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On linear forms in the logarithms of algebraic numbers
_ o

T. N, Sxorry (Bombay}

1. Let n>1 he an integer. Let ay,..., o, be non-zero algebraic

numbers of heights less than or equal to 4, ..., A, respectively, where
each A, 27. Let By, ..., f,_, denote algebraic numbers of heights less
than or equal to B (> 27). Suppose that ay, ..., a, and B3, ..., fn_1 afl

lie in a field of degree D over the rationals. Set
A =logd,.. logd, and F= (log*./i +loglog B).

‘We prove:

THEORBM 1. Given & > 0, there ewists an effectively computab'le number
O >0 depending only on s such thot .

B loga,+ ... 4 fu_iloga, , —loga,|
exceeds

exp(—(nD)°" Allog A (log (AB)} B+,

provided that the above linear form does mot venish.

Tt has been assumed that the logarithms have their principal values
bat the resuls would hold for any choiee of logarithms if C-were allowed
to depend on their determinations. We shall follow the method of Stark
[8] for the proof of Theorem 1. When » is large and @y -eey Ay Bryoeos P
all lie in o fixed field, the theorem ig sharper than all the known results
in this direction. For example, see Baker [1] and Ramachandra [4].
The theorem is also of interest when both n and D are large. In [7], the
author imposed certain restrictions on the linear form and obtained a re-
sult whose dependence on # Was similar to that of Theorem 1.

Theorem 1 strengthens a result of Stark [8]. When » and D are fixed
and B, ..., B,_, are rational numbers, the theorem is weaker than a recent
result of Baker [2].

We mention an application of Theorem 1.
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Trrowes 2. Let & = 0 be given. Suppose that w wnid k= 2 are positive .

integers satisfying w = €. Then the nuwmber J of numbers among (u--1) ...
o (u-R), all of whose prime factors are less than or equal fo T, satigfies
J — o (Hloglogk
(logky* |

Here the eonsiant implied by O depends only on s.

Ramachandra [4] proved Theorewn 2 with J = 0 (_,,__T,, i &
Toghk \ loghk
For the proof of this, Ramachandra used n weaker version of The-
orem 1. If that is replaced by Theorem 1 in 4], then Theorem 9
follows immediately irom the arguments of [4]. An immediate corollavy
from Theorem 2 is the following:
COROLLARY. Lét &, w and & be as in Theorem 2. Then the number of
distinet prime faetors of (w—+1)... (w--%k) emceeds

loglogk
logh |}

k (iogin;z 70)1/2)

k- (k) (1+0(

Here the constant implied by O depends only on. e

2. In this section, we collect those results that we shall use from
other sourees. ‘

Levwa 1. Suppose thai the coefficients of the p linear forms

Y = ai’c,lml‘l" ses +afc,q$q- (k = 17 e Pip << Q')

wre integers in am olgebraic number Field of degree b and let [a.,” s 4.
(|on,] denotes the maminum of the absolute values of the conjugates of a,;.)
Then there exist rational integers Byy oony By 1ot all 2ev0, satisfying y, = 0, ...
cos Yy = 0 and such that ‘

. whih+1)
I%J < 1+ (29,_‘4)2&»—-1)]1(]&4-1),
provided that 2q >ph(h-+1) and A = 1.
See, Ramachandra [5], p. 16.

. Levya 2. Fet ay, ..., ¢, be non-zero elements of an algebraic number
field J’I and let i, ..., ol denote fized p-th reots for some prime p. Further
let &' = K{al®, ..., w™). Then either E'(aX%) is an extohsion of K' of
degree » or we hove

k=1, .00,

d Ty — g
ot =g

for some u in K and some integers Jrieees Jo with 0 < j,<<p (L <i< n)
and j, = 1. ' ' : .

