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Some results on the distribution of values of additive
functions on the set of pairs of positive integers, 11

by
: G. Joegmsuy BABU (Urbana, ILL.)

1. Introduction. H. Delange [1] in 1969 defined a density for sets of
pairs [m, n] of positive integers and determined it for some sets defined
by arithmetical properties. In this paper we give necessary and sufficient
conditions for a real-valued additive arithmetic funection f on the set of
pairs of positive integers to have a distribution (mod1) and generalize
a result obtained in [B] to additive funections defined on the set of pairs
of positive integers.

2. Notations and definitions. Throughout this paper the letters p, ¢ with
or without suffixes denote always prime numbers. The letters m, n, 7, 8, .- .
with or without suffixes denote positive integers and ¢, & denote non-vega-
tive integers. If A is a seb of pairs of positive integers then N(A) denotes
the cardinality of the pairs in 4. Let H be a set of pairs [m, n] of positive
integers. If
(Limy) N {[m,nleE: m<» and n <y}

tends to a limit ¢ as # and y tend to infinity independently, then we say
that the set B possesses density a, see [1].
Let Z, denote the set of pairs of positive integers.

DEFINIIION. A real-valued function on Z, is said to be additive if

Flmy g, Nytg} = Fmy, %) +F (Mg, )
whonever (#i,m,, Maty) = 1.
DErINITIoN. A real-valuad additive function f on Z, is said to have

distribution (modl) if there iy & nondecreasing, right continuons funciion
F on the res) line such that F(o) = 0 if ¢ < 0, F(¢} =1 if ¢> 1 and for

‘all continuity points @, be(0,1) of F and a < b the density of

[Im, »]: @< {f(m, n}} < b]

exists and equals F(b) — F(a), where {2} denotes the fractional part of 2.
We pub ||| = min({w}, 1—{x}) and e(t) = exp (2nit).
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3. Results.

THEOREM 1. Let f be a veal-valued additive funetion on 7,

(i) f has uniform distribuiion (modl) if and only if for each non-zero
intoger k ‘ :

ui! — R
(3.1) > —{lkf(p, 1) —tlog pl-+ &f (1, p) — ulogpl}}) = oo,
bl-;" ?

for oll real.t and wu.
(i) f has a non-uniform distribution. (n0d1) if and only if each of the
Jollowring three series

Rl
205 (R DI W0, 1),
v .

(32) D)= igte, Dlssa(t ~ o, 1)),

» .

> % e (1, p)lisgn (% — {7 (1, p)})

converge, for at least ome positive integer k, whers

1 i a>0,
sgnfm) =10  if @ =0,
=1 i m<o.

Bemark. This result was also obtained by Delange (personal com-
munication) independently under an extra agsumption that

| F2, ) = (2, 1) 1f (L, 27)
nd . . ' ‘ S
| F(89,3) = (89, 1) +£(1, 8
aor a]lj;o and r = 0.

TrmzormM 2. Let f be a real-valued additive function on Ly Suppose
there is a soquence {a,} of real numbers and a distribution function I on
the veal line such that for each of its continuity point ¢, the limit of

nTEN{m, ' m<n, m' < n and fim, m"y —a, < o}

is H{c) as n—>co. Then_there ewist real numbers a and b and an additive
Junction ¢ on Zy such thet for all m=1, n3> 1

(8.3) fln, n) = alogmjl—ﬁlogn +g(m, n)

icm
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and ‘
N --"1 1 - [ ‘1 1 . 2]
(3.4) % S L9024 X 1o, 1P <o,
]

whore, for any rveal number @, #* is w or 1 according as @] <1 or |o| > 1.
In this case, we can set a, = a'(n, %) - congtant 4 o (1), where

'L « - ] -
(@, y) == 2?9(10, 1) +Z;; g(1, p)"

Puge ey
andl
w'(w, y) = a(w,y}+alogs-+-blogy.
TE f watiafy (3.3) with g satisfylng (3.4) then there exists a distribution
function & such that at each of its continuity point e,

(1/5”3/)_1\7{[””'7?7']: m*‘imaﬂ“{:yaf(m} n)—a' (%, )< e}

tends to &(¢) as @ and y tend to infinity independently.

4., Preliminary results.
Luvwa 1 ([B]). Let f be a real-valued additive orithmetic function.
Suppose there ewists a 6> 0 such that for each te[ —6, &]

1 ' .
2— [1'—— Re(exp (itf{p))p"”“m)]< oo .
» P l _
for some real number u(¥). Then there exist a real number a and an additive
arithmetic function g such thet f(m) = alogm-g(m) for all m=1 and

1 2 < oo,
Z ’ (9(p))F <

»

LayvA 2. Let by, ..., b, be veal numbers. For 0 << e< 1/2 there emists
a non-gero integer n sweh that

(bl <& 4 =1,... 7.

