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T0, M3 (78), B cuny (81), (86), momydaerca
(87) S E) —8(F)] < B+Ap (1) < A (T) = p(I).

Ha »rom morasare]beTB0 BaKOHTENO.
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A note on Waring’s problem in GF(p)
by
M. M. Dopson (York) and A, Tieriviizex (Turku)

1. Totroduction. Let p be a prime, & a positive integer, d == (k,p —1)
the greatest common divisor of & and p —1, and ¢ = (p —1)/d. Let y(k, p) .
denote the least positive integer s such that every residue (mod p} can
be represented as a sum of § kth power residues (mod p). In other words,
if s> y{k, p), the congruence

(1) #Eb . +aF = N (mod p)
has a solution for all integers N. It is well known thab

y(k,p) =y (d, p)
and that

pip—1,p) =9—1, ¥}lp—1),p) =i»-1),

p being odd in the last equation. In this paper we thall be concerned
with the cage when d < 4(p —1) and for convenience we define

v(k) = mgx_{?'(k; Py a<i(p—1)}.

In 1043 I. Chowla [3] proved that
(k) = O(E'™**)
where ¢ = (103—-31/5:13)/220 and where ¢ i3, as always in thiy paper,
a positive nuwmber. In 1971 Dodson [B] improved thig estimate to the
simpler result .
y (k) < K

providing % is sutficiently large and in 1973 Tietéviinen [7] showed that
| ¥ (k) = O (k).

Actually the first two results above were obfained for I'(%, p), the least s
such that the congruence (1) has primitive or nontrivial solutions for
all ‘integers N. However in view of the immediate inequalities

vk, p) < I'(h, p) < y(k, p)+1
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it is plain that the estimates given above are equivalent to the original

ones.
In Theorem 1 of this paper we prove that for any positive nuinber &,

Cv(B) = 0P
or equivalently that if §(p—1) does not divide %, then

wax Ik, p) = O K+,
il
This result is almost best possible for in Theorem 2 we show that the
lower bound for the exponent of % is 4, i.e. if o< §, then

y (k) % O(%%).
Heilbronn [6] has conjectured that
y(k) = O(%*)

and it is probable that this conjecture is true although we have been
unable to prove it.

A related question iy the representation of every integer in the p-adie
field Q, by sums of kth powers of p-adic integers. Denote by I, (k) the
least s such that every p-adic integer is represented nontrivially by a sum
of s kth powers. Then it follows from a recent paper by J. Bovey [1]
that the estimates for I'(k, p) can be extended to I, (k).

2. Preliminary results and notatiom. Since y (%, p) = y(d, p) we may
suppose that & divides p —1 and since we are concerned only with the
case d < }(p—1), we can suppose further that

 k<(p-1)f3.
If p > k* then it has been shown ([5], p. 151) that
r{k, p) < max{3, [32logk]+1},

8o that we can take p < %2 from now on withont loss of gonerality.
Let @ be the set of ¢ nonzervo kth power residues (mod_ p) 8o that @

is o subgroup of the multiplicative group F* = GF(p)—{0} of nonzero
residues (mod p). Let @,, be the set of those res1dues (mod ») which can
be represented as the sum of w kth power residues (mod o) and let g,
be the cardinality of @,,. :

" For any integer a, we denote by l[al the abzolute value of the residue
of a(mod p) which has least absolute value. Also we define

e(a) = girielp,
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3. The main theorem. The proof of the main theorem (Theorem 1)
depends on a number of lemmas. Lemma 2 and Lemma 4 give estimates
for y(k, ») under various hypothegls and Lemma 1 (which is Lemma 2
of [7]} and Lemma 3 are needed in the proof of Lemma 4.

Lemma 1. If ¢, = 2k then
y{k, ) <w(l+[2logp/log2]).

LmMMaA 2. Suppose that every coset aQ of Q in F* contwins at most
t{1--1/logp) elements b which satisfy ||b]| < p/8k*®. Then

y(k, ) < 17(logp)*K"* < 68 (log k)2 kY2
Proof. Buppose (bl = 19/8751"2. Then for any positive integer w,

| Setm] = =25

Joml

2
me /AL

< 4
Write .

