

{j =0,1,..., k—1).
Oase 2: p = 2. Assuming that ¢(2) is given by (7.1); we deduce
from (3.10} that
viﬁl
fi
21/ (gu) = H Q?] = a;iﬁ.,;'
R0
From (3.11) we find that
U, (o) = o'+ 2 o5 = 0y ey (2 Q"Zh)
o iy VEH S ) i
hie=1
. = oy(1+az,, 1) (e #0).
Also '
.,14__1(@?.3) 92]( ¥ v.LL—I) (aiu_i # 0)
Now '
By = o, —dal,, (mod8);
thus, 2| a;, if and only if 2 | ;. IfZ'I‘L,,‘JtctI vy—15 ifand only if B; = 1({mod8)

and 9‘]’ a1 if and only if & (modS) We have shown that

u.,‘z 5(951) '"'0 ',,.

where e = (¥;|2). It follows that p|Ads. -
COROLLARY 7.1. w(m) exists if and only if (m, Q) = L. If (m, Q) =
o (m) | D (m). _
It should be noted that this result is not as ]_)I‘BGISG ag that of Lehmer

[7] for his functions ¥V, and U,.
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In the case of an odd prime p (p1.DQ) we can be somewhat more
precise than we were in Theorem 7.1. We put &, = ¢/(p™ —s¢;) and 5 = (Q | D)y
where (Q|p) is the Legendre symbol.

TrROREM 7.2. If p is an odd prime and (p, DQ) = 1, then w(p)]
if and only if one of the following is true

1) 9 =1,

2) == —1, 2098 (1=1,2,.., i)

Proof. We use the same symbols that were nged in Theorem 7.1.
Since in K

D (p)/2

3

2 Uh n@u = QM)

(=12, 4] =1,2,...,9)
g
and p4 A (= 5*%), wesee that pid, ifand only if 4, (o,) = 0{i =1,2,..., %;
j=‘1,»2,..-,'}|’.§).

From the results of Theorem 7.1, we determine that -
O (ey) =297 (3 = (1—2)/2).
Hence, by induction we have

— 2Q’Wz‘

i o)

’”m(é’fd) ==

and consequently
20i%,
P (p+1)/2 Fm(p—1)
2 (+1)[2+{(2m+1) (p—1)/2

- 'where m Is an integer. Henoce

when »; is odd,

when »; is even,

Q=5 = i@ (mod p)
and

Voloy) = 2%
when g = --1,

If & = 41, voloy) =2, and _
_ Q% =% (modp).
From (8.5) we see that
vajs(ey)” = 2QME (L +1i%).
Sinece

| 0 = to(0y) = Hap(0y) Vapnoy)
and

%/2(91:5)2 - (9:3‘ —46) g ( 91‘;5)2 = 4lez’

icn
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we see that

Ugpl(oy) =0 (E=1,2,...,4;=1,2,...,%)

if and only if 1+9%% £ 0 (1 =1,2,..., 4).
CoroLLARY 7.2.1. If p is a prime cmd (p, 200) =1, thm o(p) exists

if and only if w = —1, 24y, (i =1,2,...,4) and & =& =... =&,
Proof. p|Bgy, if and only if in K
”m}z(@ij)=0 (i =1,2,..., 4 =1,2,...,%).
Also 14+9%% =0 (1 =1,2,...,4) if and only if 5= —1, 21w

(t=1,2,...,4) and & =& = ... = g.

8. Tests for primality. One of the most inferesting features of Lucas’
funetions and Lehmer’s functions is that they can be used to test integers
for primality. In this section we show that the generalized functions may
also be used to test the primality of certain integers. In Theorem 8.1 we
give a result analogous to that of Lueas ([11], p. 302); however, we require
a preliminary lemmsa.

Lizyoza 8.3. If p is an odd prime and (p, QD) =1, then @(p) <

Proof.

D(p)=2[(p" —e)[2, (p"— =) /2,

Since, for A =1, we have

14-p". ‘

,(p”ausi)/21<2n P12

=1

A
pF+1 =2H (p"i +1)/2
=1

and, for 1> 1,

i 1 .
p* [Tei+1) = [J+p < (437 < 271,
1=l fa=1

the lemma follows.