This is due to Baker énd. Stark [3].
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LmMma 3. Let 8 be a set of primes with minimal element p, and maximal
element Py. Let oy, ..., a, be n 21 non-eero algebroic numbers with heights
less tham Ap, ..., A, respectively where A, 2e¢ (1<i< n) and suppose
that a, ..., o, all belong to a field K of degree D. Suppose further that if p
is in N, then there ave vational infegers ji, ..., 5., 0 <5, < p, §, # 0, with

i Tpy e g0
bk =g

For some % in K. Then there are two effectively computable mumbers ¢,

= ¢y, n) and ¢ = (D, n) depending only on D aend n such that if 8

has wmore than

D+
logp,

elements, then there ave rational integers Ry, ..., h, with b, = 0,

2D—-1
,  Ii<n,

n
b < e, PE {H Iogﬁi)

=1
such that :
al. Ll =1,
Here _
- ¢y = 4D*cPH(2Dn)*P",

¢ = [P (n+1)+2n]log(2Dn) -+ 3Dloge,,

where ) .

g #= 21)61’

o6, = D¥log(l+cp),  0p == (30D*log(6D)) .
This is due to Stark [8].

3. In this section, we shall prove Theorem 1. The notation of th?'s
section is independent of the notation of § 1 and § 2. The-size of an algebraic

number a, denoted by &{a), is defined as

a|+ d(a), where d(e) is the least
positive integer such that ad(u) is an algebraie integer. If o is an algebraic
number of degree < ., then '

(1) S(ay < (D+1)H{a), H{a)< 22 (8 (a))*7.

{8ee [67, p. 76.) So it does not matter whether we state cur theorem in

terms of size or height. Let » >1 be an integer. We she’nl'l agsume that -
ary ..., 0, 416 NON-Zero algebraic numbers of sizes not exceeding 8,...,8,,

respectively, where each §;> 27. Further we assuIme that 8, ... fu_s

are algebraic numbers of wizes not exceeding §( = 27).. Asgume that the

numbers py ooy @y aNA B, ooy By all lie in a fleld K of degree

D over the rationals. Set

B =B logayt ... + Bpilogo, o —~loga,|
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and assnme that # << § Let & with 0 << e<1 be given. Liet 4 be a suf-
ficiently large positive constant which ean be explicitly determined in
terms of e. We shall assume, without loss of generality, that §,,..., 8,
and § exceeds some large positive constant &, which can be explicitly
determined in terms of & and A. We shall take §, large as compared with A.
Set

A =logh8,...log8,, ¥ = (logd+loglog8),

T = [(nDFB], T, = [‘“—j”—’-] t2,

h = [(nDy* Blog Alog&],
hoyr = (MDY EML LT, 1 =1, ...,

T0e{n--1) , &a--1)

An 74
L, = [(5D)*(nD) m AR " (log&;)tlogSlog ],

I = max L,
l=gisn

B = [(nD) B,

hr]‘ = h,
Tl““la

t=1,..,n

7

k= [( D)z(fl?]))“l("’ I)+10EAEn+1]810gSIOC"JJ.],

1
By =k, k,,_!_l:[(l——i-;)kr], r=1,..,T-1.
A = ,S‘-lLl S{;n
Observe that
1
2) _ ?ﬁ,.}-fg—k, o=, ..., T,

We consider the f.ollowing auxﬂi@ry funetion

("1:--- Byoy) = Z 219 19

. A=0 Ag=0

¥, 2,
Y171 #—=1"n—1
n al B ) s

ve= A48 (1

where p(4;, ..., 4,) are rational integers, not al_l' zero, to be determined
sueh that '

(3) q{Ly my, .

vy mn—l) =0

for all integers I with 1 <1<k and for all non-negative integers o, . .;, Wy _y
with m, 4 ... J- o, € k. Here '
I _
all,my, ) = Y. S‘p by b el L e,
=0

(3) is a seb of Rk --1)71 hnear eqmtlonh in (L, +1) .. . (L, +1) vari-

ables p(4, ..., 4,). Observe that :
(L, +1) ...

(L -1y > D(D 41 R (k1)
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The absolute values of the eo;:gugates of the coefficients of p(4,,..., 1)

n (3) do not exceed A*(28L)*. Multiply each of the equations (3) by a na.tu-
raﬂ numher not exceeding A"(%’L)’“ &0 that the coefficients of p(4;, ..., 1.}
are algebraic integers in K. Now it follows from Lemma 1 that there exist
rational integers p{4;, ..., 4,), not all zero, satisfying (3) and

(D (Ary «ney dy)! < AH(2BLY*
oA 4. Assume that
(4) B AT TR(32) T,
Then
g{l, My, ooy, My ) =0,