R, ={jg: 1<j<u, qe@},

where each element is included as often as it can be represented in the
form jq. Thus each element in B, it & sam of at most » kth powers (mod p)
and the cardinality of the et is ui. Take u == [8k"*]4-1. Then for any
a # 0 (mod p) we have

o] = |3 Metia| < 3| Yot

frally, ) o ge =1 bea ) Jexl

Q

1 #

< ut ( — -———) AR —— < ut (1 —
logp logp

210g19)

since 8k < 4.
For any integer 4, let N (4) be the number of solutions of the con-

Sruence
yl"{""‘"i'yrE'A(HlOdp)? y.‘fE‘Ru'
Then :
»—1 ’
pN(4) = 3. Y Ee(a(y1+ kg — A

Wyl Upedly, @oul

ol T r
= at=a [T 3 etany> -3 HI elay)|
=) Feul uchi‘.u Gam] ) UJERU,

> (i)’ (."L —p—1) (1-
when 7> 2(logp)?. Hence
y(k, p) < 17(logp) B** < 68 (log k)* &'

.
210%19))>0
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if %> 20. The estimate y(%, p)<[4(k+4)] due to Chowla, Mann and
Straus [4] implies that » (k) <11 for %< 19 and the lemma iy proved.

Lmuma 3. Let k> 100. Suppose that some coset a@ of € in I contains
at least t(1. —1/logp) dlements b with |b] < p[8KYE. Then af) comtains an
element by such thal

Bt < byl < p [8TM

Proof. Let ¢ be a generator of the cyclic group @ and let {by, ..., b,},
. where # > #{(1—1/logp), be the subsei of elements of @ for which [
< p[BEE.
We assume that the conclusion of the lemma is false. Tt follows from
this assumption that at most t/logp elements b in a@ satisfy |b|| > &'®
and so for some b, in af) wo have

Bl <E®  for j§=0,1,...,[logp]—1.
Now
by byg* = (b1 g)? (mod p)
and
“1171" b g*)— ”b19.||2| < fball 10 @2+ oy gl* << 28 < p
whence

1Byt Ho gl = libygli®,
i.e. there exist coprime positive integers o, and ¢, sueh that

Pug?i _ IBagl _ e
Bagl Bl e

Moreover ¢, 5 ¢, since ¢ > 2 implies |b;qll == (bl
If we replace b, by b;¢ and repeat the argument we get

(152 " - 12,42l a,
(1B, gl 1, gl 01

and repeated application with b,q replaced by byq* and 8o on gives

Wi gl _ Ibagll e

._.“__..-—————— mia—ma———— BT s

[
b, gy =
Hence ' _
| Il = (ox/es)1o671 o, o=
and so there exists a positive integer ¢, such that

Byl = ¢gef®8P1=L and b, RoBPIY| = g cfloBPI-L,
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It follows that

max {|[b]l, B, ¢"EP~1} = ¢p(max {c,, ¢,})le?-1
> gllegn]—1 . QloR(EK~2 -, ;01,'2’

which ig the degired contradicbion.

LEMMA 4. Suppose that some coset aQ of Q in F™ contains at least
t{1 —1/logp) clements b sueh that bl < p /8% Then

y(k, p) < 10{logp) B/* < 20(log k) kY™

Prooif. Because of the Chowla-Mann-Straus estimate [4] we may
guppose that & > 100 and hence p > 300. Therefore #(1—1/logp) > 2

Let by, ..., b, where n > {1 —1/logp) > 2, be those elements in a@
for which

[b;] = [Ib5]l < p /8%

We can assume without loss of generality that the greatest common
divisor (by, ..., b,) of by, ..., b, is 1 and also that |b,| > k** by the pre-
ceding lemma.

Congider the numbers of the form

) My by Fmgb,  (0<my <3,
where
(3) t, = min{km, (byy oeey Bye1)},

and where for each ¢ =n—1,...,2,

l' k]/2

{4) 1 = nlin1 (Byy2eey 1.—1)]

tn-'-ti+1’ bl:"': ]7

and,
f, = 2k,

It is easily seen that f; = 1 for all 7 and that #; is integral except for
at most one value of 4, # =i = 2. For suppose that the greatest value
of the saffix ¢ for which # is not integral is 7 (n = j > 2). Then

ek

= y
e
and so

Rl (bl, ...,_b,‘.'_l)} -1
tnuvntj+1tj‘ ! (blj...,bj)

=1, = 1.

bisg = min{

It follows from (4) thabt #_, = s = ...
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tt...1, = 2% whence there ave at least 2% numbers of the form (2).
These numbers are all incongruent (mod ), for if fwo were congruent
(mod p), i.e. if
: by 4o by, = myby k. R b, (tnod p),
then .

(1 —~mi)b1 v (M, ~ g )by, == 0 (mod p),
But

(0, —m) by e (=) b, | < |y — g |Byf - }-111}3475 D41 Z | - |

Tread

. 8% + g,:';/z 1+ Z (1)},

since |m,—m;| <t —1 except for at most one value of 4. Hence

P
bla”“ ‘%Iom 1[t£ =2

-+ -"E‘(mn'_‘m;'r,)bn =0,

(31, — ) By = oo A (0, —10,) By | <

which implies that
(my—my) b,

i.e.