TuRoREM 8.1. If (N,2DQ) =1 and the ronk of apparition of N is
N1, then N 48 a prime.
Proof. Buppoge N iy composite and w{N)

N = ﬁpii}
1=1

where the p, are distinct primes. If we put

= N*11, We have

J =2 [] peiotm)e,
i=l

2 - Acta Arithmefica XXIX.4 . N
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we see that @(N)|J. Since
JINF< 2 f] P (p:)/p}
we have =
JINF < 2ﬁ (14+p;7")/2.
i1

I n=2, then ¥ > 5 and
J[N® < (1413 (1 +1/5)/2 == 4/5.
If % = 1, then o, =2 and
JINES (L 4p7 R fp* < 4[9.

Thus, if ¥ i3 composite, there exists an integer J such that J < w(N)
cand @(N){J. Since w(¥)|P(N), N must be prime.

With. this result it is not difficult (Lehmer [71) to prove
. TumormeM 8.2. If (N,2DQ) =1, m = N"41, N|A,, and for each
prime divisor v; of m, Ap,. 7 0(modN), where my = m Jrs, then N is a prime.

We can also give some regults which limit the possible prime divisors
of an infeger N.

TrroreM 8.3. Let (N, 2D9Q) =1 and N[0, (or A,,). If v is a prime
divisor of m and N1 Oy, (or A,,,), then the prime divisors of N which do
not divids both N and O, (or A,,,) must satisfy the congruence

p® = +1(modr®),

where v*|m and s is some indeger such that 1< s < k.

Proof. Let p be a prime such that p | N and pt(N, ;). There exists
an order of apparition = of p» such that 'clm and r'l’ m/r; henece, r*|z.
Since. 7|2w, w|d(p), and

D(p) == [p'r~e1, P2 — 63y .00y PP—55],

where [g] =1 and » <%, we see that for gome j

. PV = g(modr®),
The proof of this theorem for the function 4, iv similar to that given
above.

_ A frequently nseful means of determining when N .4, and (N, 4,) = 1
is given in .

Lemaa 8.2. If r is an odd pmme, § = (r—1)/2, (N, 2rQ) =1, M

= 1(1110de and S

i,s(lwvu,ai: le,zts

y MV i) E_O(deN) (1=0,1,..., k1),
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then
# N4, and (N, 4)=1

Proof. From (4.12), it follows that N | 4,,. If p is a prime such that
p (N, A;), then by using (4.9), we obtain the results

Voo =28, ,@ (modp) (h=0,1,...,k-1).

Since p|N and N| Y, (M'Voy, H'Vis, ..., M Vg ), we must have

Y, (2,0,0,...,0) =2s-+1 =7 = 0(modp).
Since (N, ) =1, this is impossible; thus, (¥, 4,) =1

This lemma allows us to deduce a result concerning the values of
U, (modN) when we kunow only the valwes of MV, y(mod V)
(i =0,1,...,k—1), When (¥, P,Q) == 1,-we can calculate 2" V,,, (modN)
for any % > 0 in approximately O(log#n) operations. We will not need. to
calculate any values of the U’s in order to do this.

‘We let S, M be integers such that

_ OM = (-1 P8 =1(modN)
and define .
' SEMET, {n even),
Wh,ﬂ- = 2 :
SuERY, o (n odd).
From (4.7) we have
Wk—l,zm+1 = Wootmt )“f“wvo,zm:

(8'1) TVh~1,2m+1 = ( _1)k+.IPk( Wh,2m+2 +Wh,zm) +( _1)];_;LP76—?&W76—1,ZM+1

(h =1;2,...,k—1) (modXN),
and from (4.8) we have
L ] k-
"! A -
Wm =Q ) ) Wi Wi Ziss — 201,08 (m0dd)
(8.2) ”"“; "M (mod N).
i’t . 5:2 Z W, 1.m J m/h a—ij_'zah D‘S’ (‘I’H- even)

||
&
L..