For a proof wee Theorem 201 of [6], p. 170,
DEFINITION. A complex-valued function g defined on the set of pairs
of positive integers ix sald to be multiplicative if ¢ (1, 1) = 1 and

g{mymy, 97’147’2) == Q('-"n"bl, %1)9(7”2) "7’2)

whenever (m, 7, Mahy) = L.
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DerFmviTIoN. A multiplicative function ¢ is said to have a mean value
it the limit of '
(Liay) 3 g(m,n)
il
nyY
exists as '» and y tend to infinity independently.
Lmyowa 3 ([2]). Let g be o multiplicative function such that 1g(m, n)| < 1
Jor all m and n = L. If for all real numbers « and ¢

1 i ,
Z;[Z—Re(g(p, 1p~®--g(1, p)p~] = o0,

r
then g possesses zero mean value. If there ewist real numbers o and b such that
1 .
2512%1%6(5(19, Dp™ +g(1, 2)p~)] < oo,
. F '
then g possesses zero mean volue if

9(%,2) g(3', 87
(2 ( QI Fia) i) ) (Z ( 31(1-|'m)-’m14'-'1‘a) )) =0.

I,z 0

(4.1)

- If (4.1) does not hold, then as @ and v tend to infinity independently,
we have : l

(L/wy) D g(m, n) = Cui®y® L, (loga) Ly (logy) + 0 (1)
MED .
Ny

.@nd 0 is a non-zero complex number (a multiple of the left-hand side of
(41)) and L, and .Lz are functions on the positive real line defined by

L) = exp[@' Z % Im(g(p, 1)17‘{“)]:

ot

: : - 1 o
L,(t) = exp [4, Z — Im(g (1, p)p‘“’)]
Dt P,
for all real numbers ¢ > 0.

Moreover, if g has a non-zero mean value, then the series

(4.2) Ny
. Zp(l g(p, 1)}
and .

' 1
(43) 2 l—et,p)

converge. Conversely, if (4.2) and {4.3) converge, then g has a mean value.

icm
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Lwnma 4. An additive function f on the set of pairs of positive inlegers
has o distribution (modl1) if and only if for each integer k; theve ewists
real number by suoh that the limit of .

(Lfay) D) e(lf(m, n))
ey '

s by as @ and y tend to infinily independently. Moreover, f has wuniform
distribution (modl) if and only if b, = 0 for all non-zero k.
Proof of thiz lemma is similar to that of Lemma 2 of [4].

5. Proofs of main results.
Proof of Theorem 1. Since

8 [le]l? < sinne < 27z
and
1 HRe(a(kf(p, lj)p““) = Zsinz(ﬁ(kf(p, 1) -—-t/27t)10g'p),

we clearly have

2% [1—Re(e(hf(p, 1))~ < oo,
if and only _if

(5.1) Z%nkf(p,1)—<t/2n)1ogzonz< co.

n

Ho, if for each non-zero integer % (3.1) iz watistied, then from Lemmas
3 and 4 it follows that f hag uniform digtvibution (modl). The fact that
J has a pon-uniferm distribution (modl) when the three series in (3.2)
converge for gome positive integer &, can he shown exactly in the similar
manner as in [3], pp. 226-229, using Lemmas 8 and 4 and so the proof -
of this is omitted. '

Now to prove the converse, suppose f has uniform distribution (mod1).
Then for each non-zero integer & the limit of

(Ljay) 3 o(if (m, n))

(5.2)

in ze‘rb ag # and y tend to infinity independently. Let & be & mnon-zero
integor, By Lemma 3 we have, either for all ¢ and A '
(L) (Mhf (-, 1) —tlogpl* -+ If (1, p) ~ulogp|¥) = oo
= _ .
or there e;:ist real numbers a4 and b such that _ :
(5.3) /P, 1) —alogp|*+ (1, p)~blogpll) < =

n

4 — Acia Arithmetica XXIX.4
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and k(f, %, @, b) = 0, where

e(kf(2/, 21) 1 e(Rf(37, 37
(3.4) R{f, %, a,b)= ( E ST | | 2 ‘3’3(iq"-’iz"r?za}“-i?;(”l?riiﬁ?.ffij )
B iy
. r=0 ‘_ 70
Suppose (5.3) holds. Observe that the set of all integers & for which
there is a ¢ such that

