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Algebraic function fields with equal class number
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Jamms R. 0. Lerrzen and MANOHAR L. Mapaxn* (Columbus, Ohio)

1. Introduction. Let #/K be a field of algebraic functions of one
variable having a finite field K with ¢ elements ag its exact field of con-
stants., The group Oy of divisor classes of degree zero of such a field is
finite. Its order Ay iy called the clags mumber of the field. Let B/L be
% finite separable extension of F/X. In this paper, we discuss, and almost
completely answer, the following question: When is hp =%t A tield
of genus zero has class mumber one. The special case gp= 0, gp 5= 0
has been completely solved in [6], [7]. There are, up o izomorphism,
seven possibilities for such F. We shall, therefore, assume gy 7 0. The
extension H/L can be obtained from F/K in two steps, a purely constant
extension fellowed. by a purely geometric extension, i.e. no new counsbants
are introduced. For fields of genns larger than one, we shall treat the
two cases separately. Qur main results are the following:

TamoreM L. Let BIK be o function field of genus one. Let B|L bo a
finite separable estension of FK. If L = K and the extension is unrami-
fied, then liy = hyp. If I == FL, then hy > hy if any of the conditions ¢ > 4;
g=3, & [L:X]>2; ¢g=2, [L:K]>3 is satisfied.

TueorREM 2. Let HB/K be a purely geomeiric ewxiension of F[K with
gp > 1. Then hy > by in each of the following cases: (a) ¢> 5, gz > 13
(b) g ==4orB, gp=8, gpz2p-+1; (¢) g =38, 1p =3, g2 = 3¢r 07 §r = 2
and g3 T3 () g =2, gui> 3, gi = Ogp or gp =2 and gg > 1L

Trmorey 3. Lot FIK be a function field with gp>>1 ond B = FL
be @ constant cotension. Then hy > hy 4f any one of the following is satisfied:
(a) gz d; () g =3, [L:K]>2; (¢) ¢ =3, [L: K] =2, grn>20; (d)
g=2 [L:K)=>8;(0) ¢=2 [L:K]=3gp>9 (1) g=20r3, [L:K]
=9, F hyperciliptic and not isomorphic to XK(m, ), y*+¥4 =g 4w® or
(52 ) (@® an - 1) '

Proofs of these theorems are given in § 2. In § 3, we make gome re-
marks and give examples. Among these examples is one of afield of genus 3
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defined over GIF(2) for which the class number remaing unchanged in
a constant extension of degree 2. Also, we present examples of fields
of genus 2 defined over GF (2) and G (3) which are contained in geometrie
extensions of genus 5 and 3, respectively, and there is no change in the
clagz mumbper.

2. Proofs of theorems. We hegin with the

Proof of Theorem 1. Since B/K is a geometric unramified separable
extension of the function field F/E of genus one, we have the Riemann-
Hurwitz genus formula {[17; p. 106)

= [B: ] [2g5—2] = 0.

Thus, gz = gz = 1. By F. K. Schmidt’s theorem [10], a function field
over a finite field of constants containg 2 divisor of degree one. By the
Riemann-Rech Theorem, each clags of degres one of a field of genuy
one has dimension one and, therefore, contains precisely one prime of
degree one. Thus, the class number is the number of primes of degree one.

To prove hy = hy, consider fivst the case when F/F is normal. Then,
gal(B[F) is 150morph1c ([3], p. 65) to a subgroup of the group of trans-
lations of EX /1( K denomng the algebraic elosure of K. Thuy, B/F ig
abelian. To prove hy = hy, we can assume [H:F) =1 iy a prime. In
this case, as Moriya [8] has shown, the equality of class nwmbers is an
immediate consequence of clags field theory, (Bee [9], [11] for the siandard
resultis of clags field theory.) Namely, the primes of degree one of # ure
obtained from the primes of degree one of F which decompose. The primes
which decompose are precigely the primes which are noring. Also, the
norm index ig I Thus, :

h
hE'— 'TF‘ﬂhF.