&

Using (8.1) and (8.2}, we can find W, (mod N) by employing & power
algorithm technigue similar to that of Lehmer [9]. Thig &lgorlthm will
determine W;,(mod N} in- O(logn) operations.

If ¥ = 2A4s"—1, where r is an odd prime, we are able to obtain some
results which can be used to strengthen Theorem 8.3 when k = 2 and k = 3.

*
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TEvmia 8.8. Let N = 249" —1, where v is an odd prime and A < ™=,
If any prime divisor of N must salisfy one of the congruences

@ = +1(mod+"),
@ = —1(mod+"),

then N is a prime or the square of a prime.

Proof. Let p be any prime divisor of N. Ii p =
then '

il

=1 {mod ™),

p o=2mr" L+l (m=1).

Let 2,,®, be the two roots of

@ = —1(modr"}
guch that 0<<C oy, gy<#". Clearly otz =¢". IE p* = —1{mods"),
‘we have ' '
po=a; " (¢=10r 2 hz0),

ph= 12 (1)
If ¥ is not a prime or the square of a prime, then N == pg¥, or
N o= 1931\72, where p, q are distinet primes and ¥, N, are positive integers.
Since ¢° = (2" —1)*° > N and (2" -41) (2" —1)"2 > ¥, we must have
N = pg¥N,, where p = 2;+hy™ and g =@ 4-her™. If 4 =j, we have
h, = hy and hy = hy{mod2); thus,
pg > (_21‘ ~1)M {2 1)V 2"} > N

Since ¢ #j, " Is odd, and #; =+"—w;, h, and h, can not both be zero;
consequently,
pg =020~ (hy == 0, hy =1) or
2 (@ ") (1" ;) (B =1, hy = 0).
If &y, By > 0, ib is clear that pg > N. In both of the above formulas for pg,
we have pg = —az} = 1{mods™); consequently, pg +# N. Thus, there

exists & prime s guch that ¢|N,, and ¢ > (20" —1)"*, Since spg > N, it
follows that ¥ must be a prime or the square of a prime.

Tma 8.4. Lot N = 245" —1, where 1 is an odd prime and 24 < r",
If any prime factor of N must sabisfy one of the congruences

#f = +1(mods™) (s =1,2,3),

then N i8 o prime or the square of o prime.

&

Proof. Tuet p be any prime factor of N. It p° —1 = 0(mod#™), then .

P = 2mr" 41, If p* -1 = 0(mods"™), then p > (29™—
two roots of

(1) #*—a+1 = 0(modr™)

1), Let #,, @, be the
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gnch that .
0 <oy, &,<< 1"

and let @, 2, be the two roots of
(2) 2+ a1 = 0(mods™)
such that

0 << @y, 2, << 1.
Thus, if p* = +1(mod+"), we have

p =@+ (i=1,2,3, or 4, 0).

It should be noted here that
@+ = 'r“+1 o +wy =71,
o, =0y —1,  @y=my—l, @y, @ >y, my > 1
It N = pgsN,, where p, g, s are distinet primes, then, since p, g, $
= [»""*], we have '
N> [?.nlzl (["‘"nﬂ] _{_2) ([1"“!2]—1-4) - ([,.m‘z] _l_l)s = ,r:s‘nlz -~ N.
If ¥ —p3N, and p does not satisfy (2), then p > [¥**]+1 and
= ([ 412> N. B N == p*N, and p satisfies (2), then Ny =1;
for, if N, # 1, then N, > 3, and N 3 3p° > 3(»"*—1)’ > N. On the other
hand, if N = p% then p? = —1(mods™); but, since p satisfies (2),
p? = 1(mod+™); thus, N z£ p*¥N,.
If N = pg®N,, it follows that Ny, =1. I ¢ does not satisty (2 )
N3 [ (0] 2) > (P41 > N
If ¢ satisfies (2), then, since pg® = —1(mods™), we have
p = —g(mod#"), pz=2"—¢q, and pg*>N.
We have shown that N = p, p* or pg; it remains to show that ¥ # pg.
If N = pg and p? = 1{modr"}, we have
pg > (2r"—1) (" —1} > N
If p? = —1(mods"), we must have (Lemmsa 8.3) ¢ satisfying one of
(1) or (2); however, since pg = —I1(mods"), this cannot be, and conse-
quently both p and ¢ must satisfy either (1) or {2); further, it p satisfies
(1), then g must satisty (2). Thus,
N = pg = (@+hat™) ("2 Bty (he, e 2 05 4,5 <25 0 # ).
Tf by, by > 0, pg > N and, if hy =T, = 0, pg is even; hence,
 Nzao(r+eo,—1) or N = (o 1) (o, 9™ (4 2).
Now #%—um, =1 ~1; consequently, if ¥ = pg, we deduce the contra-
diction N > N.
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9. Some special cases. Let g, # be odd primes such that g = 1(modr).
Tet ¢ = exp(9mijr), 7 = exp(2mi/g), 2 be the field generated by adjoining
£ to the rationals, and £2(n) be the field generated by adjoining # to Q.
For & any primitive #th root of unity and x» any primitive gth oot of unity,
we define the Tagrange Resolvent