_fm-‘ all integers 1 with 1 <C
with w4 ... F My, < J’.T
Proof. First we prove that g(l, m,, ..., m,_;) = 0 for all integers 7
with 1 < I <C &, and for all non-negative integers my, ..., m,_;, with m;+ ...
.+, < k. If not, there exists an integer [ with k <<I<h, and
nor-negative integers m,, ..., Mm,_; with m,+ ... +m, , <k, such that
g, my, .y my,_1) = 0. Now ¢g(l, my, ..., m,_;) I8 a non-zero algebraic
number of degree < [I). Bach of ifs eonguga.tes has ahsolute value not
exceeding

< hy, and for all non-negative integers my, ..., M,

A% (28 LYk,
The denominator of g(z,.m;, ooy My 1) does not exceed
A2 (28 L)k,
Thus
lq(t, My, ooy My )| 2 (AT2(28T)F) P

We write @, .m,_ (2 .., %) for the value of

a my 6
(o) @z

Lr<<n

Wiy {
) @2 s 2yy)

at the point 2z, = 2, 1
Observe that

g(l, .'mn

1(10,‘;‘(.!1)_”11 Lo (lc}gan—l)_mfl*lq')ml,...,mn_l (Z, e 11) - sy mn——l)l
. ' < pA (28I,
Thus
(8) [ S (PR )1 'MJ(A*“D"E(?SL)'“M— B (28L)),
with R :

w = [(loga)™ ... (loga, _,)™~1|.
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We have .
1 (2)F(1)
6 o [ Al
. 2l (g—1)F (=)
Hi< el 52
k
N ly 00T,
1S — e
r_ st 9mi PR (z—0) T ()
. where
P(e) = ((e=1) . (2= R TR and f(8) = @ my (2, o1 8)
Now '

max if(z)l < wdwhﬂ(QSL)]Ok.

|&|=>57y
Thus the absolute value of the integral does mot exceed

w A0k (2SL)10k2 ~Ryka (T

For an integer » with 1 < v < b, and non-negative integers i, ..., fi,—
with gy oo + iy = m and O <5 m < by —Ly, we have
Qi Myt gy ooy My 1t ey} =0,

sinee

My + pia+ e F Moyl K By < Ky
Thus

{{loga,) ™™ .. (log ey, ;) 1= F P b ey b 1(": e
< ﬂA;hl(fZSL)sk

T hus for every 7 with 1 <+ <k and for every m with 0 <L m < &y — ks,

we have
L ()i < from® A7 A (2SL)*,
Observe that

(I—1) ... (I—hy) = (lgll)h;‘t < 2l
and when =z lies on I,
l(#—1)..

Hence the absolute value of the double sum in {6) does ot exceed

=Ry = =2 (Hy—r— 1)1 2 4R, !

ﬂw%h PLF L (2,8.5)5’5(16)27‘2?‘71’21

8 inceky—ko+1 < ky/T+2< 2k /T . (Observethat k./T >2,7 =1, ..., 1.

Henica

- . ’f(;); é w(Awh2 (2SL)ID;'G2—;‘L1]C1]T+ ﬁ%k/lkﬂshl(zs_b)ﬁc(16)2752&1/1‘).
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Now we show that (5) and (7) are inconsistent. For this, it is suf-
ficient to show that
olkyT -~ AlﬁDf.:z(gSL)lskD{l _i_ﬂnkdk(sz)zhzklli'}’

i.e. 'we should show

2]11A:1/19 > 2A16D1£2(2SL)16];D’
provided that '
ﬁ < ,'?/—I«:A—k(32)~2h2kl/i'_

‘We proceed by induction. It follows from (4) that

B < nEATRBY)BIT 1y, Iy —1.

Therefore the lemma is proved if we show that for every integer r with
1=y < Ty, the following inequality is satisfied

2h,.1’p,.l1‘ = 2 A 16Dhr+1 (QSL)IGkD

IL 18 easy to see that thiy inequality is satisfied if 4 is large enough
depending only on «.