Turning, now, to the case when B/F is non-normal, we ean agsume
that there is no field strictly between B and F. Let T/K be the normal
closure of Z/¥. The extension T/# i3 also unramified and g, == gy = gp
= gz = g7 = 1, where B = EK, F = FK. The extension T/F iy normal,
unramified, geometric and, hence, abelian. Thus, £/F is alvo abelian.
Sinee there is no field between % and F, it follows [#: F) = [fﬁ F =1,
a prime. Let [K:K] = ¢, = KE F= KF, & == gal( K/K H =
gal (K/K). L{i N denote the kernel of the canonical conorm map Cyp > Cgy-
Algo, let ¥, ¥ have similar meaning. We know, hyz = hm{ It ¥ is trivial,
con: O —Co i3 an 1somorphmm It follows Oy = O'm (the inwvariant
subgroup under H) = Ow = C4g- Thus, hy = hy. If N iy nontrivial
its order is I. Then, [¥:1] =1. Let [K,: K] =1 The class number of
FE,, is divisible by, at least, I*([8]; Satz 1). This implies that the l-rank
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of Uz, is two sund that the elementa of Cyz are Tth powers in oz ([8];
Hilfssatz 6 and 7). Also Ogf /N being of index ! in Oz, it follows that
Com, and hence Cp, 13 contained in Cgz /N . Consider, now, the exact
sequence of G-modules

Oz
(1) 1—>N-—-:~(YM,—> 1\(;

-1,

By IMerbrand’s Lermins
[H (G' Coz) 1] = [HO(G Oy 1] =1,

becanse, the norm map from 5 to Cyp is surjective. Thus, in cohomology,
(1) .gives the exact sequence.

(G, N)—~H (G, Cg) = 1.

- G
(2) 1> N 0% ( C%F) ~H!

We claim [HY(@ ¥):1] = [N:1]. ¥ ¥ =1, consider [HY&, ¥): 1]
which, by Herbrand’s Lemmm, eqguals [HYd, N ): 17 The
invariant elements ¥

group (@ i\T = == -
group HUG; N) NOLIY norms

=1 fOr _ﬁg:N:l_

T [N:1] =1, then @ operates trivially on N = N. Thus,

NG, N) o Hom (¢, N) and [HYG,N):1] =1,

C
Considering that (% = Cyp and (;TP) = Cyp, (2) gives, in each case,

by = hyp. This completes proof of the first part of the theorem.

Tor the second part of the statement, we recall that by the Riemann
Hypothesis [4], by == the number of primes of degree one of F < 1/q+1
hy = (@7 1) To complete the proof, we observe that ¢ 1
= VE—J«L’.- for the valuex of q and 7L : ] in the statement of the theorem.

Troof of Theorem 2. Let gy = gp, ¢ = ggz. We consider a constant
axtension & /I\ of KK 0[: (1@ sype 2g 1. Bince K is perfect, there iz no
change in e genus, Using the Riemann Hypothesis to obtain a lower
estimate for the nuwwmber of primes of degree one of F and considering
the decomposition of primes of & in B, we show, ag in [7], that ¥ has,
at least,

. qzd—-l ol 1_29-. q{ag»—i)fz
(3) . 5y—1
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integral divisors of degree 2¢g —1. Again, by the Riemann Ilypothesis,

(4) hp < (Vg +1)".

.It is an eayy consequence ([2], p. 64) of the Rieln,a:l'lll{nR()(‘-ll. ',I.?}.m.orem
that a class of degree 2g —1 has exactly (¢’ —1) (g~~1)_’" integral (.hvmom.
Thus, we can conclude from (3) and (4), that hy > hp whenever

~1){% I . 1% 2
B) T(g, ) = (g—1) [ +1~2g- g% V] — (29 — 1) (" 1) (" -+ 1)*

is pogitive. ‘ .
? For g > 5, we can assune that [B:F]> 2 and, hence, g = 3g,—2.

