

## Algebraic function fields with equal class number

 $\mathbf{b}\mathbf{y}$ 

JAMES R. C. LEHTZEL and MANOHAR L. MADAN\* (Columbus, Ohio)

1. Introduction. Let F/K be a field of algebraic functions of one variable having a finite field K with q elements as its exact field of constants. The group  $C_{0F}$  of divisor classes of degree zero of such a field is finite. Its order  $h_F$  is called the class number of the field. Let E/L be a finite separable extension of F/K. In this paper, we discuss, and almost completely answer, the following question: When is  $h_E = h_F$ ? A field of genus zero has class number one. The special case  $g_F = 0$ ,  $g_E \neq 0$  has been completely solved in [6], [7]. There are, up to isomorphism, seven possibilities for such E. We shall, therefore, assume  $g_F \neq 0$ . The extension E/L can be obtained from F/K in two steps, a purely constant extension followed by a purely geometric extension, i.e. no new constants are introduced. For fields of genus larger than one, we shall treat the two cases separately. Our main results are the following:

THEOREM 1. Let F/K be a function field of genus one. Let E/L be a finite separable extension of F/K. If L=K and the extension is unramified, then  $h_E=h_F$ . If E=FL, then  $h_E>h_F$  if any of the conditions q>4; q=3, 4, [L:K]>2; q=2, [L:K]>3 is satisfied.

THEOREM 2. Let E/K be a purely geometric extension of F/K with  $g_F > 1$ . Then  $h_E > h_F$  in each of the following cases: (a) q > 5,  $g_F > 1$ ; (b) q = 4 or 5,  $g_F \geqslant 3$ ,  $g_E \geqslant 2g_F + 1$ ; (c) q = 3,  $g_F \geqslant 3$ ,  $g_E \geqslant 3g_F$  or  $g_F = 2$ , and  $g_E \geqslant 7$ ; (d) q = 2,  $g_F \geqslant 3$ ,  $g_E \geqslant 5g_F$  or  $g_F = 2$  and  $g_E \geqslant 11$ .

THEOREM 3. Let F/K be a function field with  $g_F > 1$  and E = FL be a constant extension. Then  $h_E > h_F$  if any one of the following is satisfied: (a)  $q \ge 4$ ; (b) q = 3, [L:K] > 2; (c) q = 3, [L:K] = 2,  $g_F > 20$ ; (d) q = 2, [L:K] > 3; (e) q = 2, [L:K] = 3,  $g_F > 9$ ; (f) q = 2 or 3, [L:K] = 2, [L:K] = 2, [L:K] = 3, [L:K

Proofs of these theorems are given in § 2. In § 3, we make some remarks and give examples. Among these examples is one of a field of genus 3

<sup>\*</sup> This research is partially supported by N. S. F. under Grant No. GP-29083 #3.

defined over GF(2) for which the class number remains unchanged in a constant extension of degree 2. Also, we present examples of fields of genus 2 defined over GF(2) and GF(3) which are contained in geometric extensions of genus 5 and 3, respectively, and there is no change in the class number.

## 2. Proofs of theorems. We begin with the

Proof of Theorem 1. Since E/K is a geometric unramified separable extension of the function field F/K of genus one, we have the Riemann-Hurwitz genus formula ([1]; p. 106)

$$2g_{\mathbf{E}}-2 = [\mathbf{E}:\mathbf{F}][2g_{\mathbf{F}}-2] = 0.$$

Thus,  $g_E=g_F=1$ . By F. K. Schmidt's theorem [10], a function field over a finite field of constants contains a divisor of degree one. By the Riemann-Roch Theorem, each class of degree one of a field of genus one has dimension one and, therefore, contains precisely one prime of degree one. Thus, the class number is the number of primes of degree one.

To prove  $h_E=h_F$ , consider first the case when E/F is normal. Then,  $\mathrm{gal}(E/F)$  is isomorphic ([3], p. 65) to a subgroup of the group of translations of  $E\tilde{K}/\tilde{K}$ ,  $\tilde{K}$  denoting the algebraic closure of K. Thus, E/F is abelian. To prove  $h_E=h_F$ , we can assume [E:F]=l is a prime. In this case, as Moriya [8] has shown, the equality of class numbers is an immediate consequence of class field theory. (See [9], [1.1] for the standard results of class field theory.) Namely, the primes of degree one of E are obtained from the primes of degree one of F which decompose. The primes which decompose are precisely the primes which are norms. Also, the norm index is L. Thus,