LuemMmA 5. Assume that 8 satisfies (4). Then

a
q E)"‘Jmlr'-ym’nw-l = O’

Jor all integers a, p with 0 <<p < R, 0<< afp < h and for all non-negative
integers my, ..., m,_, with m;+ ... +m, ;< L7
Prooi. Suppose that the lemma ig not-true. Then there exist integers

@, p with 0<< p < R, 0 < a/p < h and non-negative integers m,, ..., m,_,

with my + ... +m,_, < kg, 41 such that ¢{afp, m, ..., m,_1) % 0. Observe
that g(a/p,ml,. .My, ;) 18 a non-zero algebraic number of degree
< .DRE". The denominator of g(afp, m,, ..., m,_;) does not exceed
APM(28L)F,
The absclute value of the conjugates of gla/p, my, ..., m,_;) does not
exceed,
AS.’&(2SL)57¢
Further

» r

[/ 11 a . .
(logeay) ™1 ... (logaan)Hm"-"""()ﬂml'_wmnﬁl ("_f cres _) ) (;) Mgy ooy mn~1)

< ﬁd”"(zé‘L)s".
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Hence ‘
(8) ‘Pm],,..,mn_l(g—, sy %) ;;@U(A—G_[)%Rn+l(281))-@!)11391__ﬁAsh(?‘SL)ﬁh) .
where
= |[(loga,)™ ... (log Uy g )1
Set
] e —Jop 1

f(C):wnlll"'ﬂnn_z(gﬂ"'i C) aind lﬂ(C) == ((E:_l) .. (C""hzrl))rml l]lll—lb
‘For every 2 with |s| = 2k, , We have .

Lo mJi(tf)F;)m ir

2mi F:]g;;vhi,,l (C”z) (E)

g, oy ~Rpy 1

RN S N U R

e
r=1 m==0 . 1,-¢\C*—9‘|=§ (C ”)ﬁ C

Note that the absolute value of the integral does not exceed
Allﬁml (2SL)10R:2——?LTIJ¢T1/T.

Using Lemma 4, absolute value of the double sum in the above formula
does not exceed

Bum® A* A%y (28L)5% (16) M fery T

Thus by maximum modulus pfinciple,

‘f (ﬁ) < w(A”’”Tl(ZSL)I°"2""T1"T1’T+
P . .

+ Bk A A%y (28 L)% (168) Mot}
Observe that
h‘T > ((W’D)los/nEsm).’t‘l—lh = (%_D)LU(RH)En-!—lh =~ .R”’H h.
1

We show that (8) and (9) are inconsistent. Using the above inequality
" and- (4), it is suificient to show that

b /T ~, AquZnTl( 28 L)IT.’CDR“.

This inequality is satiafied, if 4, depénding only on e, is large enough.
This eomple@es the proof of Lemma 5.

Remark. Let p'(d, ..., 4), 0}, <
satistying

L (i =1, .;.,'a@) he integers

lp' (Ay, . ouy A0 << AH(28L)*,

icm

On linear forms in the logarithms of algebraic numbers a5

Consider
I L

2z
LAeE L a iy

ot _ z
g =g (2 My ooy My ) = an It varr

;=0 Iy=0
Suppose that ¢' (I, my, ..., M,_;) = 0 for all integers I with 1 I <<k
and for all non-negative integers #g,...,m,_, with =, -+ ... +m,_,
<« k. If § satisfies (4), then our argwment shows that '

1/
'
/] (—5, iy veny *m.nﬂ) =0,

for all mtegels a, p with 0 < p < R, 0<C afp < and for all non- negatne
integers iy, ..., M,y With m+ ... o, < Eyp . We shall call ¢
is associated to P Ay oiey )

Lrvma 6. Assume that § satisfies
with 0, <Ly 0 =1....

{4). Let p'(;,
, ) sotisfying

P Ry ey )| < AM(RIT)E.

Let ¢ =qg'(2,my, «..,m, ) be associated to p'(A;, ..., 4,).
for @y with 0 << &, < 1, we have

y Ay} be integers

Assume that

s

@ (g +1ly My vy My_y) = 0,

fm all integers 1 mth 0<<I<h—1 and for all non-negative mi‘egem Moy e
ey My with my+ .o +m,_ < k. Then

Ao
Gl=y My ey My 3} =0,
p

For all integers a, »p with 0 < p < B, 0 < afp < h and for all non-negative
ITegers My y ..oy My With My + oo Wy < kg

Proof. It is sufficient to prove that ¢'(I, m,, . ,mn ;) =0 for all
intégers 1 with 1<1'< % and non-negative integers My oo vy My, With

Wyt oo b, S ke, (Then the lemma would follow by the above remark.)
Define o .