Otherwise iy = hF(]/E—l)"ﬂ’l = hyp, sinee, in this. ¢ase, the zota i‘:un(*:i'.i;f)n.
of F' divides the zeta function of . Then, T{g, ¢) is easily seen to he positive

for g= 7. . -
The following facts arve easily verified:

.(6} T(5,5), 19,3, T('7, 3), T(5, 4y, T'(15, 2), T(11, 2) are positive;
(7) %2 = 2(g" + 170 +24%"V2.8(q, g),

q
where '

(8)  8{g,9) = (g—1) [¢" "V Ing—1—glng]—
. — (g 1/ g R {1+ 3 (29 —1) Ing];
a8

5o =4~ 1) [{Ing) g2 —Ing— (¢ + 1) ¢"*Ing]

g . :

(9) > (g—-Dlng[g* Mng—1—¢*] i# g¢=3,
a8

g == 2.

— = In2 2% Ing 1 — 25 (2 1)) i
7 T

From (1), (8), (9), it iy seen that T(y, ¢) is an increasing ?El‘l.l],(ﬂ".it).].l for the
values of ¢,, g and ¢ in the statement of the theorem, g4, ¢ varying under
the regtrictions imposed by the genus formula. It follows from (6) and ()
that the proof of Theorem 2 iz complete.

Proof of Theorem 3. We give the proof in three steps.

Step 1. It follows from the Riemann Hypothesis [4] that the poly-
nomial numerator of the zeta funckion £(s) of a funclion field of genus g
can be written

{1
(10) L(uw) = 1+a,u4... -Fglu® :n(l%zq“ﬂf.ﬂncos O+ quy,

=1 .
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where % = ¢7°. The class number hy = L(1).
follows from (10),

{11)

Writing n = [L: K], it

b < (@ +1Y0F, by (g™ — 1)z,

Since finite fields are perfect, genus does not change in a constant exten-
sion. Thus, gp = gp and (11) implies hy > hy whenever ¢™* > g 42,
(b}, (d) and also (a), except for the case n — 2, ¢ = 4, follow from this
inequality.

Step 2. Uonsidering the constant extension of E|L of degree 2g—1,°
we can show, as in the proof of Theorem 2, that k; > hy whenever
LMy @) = (6"~ 1) [(@"V"~ +1- 29 (@] (29— 1) (477 — 1)(gt2 1 10
is positive. Direct verification shows that (¢) and (e) and also the excep-
tional case of Step 1 for g > 2 follow from this.

Step 3. We observe that a field of genus 2 is neeessarily, hyper-
elliptic since the dimension as well as the degree of the canomical class
is two, the quotient of two integral divisors in it determines an & such
that [ : H(x)] = 2. o

It remains to prove {f) and (a) for g =4, g=2 [L:K] =2.To
that end, together with F, we consider also the function field 2" of the
same genus defined by

Yty = 1+f(®),  wrry = g+f(e), R = 2f(a),
for ¢ = 2, 4, 3, respectively, where f(x) defines the function field /K
in the normal form [3] and % denotes a primitive third root of unity.
Then, I = F'L. The Tuler product representation of the zeta function
and the decomposition behavior of primes shows that Lo () = Lol — 2.
Thus [2], the product of the L-polynomials of P, F gives the L-polynomial

cof FL. In particular, hyy = Aphp. Tor g=4, =2 andg=3g>1

holds Ay > 1. For ¢ == 2, the two exceptions [6] correspond to those
listed in the statement. This completes proof of Theorem 3.