g—=2

(&) %) “"‘"’Z 51:%”1:7
Te==(
where g is any fixed primitive root of g. Tt is well known (see, for example,
Landau {6]) that

(&, ") = (&, "?)EHIndﬂn {(m,q) = 1),
(&, m (£74 ) =4,
(& n) = qui{&)wa(8) ... wra(€)y

where
q—2 .
'1,01(5) —_ Z EInng'-(z'-\—l)Inrlﬂ(j.;.u 0.
Foml
If we put

s =(r—1)/2 and ge = (L) + {7,

then g (f =1,2,...,8) are the § zeros of a polynomial

e
i

3

> @ (=1 P, 0, 1),

=0

where P(0,¢,7) =1, and P(i,q,7) (¢ =1,2,...,8) are integers. We
give some tables of these integers for v =5 and r = 7 below.

Table 1 (* = b)

¢ | P P, q)
il —89 1109
31 — 409 22289
41 981 259809
81 1111 T 214049
ST 101 ~1810751
101 21779 -~ 522071
131 —4009 3735980
151 596 — 44253696
181 1891 — 17264661 .
181 1331 — 18326641
211 961 - 24801151
241 —3344 1283084
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Table 2 (v = T)

g Pa,rg | PErg P79

29 -—10861 —1968984( 334583035340

43 34399 242623974 — 290365049983

71 19965 — 4159287778 35260324787309
113 —112965 — 357918880348 48967363182583
127 219437 - 68889532036 —11289528788913373
197 — 1587849 710594033070 —~96175212172376033
211 513941 1 — 1325614078980 — 574749504721836083

Tor r = 53, it can be shown that
P(1,q,5) = (#°+625 (u?—v?)w)/8 —gzw, P(2,q,B)= (PE—Bd%) /4,
where '
d =25 (10w(u2+ﬂ2)+$(u2w2—4u@)-_zst)/lb‘.

The values of the integers @, u, v, w, ave determined from the representation
{Dickson [4])

16g = #*+50u2 4 50v: L1252,
where

pw = v*—ul—4duo, = 1(modb).

We now require
Lmara 9.1,
{P(ls g, 1), P(2,¢,7), sy P8, q,7), Q) = 1.
Proof. Suppose the lemima is false; then ¢|R; (¢ =1,2,...,2s),

where

2g '
N (~1f R =0 (B = 1)
i=0 .

is the equation satistied by (£, #)7/q (¢ - 1,2,...,2s). Tweputy = ({, n),
it is evident that .
r—1

,},1-._1 . 2 g_i-Ri( _1)1‘.+I 7‘,1'—1'—1 .

i=1
Now in £ we know ([6], p. 289) that the ideal
-2
gl =[]
=0 '
where the g, are distinct prime ideals,.