$$h_E = l \cdot \frac{h_F}{l} = h_F.$$

Turning, now, to the case when E/F is non-normal, we can assume that there is no field strictly between E and F. Let  $T/\overline{K}$  be the normal closure of E/F. The extension T/F is also unramified and  $g_T = g_E = g_F = 1$ , where  $\overline{E} = E\overline{K}$ ,  $\overline{F} = F\overline{K}$ . The extension  $T/\overline{F}$  is normal, unramified, geometric and, hence, abelian. Thus,  $\overline{E}/\overline{F}$  is also abelian. Since there is no field between E and F, it follows  $[E:F] = [\overline{E}:\overline{F}] = l$ , a prime. Let  $[\overline{K}:\overline{K}] = l^2$ ,  $\overline{E} = \overline{K}E$ ,  $\overline{F} = \overline{K}F$ ,  $G = \operatorname{gal}(\overline{K}/K)$ ,  $H = \operatorname{gal}(\overline{K}/K)$ . Let N denote the kernel of the canonical conorm map  $C_{0F} \to C_{0M}$ . Also, let  $\overline{N}$ ,  $\overline{N}$  have similar meaning. We know,  $h_{D\overline{K}} = h_{F\overline{K}}$ . If  $\overline{N}$  is trivial,  $\operatorname{con}: C_{0\overline{F}} \to C_{0\overline{E}}$  is an isomorphism. It follows  $C_{0F} = C_{0\overline{F}}^H$  (the invariant subgroup under H)  $\cong C_{0\overline{E}}^H = C_{0E}$ . Thus,  $h_F = h_E$ . If  $\overline{N}$  is nontrivial. its order is l. Then,  $[\overline{N}:1] = l$ . Let  $[\overline{K}_1:\overline{K}] = l$ . The class number of  $\overline{F}K_1$ , is divisible by, at least,  $l^2([8]; \operatorname{Satz} 1)$ . This implies that the l-rank

of  $C_{0,\overline{k},\overline{k}_1}$  is two and that the elements of  $C_{0\overline{k}}$  are lth powers in  $C_{0\overline{k}}$  ([8]; Hilfssatz 6 and 7). Also  $C_{0\overline{k}}/\overline{N}$  being of index l in  $C_{0\overline{k}}$ , it follows that  $C_{0\overline{k}}$ , and hence  $C_{0\overline{k}}$ , is contained in  $C_{0\overline{k}}/\overline{N}$ . Consider, now, the exact sequence of G-modules

(1) 
$$1 \to \overline{N} \to C_{0\overline{F}} \to \frac{C_{0\overline{F}}}{\overline{N}} \to 1.$$

By Herbrand's Lemma

$$[H^1(G, C_{0\overline{F}}):1] = [H^0(G, C_{0\overline{F}}):1] = 1,$$

because, the norm map from  $C_{0F}$  to  $C_{0F}$  is surjective. Thus, in cohomology, (1) gives the exact sequence.

$$(2) 1 \rightarrow \overline{N}^G \rightarrow C_{0\overline{F}}^G \rightarrow \left(\frac{C_{0\overline{F}}}{\overline{\overline{N}}}\right)^G \rightarrow H^1(G, \overline{N}) \rightarrow H^1(G, C_{0\overline{F}}) = 1.$$

We claim  $[H^1(G, \overline{N}):1] = [N:1]$ . If N=1, consider  $[H^0(G, \overline{N}):1]$  which, by Herbrand's Lemma, equals  $[H^1(G, \overline{N}):1]$ . The

group 
$$H^0(G, \overline{N}) = \frac{\text{invariant elements}}{\text{norms}} = \frac{\overline{\overline{N}}^G}{\text{norms}} = 1 \text{ for } \overline{\overline{N}}^G = N = 1.$$

If [N:1]=l, then G operates trivially on  $\overline{N}=N$ . Thus,

$$H^1(G,\,\overline{N})\cong \mathrm{Hom}(G,\,\overline{N}) \quad ext{ and } \quad [H^1(G,\,\overline{N}):1]=l.$$

Considering that 
$$C_{0\overline{F}}^G = C_{0F}$$
 and  $\left(\frac{C_{0\overline{F}}}{\overline{N}}\right)^G = C_{0E}$ , (2) gives, in each case,

 $h_E = h_F$ . This completes proof of the first part of the theorem.

For the second part of the statement, we recall that by the Riemann Hypothesis [4],  $h_T =$  the number of primes of degree one of  $F \leq (\sqrt{q}+1)^2$ ,  $h_R \geq (q^{(L:K)/2}-1)^2$ . To complete the proof, we observe that  $q^{(L:K)/2} > \sqrt{q}+2$  for the values of q and [L:K] in the statement of the theorem.

Proof of Theorem 2. Let  $g_0 = g_F$ ,  $g = g_E$ . We consider a constant extension  $\overline{E}/\overline{K}$  of E/K of degree 2g-1. Since K is perfect, there is no change in the genus. Using the Riemann Hypothesis to obtain a lower estimate for the number of primes of degree one of  $\overline{E}$  and considering the decomposition of primes of E in  $\overline{E}$ , we show, as in [7], that E has, at least,

(3) 
$$\frac{q^{2g-1} + 1 - 2g \cdot q^{(2g-1)/2}}{2g - 1}$$

integral divisors of degree 2g-1. Again, by the Riemann Hypothesis,

$$h_F \leqslant (\sqrt{q}+1)^{2g_0}.$$

It is an easy consequence ([2], p. 64) of the Riemann-Roch Theorem that a class of degree 2g-1 has exactly  $(g''-1)(q-1)^{-1}$  integral divisors. Thus, we can conclude from (3) and (4), that  $h_E > h_F$  whenever

(5) 
$$T(g,q) = (q-1)\left[q^{2g-1} + 1 - 2g \cdot q^{(2g-1)/2}\right] - (2g-1)(q^g-1)(q^{1/2}+1)^{2g_0}$$

is positive.