F@) = @y, (& oer &) With gt b,y <K Ry,
where .

Ly,
’

E Y181
qlml‘...,mn_l(zlr ' n J. Z P 11 br- ﬂ' ree

A= =0

Y- 180 1
agiey .

For every 2 W‘Jﬂl 2] = 2k, we have
_ i .
h>“11 1—12)"( (r g I‘ {—r—z,)"F(2)
! 2mi 0 . (L—2)F(D)
r= F,.

ac,
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where I', denotes the cirele with centre (v 2,} and radius 4,

h—1

7l = H(Cmu—mn)fﬂrlﬂzﬂ_

U=

From this formula and by maximum modulus principle, we have for an
integer T with 1<I<h,

(10)  [F (0] < w(AUH(2BLYF 2T - gk A A (28L) (16T,
Further for an integer ! with 1 <1<, we have
(11) F(0)] = w(47SPH2EL) O — pA™ (28 T)),

provided that f(f) = 0. (For details of these inequalities, one can refer
to Lemma 4.) Observe that g satisfies (4). Proceed exactly as in Lemma 4

and show that {10} and (11) are inconsistent. This completes the proof

of the lemma.

' : 2log L, :
Tevmma 7. Set f = [—](f:}?—i] 1. Assume that f sabisfies (4).

Then the number of primes p satisfying (i) B < p < R, (i) K (al?) is
an emtension of K = K(u?, ..., o)) of degree p, is less than f.

Proof. We shall assume that the number. of primes satisfying the
assumptions of the lemma is greater than or equal to f and shall arrive
at a contradiction. Qut of these, choose f primes and denote them by
Pry--es Py For every inbeger o with (a,p,) =1 and ¢ < a/p < h, we
have from Lemma 5,

Ln L} Lﬂ-—l . .
% Aafn Ay 10100] 4 10 ] 2,aln
E Dlhyy < ooy Ay ) ad®PL L bl lyll...ynffl)aﬂn 1 =0,
Agy=0 k=0 Ayl =0 ‘

fgr all non-negative integers my, ..., m,_, with w4+ ... J-m,_, < b, 41
Since (a, p,) =1, the above sum is still zero when 1, iy summed over
any single residue class modyp,. Let 4, ..., A, 0 < 41, < Ly, be arbitrary.
Then

Ly, Ly . Ly

(5o 3 ptan

Ap=0 Ayp=0 Ay 10
Ay =dn(ny)

Aafp A 1T o 10 Mgy . A 0y
B v S R UYL VL TR Ren L I 0,

for all integers o with 0 << afp, < &, (a, p;) = 1 and non-negative integers
Mgy ooy My With my+ o0 g, S hyp . Here 4, ==4,(py) stands
for %, = A,(modp,). Define - :

p(zlf et A’n)l lf ln = Aw.(pl)ﬂ

ARG E R R 0, otherwire
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and ecall ¢, the function associated to p;(4,, ..., 2,). Then

s Plpy veny mn_l) =0,

for all integers I with 0 <I< h—1 and for all non-negative integers
Mgy eoey Ply_y With g+ ... Fomy ) < By, By Lemma 6, we have

a
Gyl =y My ooy My =0,
Y

for all integers a, p" with 0 < p' < R, 0 < afp’ < & and for non-negative
integers my, ..., W, With m; 4+ ... 4, < kyp, 2. Define
A i ) Pl(}*u R ;“n)i it ;“'n E'(i'n(:pzh
Palkiy s fu) = 0, otherwise.
Proceed as above and conclude that

(1+1102
op

y My ooy 'm’-n—l) =0,
for all integers ! with 0<I<h and 0+ ... +My 1< kz(g.lm.
Proceeding indnctively, define

ﬁf—!(;‘lﬁ vy ln)! it ﬂ'ﬂ. = A-n(pf)i

Aygonny dy) =
7 b » Fa) ‘0, otherwise.

Then we have

(12) ey mn_l) =0,
for integers I with 0 <7<k and ml Foee My S E gy 2 0 therve
that '

p...p,>RP > L,

Hence

ooy = [Py A= A
DrAr; -0y Ay) = 0, otherwise.