4 =g, 9=, ho=(g—1)jr
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and 4 iz a fived primitive root of . We also have ([6], p. 292)

r—2
[y1 =[] ¥,
7=0

where #; = —j" 17 (modr), 1 < t;<r—1.
Since .
‘ y = 0(mod[4]),
we have
' ¥t = 0(mod[g])

and consequently

el Ty
Now
r—2

Iyt =[]

=0 .

and ¢, = 1; hence, ¢4 [»] " and it follows that the lemma must be true.

For given values of r and ¢, we consider the functions 4,, and C,,
where &k =3, P, =Pli,q,r) (i =1,2,...,8), and @ = ¢, Tt will be
seen that thege functions have some rather remarkabls properties.

Let p be any prime such that p ==, g and let p belong to index
r(modr); Put uw =+/2 if » iz even; otherwise, put g =». Define 8(p)
= (p*+(—1)")fr and put i = Ind,p. :

In 2(5) {[6], p. 301)

(&, P = (0 ") = (89 ) (modip).
Thus, if § = 6(p) and s = (L +{—1))/2, we have
(&, 7)* = £ ¢"(modyp)

in £. Hence

0" Vm(€5) = (L% -2 ¢ (mod p),
MOt (0) = (L — L ™ (mod p),
where : .
qog = (£, )= (L% 9y
TruroREM 9.1. Let the functions A, and C, be those obtained for k = s,
P, =P,q,r) (i =1,2,...,8), Q =g " and let p be a prime such that
(, q4E) = 1. If (plq), =1,

pld; and  p|C,.
If(f’!g)r#lx

Pldy, pl1Co  and  ptA,Cn when (m,r) =1.
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Proof. If #|im, we have in £
¢ on(e) =2¢™(modp) and g™ osuem () = O{modp).
It follows that

8-~1

@™ Vo —207+ 3 4" Vimool =0(modp) (1=1,2,...,5)

Ik

" and

s—1
Qumz oy Uy’,mﬂgi; = 0 (modyp).
J=0

Since ptqdll, we have Voom =20 (modp) and p|(Com; Dldey. Now
r|4 if and only if (p|g), = 1; hence, we have proved the first part of the
theorem. '

If (plg), #1 and (r, m) =1, then, since pt 4,

giem — LI £ 0 (mod p) _
and consequently ptAy,. I p10,; we have the s congruences
4 Vo o = (LH™ L g™ (modp) (6 =1,2,...,8).

MThese congruences can not all hold unless r|iium, which is not so.

OororTARY 9.1.1. If (p, Ad¢) =1, {plg) #1, and M@ =1(modp),
then -

Yi,a(MﬂVo.ga: MBVi,za: ey MBV&—],ZB) = 0{modp}.

Proof. We first note that @° = ¢ ?(modyp). Since r{2uli,

g g2 gy g gero of y,(#). Hence,

a-1

0‘ = ys(-M%za(Qi)) = 2 Yj,s(lﬂ-ﬂvﬂ,zﬂﬁ M Vl,zos sany MEVs—I,éG) Qg(mOdP)-
J=0

Since pt 4, the corollary follows.

OoROLLARY 9.1.2. If (p, ¢AE) =1, pl4, and r¥n, then (plg), = 1.

Proof. Let © = w(p); then o|n and r{e. By the theorem w|rd;
hence, w|0. ¥t (plg), #1, ptde; thus, (plg) =1.

OoROITARY 9.1.3. If (p, q4B) =1, p|C, and rin, then (plg), = 1.

Proof. Tf p|0,, let 7 be an order of appariion of p such that z|n.
Sinee v|2w, 2w|2rf, and 747, we have 7|28, Since ptCy it (PiQ)y # 1,
we must have (plg), = 1. :

1, for k = 2, we put I, = 2V, +P1Vy,, WO 5ee that

Gm ": Vl,m = Vl.nTn'

Tt is also possible to show that Zyl1Tapena- FOT k=2 1= 5, Py
=P(l,q,r), P, =P(2,q,7), @ =¢, the T, function is the same as the
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funetion ¥, considered by Lehmer and Lehmer [10]. In [10] they showed
that if p|V,, 54n and 9 +# ¢, then (p|g)s = 1, this result is somewhat
more general than the result that we are able to deduce from Corollary
9.1.3.