(5) (ml _"m’i)bl toe - ('m'n-—l - m':r.—-l)bﬂml i (m;a o mn) bn‘

l\l'ow (B .y byy) divides the left hand side and henee the right hand
side of (8) and sinee {(by, ..., b, 1), by) = (byy bay-vy B) = 1, (Byyoney Byy)
divides m, —m,,. Bus

’ - b
[t — | <, = min{B", (b1, ooy by} < (Byy ooy By

whenee m,, = m,, and
(e~ 1) By s (B =1ty )by == 0,

We now proceed inductively and assuine
(6) (my — ) by

where » —2 =4 =

v (g = ) ey (g )b = 0,
2. Then we geb
{7) (g — 3By . ..

where for each j = 1,

P (Mg M) Doy e (g - ) U,
coey By by =bj(by, ..., by). Plainly
{(bb vy b;'--l)! b:) == (b;: neey b;-—ls b«:) = 1.

and 80 (Bly vy Bia) = {By, veny b)) (B, ..., b)) divides |y —my| . But
[y~ | < ¥ << (By, .oy b} {byy ..y b;), whence m; = m; a-md
(ml'—m;)bl +..

"I'(m'i-1 _"mi—l)biwl == (),
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Thus it follows that for ¢ =m, ..., 1, m; = m;, which implies that the
numbers (2) ave all incongruent (mod p) and so indeed represent at least
2k distinet residues (mod p).

Since for each ¢ =1, ..., n, bca), there exist » kth power residues
(mod p), 1,5 @y, s&y such thap

b; = ag; (mod p)
for ¢ == 1, ..., n. Consequently the expression
m’ngn} ng'm’z‘<t’i7
i

LT/
which = o snm of al most 3&Y kth power regidues (mod p),
ali least 2% distinet residues (mod p). Hence by Lemma 1,
vk, p) < 35" (1 + [2logp log2]) < 10K logp < 205" logk,

and so Lemma 4 is proved.

Since the hypothesis -of either Lemma 2 or Lemma 4 must hold,
we obtain

TrrRORDM 1. For oll & we have

v (k) < 68 (log k) k',
Hence given any positive s,
y (k) = Ok, ,

4. Other theorems. As we have remarked Theorem 1 is almost best
possible and we have

‘Turorem 2. There are infinilely many & for which

represents

> }(V8k—1).

Proof. Since there is an infinity of primes of the form 1 --3F%, it
suffices to show that

p{k,1+3%) = 3 (V3k—1).

Lot p =143k The number of kth power residues (mod p) is ?

== (p--1)/k == 3 and since their sum iz congruent to 0 (mod p), we can
take ¢ = {1, &, -1 --a} Then
w == (@ Ayt 2 --~1~—a,): 0 <oty +2< w
= {2k (y —2)a: 0 L ot+y+a<wl

o {utva: —wsKu, v w}
The cardinality of the latber seb Is <
Qe #GF(p) i w< %(1/375_1)

and the theorem follows.

< (2w +1)?, whence

< 3{p"* 1)



_ 166 M. M. Dodson and A. Tietidviinen

In conclugsion we remark that Theorems 1 and 2 can be extended
to the p-adic case. We have
TEROREM 3. Given any positive &,

max {I,{k): d <f—;~(p-1)} = QK+,

This theorem follows immediately by combining ouvr Theoretn 1
with Theorems 1 and 2 in Bovey’s paper [1].

Ag in the (mod p) case, this result ix close to best possible as the
following theorem, which is similar to Theorem 2, shows

TeeoREM 4. Thers ave infinitely many kb for which

max {I5,(k): @ < 3(p—1)} = $(V3k—1).

Proof. Let p be a prime and congruent to 1 (mod 8). Then there
are infinitely many integers & of the form p™{p —1)/3. Also there are
just 3 nonzero Eth power residues (mod p™+'), including 1, and theix
sum is congruent to 0 (mod p™*), so that we can write them 1, 4 and
—1—a (mod p™"). The form
8 < $(V3k—1},

af+...+af, where

is therefore congruent to the expresgion

t+ovaw(—1—a) (mod p™), where O<Lu+v+w<s,

i.e. to

(%=~ w) + (v —w)a (mod p™ ), ‘where —~s<u-—w,v—w<s.

Since (2¢4-1)% < 3% < p™*!, the jomrm cannot represent every residue
(mod p™*), whence Il,(k) = 4(V3k—1).
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