Recall that A is a sufﬁcient-ly large constant depending only on &
and 8, ..., 8,, 8 exceeds some absolute constant depending only on &

and 4. Observe that
log I, < 3Anlog(bnD)+2log A +loglog 8 +2nlog B
< 3dnlog(5nD)+3nE. :
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Thus

16m? log il
- - _.g__.ﬂ'. < /n“‘_DE < T .
¢ log

(I +2)f <
Thexefore it follows from (2) that
N T .
]i‘(T1+2)f P _i-8- k P ‘Ll "\‘ e + JJR .

Sefting I = 0 in (12) and writing p for p,, we have

i Ly -1

Moo X oplas ..

A=t Ay =0

Ayfp I TR Mgy
' A”) I R A U

for integers m,, ey Ty with 0 <, < Ly, Now proceed as in [8], p. 288,
a:pd‘conelude that 54y, ..., 4,) = 0 for ail (4, ..., 4,). This is a contra-
diction. This completes.the proof of the lemma.
. Denote by & the set of primes p satisfying (i) BV < p < R, (i) if P iy
In «7, then there are integers jy, ..., j, with 0 < j, <p (L <i<n),j, =1
such that af* ... ajr = #* for some » in K. '
Lmava 8. Suppose that § satisfies (4). Then the number of elements
. 1 R
0 o erceeds — .
4 logR

" Proof. By Lemma 2 and Lemma 7, the number of primes between

£ and R which are not in «/ does not exceed (2log L) flog R. But the

number of primes between RY and R exceeds R/(2logR). The lemma
follows, since U

8logL, < 1204n° D+ 24nB < 250 ° DE < R.

‘ Now we shall apply Lemma 3 to the set ./ and ay, ..., a, and obtain
- the following. '

LienyA 9. Suppose that f satisfies (4). Then theve emist rational ntegers
bl) ey b:»z.! bn % 0!

]b;‘ 'S:; (2,D'Rr)3DnR” 1,121')—-1’ 1 <: Z :.:.: " ’.
such thai

b
agl... agn =1.

Plfo of. In 'Egle %otafcion of Lemma 3, set § = ﬁ, po = R and P, < R.
Further 4, = 2°837,4 =1, ..., n (see (1)). We show that the assumphions
of Lemma 3 are satistied. Qbserve that

logd,...logd, < (3D)"4
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and so

log(log4, ...logd,) < 4nDlogA.

Further ¢; < 180D° and 50 ¢, < 180D°2°, Therefore

D?
e < 4070+ —(log180 -+ 5log D+ Dlog?2)

4

2

< AD'n 4 % (10 +6D) < 4D¥0* + 8D < 6D°»°.

P

Thus

e+ (D +1)log(logd, ... log4,)

D
log p,

<D+ 2 (6 D0+ 8nDPlog A)
log &

< Dlog R4 200 Dlog A
- logRk )

By Lemma 8, the agsumptions of Temma 3, are satisfied if we show tha_t
1R > Dlog R+ 200t Dlog 4. '
This follows from the definition of B. Now
e, = 4D P~ (2Dn)*P* < (3D)P (2 Dn )" < (2Dn)5P™.

Hence it follows from Lemma 3 that there exist integers Bl, ey by b, =0
guch that ol ... aln = 1. Further for [ =1, ..., n, we have

!b” é (ZD%)GDn(3D)2nDRDAzD~i é (QJDM)BDnRD AED—I.
Levwa 10, Assume thai
(]_3) 6 < EXI)( . (ﬂ-D)“lnll(logA)Z(logS)z Ez(ﬂ-{«l—(—s])? .

where u, 18 a large positive consignt depending only on e. Then there ewist
iniegers by, ..., b, b, # 0,

‘bﬁ < (2])?%)“”",&131121)”!, 1< 1 < n,

. sueh that

a’l)i e az,” = 1.
Proof. Set M = (nD)"“"E#. Observe that
by, < MTCUBA MO L 1< 2D MO

It is easy to check that the inequality (4) follows from (13). Hence the
lemma follows from Lemma 9.
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Remark. If ..., q, are multiplicatively independent, then,
B > exp(—(nD)"1" A(log A)* (log §)* BHn+1+9),

Denote by u,, u,, ..
only on &

Proof of Theorem 1. Suppose that g satisfies {13). Then by Lem-
ma 10, there exist rational integers by, ..., 8,, b, # 0,

| < 2 (D)2 37 (loglog 8)7,

. effectively compntable constants = 1 depending

i<,
guch that
b b

— by,
gt = oyl oot

Taking logarithm, we have

byloga, = byloga, -+ bloge, + ... + bu_\loga,_;,
where a, = —1 and b, is an integer that compensates for nsing principal
values of logarithm. We have '

L3

1ol £ 2 15, < (»D"‘Tf)u‘:’p”(loglogS)J)Aaﬂ. '
. ] . .