3. Rewarks and examples.

H o I(w, Vab 1), and F = K(o, V{o* 1 1) (2530 2)).
Then, gy =1, gp == 2. We shall show hp = bpy, gpe = 3. We have
PG = H(YV0 20 52) = K (VP + 140, Vab + 221 2).
Let Y = Va? 4202, Z = VP + 1+ Then,

.. Z -zt
V¥ ne gdp Qg2 == 3

3
} @243,
YR = (Y =L 27— 2R 27,

§ — Acta Arlthmetlcs XXX.2
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Which shows that gpe = 3. It is also easily verified that the number
of primes of degree 1 of I, N, p = 5, Ny p = 8, N; g = 1. This gives [6]

Lp(u) = L4+u-+4u2+3ud+9u,  Lg{u) = 1—3u-+3u?

These two polynomials are relatively prime and each divides Lyg(u)y
Since degLyy () = 2py = 6, we have Lyg(u) = Lp(u)Ly(n) and, hence,
hipg = Ry

Examein 2. Let JI| = ¢ = 2 and the fields F, &, H be deflined over
K (#) in Hasse’s normal form [5], respectively, by the functions o°--a,
o fad+l, 224241, We shall show gpe =5, hpg = Bp. Any two of
the fields F, @&, H gives the same composite B = FG. The infinite prime
is the only ramified prime. It ramifies fnlly in . It follows from the
genus formula and the arithmetic theory [B] that gp = 2 = gq4, g = 1.
To ealeulate gz, let

H =KX,
B =H(Z),

Y+Y =X+X+1,
P72 =X+ X041
The last equation is not in the mormal form for P, the infinite prime
of H. However addition of (%)5 + (%)m to each side reduces it to the

normal form for P,. One obtains that the degree of the different of B/H
is 8. The different of /K (X) ig the product of the different of H /K (X
and B/H. This gives, by the genus formula,
20p—2 = 4(—2)+16, de. ggp=2>
Verification of the following facts is loft to the reader.
Nip=258, Nyp=2, Lp(u)=1+2u+4u?+4ud-+4u*
- 'We know [6], '
Lg(w) =1 —2u +2u®

dut - 4ut, Ly (u) = L—2u - 2u2

Lig(w), Ig(w), Ly(u) ave relatively prime and each of them divides Ly (w),
& polynomial of degree 10. Therefore,

Lg(u) = Lp(u)Lg(u) Lg(w), and hence, hy = hphghg == hy.
BXAMPLE 3. Let K| = 4,
P =E(X,2), Z*+Z=X'+X+y, . ' ‘
G=E(X,Y), Y'+Y=IX4g,

n primitive 3rd root of unity, B = F@. Then,

de =2, gpr=1=gg, Iy =Dhp
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Examrin 4. Let [K| = 8,

F=KX,Z), Z'=X(X*{2X+32),
@ =KX, T, =X'4+2X 42,
B = PG. Then,
In =2, gr=1=ygg hy=hg.
ExAmpLE 5. Let (K| = 2,
F=FK(X,7), Z°+Z=2X"4+1,
G=K(X,Y), Y+¥=X+X+1,
B = F@G. Then,
Ju =2, gp=1=4gg hg=Dhp.

(B) In a constaﬁt extension B = FL of degree n,

hpphist = [ [ @+awtagwr 1. 4 g70™),

w

where w 3 1 varies over the nth roots of unity [2].
This gives:
(i) m =2 = hpy = hy iff L(~1) = 1.
For g =1, this means a, = a,, i.e. N, —(g+1) = g, so hyp = 2¢-+1;
(ii) =3, §=1=hgy = hy iff ai4+¢* =a,+¢(1-+a,).
EXAMPLE 6. We give an example of a function field of genus 3 defined
over- GI'(2) for which the class number is equal to that of the quadratie

constant extension. Consider the projective plane curve of degree 4 defined
over GF'(2) by the equation
YZ4+ YN X Y+ XYZ = X°Z + X275,

It is easily checked to be non-singular. Therefore the number of primes

of degres 1, 2, 3 of the corresponding funection field F = K (X, ¥) of .
genus 3 defined by

YP4+Yy(x+0+3Y =X+X
can be directly calculated. Oﬁe finds
N:L == 7, Ng = 0,

Using these values to calculate a,, @y, a3, we obtain

Ny =1.