31 :
25 (e, 1) ~togpl< oo

2

i8 @ group. (This can be seen by using the inequality |» —ﬁ-y”“ w5 2 Jlop)|®
“2yl*) By this and by Lemma 2 there exists a non-zero integer » sueh
that A(f, &k, ra, rd) = ¢ and '

Z(l/P)(JVWf(Pa 1) —ralogp|* + |krf (1, p) —rblogp|8) << eo.
» . .
From this and the fact that S

(5.3) (L/ny) D e(rkf (m, n)

MEw
NEY

tends to a limit as  and y tend to infinity independently, it follows,

by Lemma 3, that (5.5) does not tend to zero. This contradiction Proves
- that (3.1) holds for all & = 0. '
Now, suppose that f has a non-uniform distribution (med1). Then
for some positive & the limit of (5.2) s non-zero. So again, by Lemma 8,
(4.2} and (4.3) converge, with g(m, n) = e{kf (m, #)). This gives the con-
vergence of all the series in (3.2), '
This completes the proof of Theorem 1.

Proof of Theorem 2. Let p be the characteristic function of H,
We have for all real ¢ '

%‘zexp(mitaﬂ) 2 exp (44f (m, m")) - (4) |

My =

as 7 —c0. Since ¢(0) = 1 and ¢ iy continuous ab zero, there exists a 8 > 0
such that for all [ < 8 '

-\ . :
nt 2/ exp (#f (m, m’)) = 0
L .

as n—o0. By Lemma 8, for all Jf] < 8, there exist real numbers a(ty, bit)
~ such that ' '

» . :

1. .
25 [2—Re (exp (itf(p, 1))p~®) ~ Re exp (if(1, P)p )] < o,

icm
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Hence by Lemina 1, there exist real numbers a, b and additive arithmatic
functions g, and g, such that :

Zi(yi(p))“ < oo

p

» L3

for 2 =1,2 and for all m,n = 1,
Jfim, 1) = a‘IOgm‘l“gll(m):

F(1,n) = blogn—+gy(n).
1

gi{m, n) = flm, n) "f(_”m: 1) —F(L, %) g1 (m) +gs(n),

clearly g satisfies (3.3) and (3.4). This proves the first part of the theorem.

Oonversely, suppose f satisties (3.3) with g satisfying (3.4). From
the proof of Theorem 1 of [7] it follows that there exists a distribution
function ¢ such that for each of its continuity point e,

(Lep) ¥ {[m,n]: m< o, n< y: gim, n)—a(m, n) < }

tends to @(6) as # and v tend to infinity i.ndependeﬁtly. Let ¢ be the.
characteristic funetion of @. Summing by parts and simplifying, we obbain

2 exp (it(f(fm, #n)— aloge —blogy — a (s, y)))
M .
sy : .

= (oY (1)1 dta) (1 +-ith)) +o (2)

as & and ¥ tend. to infinity independently, since fim, n) = alogm -+ blogn +
+g(m,n). This proves the theorem. -
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Uber die Anwendung einer Methode von Linnik
yon

K. Pracrar {Wien)

Herrn Professor B, Hlowke sum 60ten Geburistag gewidmet

Einleitung. Vom Verfagser wurde in [3] eine Methode von Linnik
[1] angewendet wm ein gewisses Analogon einer von A. Selberg [4} her-
rithrenden Satzes fiber Primgzahlen in kleinen Intervallen zu beweisen.
Diese Arbeit wird im folgenden mit T bezeichnet. Hier soll zunachst ein
Satz aus [1] ein wenig verbessert werden.

In § 2 geben wir unter Verwendung einer neuneren Entdeckung wvon
ITaldsz und Turan einen Beweis fiir einen Satz, den. Linnik [1] mit anschei-
nend unrichtigem Beweis veroffenflicht hat.

1. Mittels des Vorganges von Linnik beweisen wir nun den gegen-
tiber Linnik ein wenig verbesserten

Samz 1. Unter der Annabme der Richiigkeit der Riemann’schen Ver-
mutung fiir alle L-Funktionen modulo ¢, ¢<< N (logN)"C, ¢ fest, hat die
Gleichung p,+ 1y = N -~ hq, wobet filr gerades N auch g gerade se@', stets
Ldsungen in Pmmmhlm Dy, Dy und ganzen Zaklen h, 0< h<(logN)® fiir
3< B

Beweis. Sei
(1) T(a) = Z e‘.lrcfahr:,

0Ch< I

wobei H gpiter genauer Destimmt wird..
Wenn dann fiir alle ¢ =0,1,...,¢—1

(2 ] P
) | RE Y
gilt mit M = [(log¥)*], b > 3, 50 hat man _
(3) IT{a)| < M~H)(logNy"~*,

wenn H = [(log N)”] gesetzt wird, B > b.