=1
Now our linear form becomes
_ by ' N b
8= J_ ~b—-10gc10+ (ﬂl‘* “b“*) logoy + ... + (ﬁn‘l - —%’t?—lw)loganhl

" ! n

: ;S.uppose that the coefficients of loga,, <.y loga,_; are not all zero. Assume
(if necessary, after renumbering a,,..., a, ) that the coefficient of
loga,_, is not zero. We divide the linear form by the coetficient of loga
and obtain a new linear form "

{14} B logag+ ... + A loga, _, —loga, 4.
It follows from (1) that the sizes of B9, ..., 81, do not exceed
| SO = (Dq;,)“zlbzﬂ AQDE ’514])2’
and they lie in K. Set B, = (logA+loglog8). It we assume that
B << (88)~*Pexp (— (D42 A(log A (log SNy gitwt1+9)
then (14) does not exceed
6xp( —(Dny™ A (log Ay (log SM)? BRIt

Then again appealing X ist intee - |
e §’ ppealing to Lemma 10, there exist integers bV, ..., s,
BV < 2(Dn)" =P AP (loglog SN2, 1 <] « ",

icm
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such that
o] e i)
G = el

(Actually there exists such a multiplicative relation between ay, ..., a,_;,
but this can be reduced tc a multiplieative relation between a;, ..., a, ;
by squaring, if necessary.) Define inductively

SEHD Dyl (o0 (GWADY - g gy

Put
B, = (log.l+loglog §™).
Agsume that

ﬁ < (S(n))—ﬂnl’) exp ( . (‘H«_D)uln ] (logxl)g (logs(n))in(?Hnl+s)) .
Earlier restrictions on g follow from here. Now it is.possible to continue
the reduction process, eliminating at least one logarithm, unfil we ar-
rive at
(15) lalog aq] < exp(— (nD)" A (log A) (log S™)* BA+1+9)

where @ is an algebraic number of K of size < 8%, The lefi-hand side of
this inequality does not vanish, as our original linear form does not vanish. So

(16) lalog e = g (SN2, _
Observe that (15) and (16) contradiet each other. Thus
£ = (882 Phexp(— (nD)1™ A{log /1) (log 80> EAr+1+4),
Observe that
and B, < u,{Dn)*E.

log 8™ < (Dn)*s"log (A8), loglog8™ < wu,(Dn)*E

Hence
B > exp(— (nD)"e" A(log A)* log (A8))* B +1+4),

where w4, it o large effectively computable constant depending only on .
Thix completes the proof of Theorem 1.
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" On the product of the conjugates
outside the unit cirele of an algebraic integer

by

A. BAzZvLEwICZ (Warszawa)

The aim of this paper iy to extend some results of A. Schinzel [4]
and to malke them more precise.

Let K be a number field of degree |K|, let

P(2) = py2"+p:2" 4 . 2,

be a polynomial over K with the content C{P) = (Po; .., D), 1ot G be

the set of all isomorphic injections of K into the complex field ¢ and,
for ge, let

T==

oP{z) = opy”"+ ... +op, = c:r_’poII (B Og).
=]

Generalizing an argument of Smyth [5] concerning the fundamental
case K = @, Schinzel proved that if K is totally real, P (#) is non-reciprocal,
p,; are integers, p, = 1 and p, # 0, then :

(1) max [] 1oyl = 6,
W fugyl>1

where 0, is the real root of the equation #° —§—1 = 0. We extend this
in the following manner. .

Tunowim 1. Let K be o totally complex quadratic extension of a totally
real field and V —8¢ K.

If P(z)e K [2] is @ monic polynomial with integer coefficients, P(0) # 0,
2 P(a?) % constP(2), then (1) holds.

of the equation
14V —3 '

Pl

which ds greater in obsolule value.