Lp(w) =1 4w 9u® - 166° - 184% + 160° +8u®,  Lp(—1) =1.

Thus by (i), hy = hyy, for [L: E] = 2.



176 J. R. C. Leitzel and M. L. Madan

Examerr 7. Leb K| =4, F = K(X, ¥), Y+ Y = X° [L: K] =~ 2.
Then,

gr =1, hpr="hy=9.
DX.AMPLE 8. Lét (K| =3, F =K(X,Y), ¥’ =2X+-X+1, [L:K]
2. Then,

9F=1’ hzm“hrﬂ=7°

Examein 9. Let K] =2, F = K(X, ¥), ’+¥ = X+ X2, [L: K]
= 2. Then,

gp =1, T =Thyz.
EKAMPILD 10. Lot |[K| =2, F = K{X, V), *+¥ = X°+4+ X%, [L:K]
= 2. Then, )
Ir = 2: hyr, = hp.
Exaverm 11, Let |K| =2, Y4 ¥ = (X +X)(XPL-X+1)7T
F=KX,Y), [L:K] =2, Then,
gr =2, hy=hgg.

ExAMPLE 12. Let |[K| =2, F = K(X, ¥), Y*4+ ¥ = X' X% [L: K]
= 3. Then,

hp =B = hpyz, gp = 1.

Examples 7-12 are eagily verified using (i), (ii) or by using, as in
the proof of (f) of Theorem 3, the information [8] of the fields of class
number one. Examples 10, 11 are the exceptions in Theorem 3 (f).

. (C) Let F/K be a function field of genus one and ¥F/L a finite sep-
arable extension. In Theorem 1, we have shown that L = K, B/F wun-
ramified implies iz = kp. The above examples show that for each value
of ¢< 4, neither of these conditions is necessary. However, for g > 4,
each of these conditions i3 necessary. The necessity of I = K hag been
established in Theorem 1. Also, the functlon (g, q), introduced in the
proof of Theorem 2, is positive for y > 1, ¢> 7 and ¢> 2, ¢> 4. To
prove that g, > 1 Imphes hy > by, we hwe, therefore, to (‘on.mcler only
the two cases ¢ = 5, ¢ = 7 for gy = 2. It iy known that if a field of genms
two has a subfield of genus one, then, it has one more subfield of genus
one and its zeta function iy the product of the zeta functions of the two
subfields. This implies hy > hy because, for ¢ > 4, there are no fields of
genus one and clasy number one. For ¢ == 7, we indicate an independent
proof. The equality kg = hp impliex 7'(2, 7) is not positive. Together
with the Riemann Hypothesis applied to I, we obtain 12 and 13 as the
$wo_ possibilities for hp = hp. The non-existence of function fields of
genus 2 defined over GF(7) of clags mamber 12 or 13 ig established using
the method of [7], p. 428. The method fails for ¢ = 5.
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(D) For K| =q¢ =4, B=FL, [L:E] =2, g =gp>1 implies
Ly > hg. Thiy statement is a special case of Theorem 3. We give an alter-
nate proof for it.

If hpy, = hy, then (10) implies
g
Lp(—1) =1 = [ [ (5 +4cos6,).
il
Thus, co80; = ~1, ¢ =1, ..., ¢. Substitution in the expressions for
thy @y Obtained by coinparing coefficients in (10) gives

(12) Wy = 4g,
Also,

thy = 8g2—dyg,
ty = Ny—{g-+1)
20, = N}

From (12) and (13
is non-negative.

= Nl'—ﬁs
—(2g+1) N, +2N,+2¢ = Ni— 9N, + 2N, + 5.

); we obtain ¥, =6(1—¢), a contradiction becauge N,

(13)
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