We close with two theorems on primes of the form 245" —1 and
247" —1. These theorems are extensions of & result of Williams [14],

THEOREM 9.3. If N = 245" —1 (4 < 5™%) and q is @ prime such thol
¢ =1(mods) and (Nlgl #1, pué Py =P(1,,5), Iy =10, ,5),

thm N i8 @ jpwme if and cml i af
-P;};Vg,zo"”-PgWizﬂ +P2W0 w1
= 2P; W 0o Wy a0 +PL P W o5+ Wize == 0(1n0d N},

where 6 = (N -1)/b. :

Proof. Follows easily from Corollary 9.1.1, Lemma 8.2, Theorem 8.3,
and Lemma 8.3.

We give a modified form of thig result in the following example.
If ¥ = 2-5"—1, N can not be a perfect square if # 22 3. Tor these N values,
we find a prime ¢ such that g ==1(mod5) and N® % =1 (modg). Let
22 M ==1(modN) and put bd’ = P} —4P,,

8, = MaP(1,q,5), T,=M[Py(1,q,5)?*—2P(2, g, 5))—2 (modN).

If .
Ty =T (T0-+-50T,8; +1268% — 812 —758%+5)
8y = 8, (BT +50T282 4+ 258, —15T5 — 2582 +5)

then N is a prime if and only if '

AT2 = 45 = 1{mod N).

THEOREM 9.4. If N = 247" -1 (24 < T and g is a prime such
that '

(mod N,

=1(mod?)  and (N|g), #1

putPy =P(1,q, 7, Py =P(2,0,7), Py =P(3,4,7),Q = . If (N, g4AEP,)
=1 and MQ = 1(mod N), then N i a prime if and only if

Yi,a(-P.ﬂ:}Vo,zﬂr -Ps Wiam Pi—ﬂfmo) =-0{mod &) _ {1 =0,1,2),
= (N +1)/1. '

where 0

BibHography
[11 E. T. Bell, Notes on recurving series of the third order, Téhokn Math. Journ.
94 (1924), pp. 168-184. '
2] R. D, Carmmhael Oﬂ. the numericol factors of the arithmetic forme o™ f%,
Ann, of Math. (2), (1913-14), pp. 30-70.

[3] — A simple pwrmpls of unification in the elememd:-‘y theory of numbers, Amer,
Math. Monthly 36 (1929), Jud 132-143.

icm

A genevalization of Lehmers functions 341

[4] L. B. Dickson, Cyelolomy, higher congrucnees, and Waring's problem, Amer.
Journ. Math. 57 (1935), pp. 301-424.

[51 I. T. Engstrorn, On sequences defined by linear recurrence velations, Trans.
Amer. Math. Soc. 33 (1831), pp. 210-218.

[61 E. Landau, Vorlesungen iber Zahientheorie, Vol. III, New York 1947.

[7]1 D. H. Lehmer, An emtended theory of Lucas’ fumetions, Ann. of Math. (2), 31
(1930}, pp. 419-448,

[8] - Taclorization of certain cyclotomie funciions, ibid. (2), 34 (1933), pp 461-479.

[91 — Compuier lechnology applicd to the theory of numbers, MAA Studies in Mathe-

matics, Vol. 6 (1969), pp. 117-151.

0] D. . Lebhmer and Emma Lehmer, Oyclotomy of hyperHloosterman sums,
Actn Arith. 14 (1968), pp. 80-111

(11] Ed. Lucag, Thioric des fonctions numériques simplement périodigues,” Amer.
Journ. Math. 1. (1878), pp. 184—240, 289-321.

[12] T. A. Pierco, The numerical factors of the arithwmetic fortis {4+ o), Ann.
of Math. (2), 18 (1916), pp. 5364

[18] H. ¢. Williams, On a generalizotion of the Lucas fumtwns, Acta. Arith. 20
(1972), pp.- 33-52.

[14] — The primelity of 2437—1, Canad. Math. Bull. 15 (1972), pp. 585-589.

UNIVERSITY OF MANITOBA

Recelved on 29. 3. 1974 (550)