For  $q \ge 5$ , we can assume that [E:F] > 2 and, hence,  $g \ge 3g_0 - 2$ . Otherwise  $h_E \ge h_F (\sqrt{q} - 1)^{g_0 - 1} > h_F$ , since, in this case, the zeta function of F divides the zeta function of E. Then, T(g, q) is easily seen to be positive for  $q \ge 7$ .

The following facts are easily verified:

(6) 
$$T(5,5), T(9,3), T(7,3), T(5,4), T(15,2), T(11,2)$$
 are positive;

(7) 
$$\frac{\partial T}{\partial g} = 2(q^{1/2} + 1)^{2g_0} + 2q^{(2g-1)/2} \cdot S(q, g),$$

where

$$(8) S(q,g) = (q-1) \left[ q^{(2g-1)/2} \ln q - 1 - g \ln q \right] - (q^{1/2} + 1)^{2g_0} q^{1/2} \left[ 1 + \frac{1}{2} (2g-1) \ln q \right];$$

$$\frac{\partial S}{\partial g} = (q-1) \left[ (\ln q)^2 q^{(2g-1)/2} - \ln q - (q^{1/2} + 1)^{2g_0} q^{1/2} \ln q \right]$$

$$\geqslant (q-1) \ln q \left[ q^{(2g-1)/2} \ln q - 1 - q^{2g_0} \right] \text{if} q \geqslant 3,$$

$$\frac{\partial S}{\partial g} = \ln 2 \left[ 2^{(2g-1)/2} \ln 2 - 1 - 2^{1/2} (2^{1/2} + 1)^{2g_0} \right] \text{if} q = 2.$$

From (7), (8), (9), it is seen that T(g, q) is an increasing function for the values of  $g_0$ , g and q in the statement of the theorem,  $g_0$ , g varying under the restrictions imposed by the genus formula. It follows from (6) and (5) that the proof of Theorem 2 is complete.

Proof of Theorem 3. We give the proof in three steps.

Step 1. It follows from the Riemann Hypothesis [4] that the polynomial numerator of the zeta function  $\zeta(s)$  of a function field of genus g can be written

(10) 
$$L(u) = 1 + a_1 u + \ldots + q^g u^{2g} = \prod_{i=1}^g (1 - 2q^{1/2} u \cos \theta_i + q u^2),$$

where  $u = q^{-s}$ . The class number  $h_F = L(1)$ . Writing n = [L:K], it follows from (10),

(11) 
$$h_F \leqslant (q^{1/2} + 1)^{2g_F}, \quad h_E \geqslant (q^{n/2} - 1)^{2g_E}.$$

Since finite fields are perfect, genus does not change in a constant extension. Thus,  $g_E = g_F$  and (11) implies  $h_E > h_F$  whenever  $q^{n/2} > q^{1/2} + 2$ . (b), (d) and also (a), except for the case n=2, q=4, follow from this inequality.

Step 2. Considering the constant extension of E/L of degree 2g-1, we can show, as in the proof of Theorem 2, that  $h_E > h_F$  whenever  $T^*(g,q) = (q^n-1) \left[ (q^n)^{2g-1} + 1 - 2g(q^n)^{(2g-1)/2} \right] - (2g-1) (q^{ng}-1)(q^{1/2}+1)^{2g}$  is positive. Direct verification shows that (c) and (e) and also the exceptional case of Step 1 for g > 2 follow from this.

Step 3. We observe that a field of genus 2 is necessarily, hyperelliptic since the dimension as well as the degree of the canonical class is two, the quotient of two integral divisors in it determines an x such that [F:K(x)]=2.

It remains to prove (f) and (a) for q=4, g=2, [L:K]=2. To that end, together with F, we consider also the function field F' of the same genus defined by

$$y^2 + y = 1 + f(x),$$
  $y^2 + y = \eta + f(x),$   $y^2 = 2f(x),$ 

for q=2, 4, 3, respectively, where f(x) defines the function field F/K in the normal form [5] and  $\eta$  denotes a primitive third root of unity. Then, FL=F'L. The Euler product representation of the zeta function and the decomposition behavior of primes shows that  $L_{F'}(u)=L_{F}(-u)$ . Thus [2], the product of the L-polynomials of F, F' gives the L-polynomial of FL. In particular,  $h_{FL}=h_{F}h_{F'}$ . For q=4, g=2, and q=3, g>1 holds  $h_{F'}>1$ . For q=2, the two exceptions [6] correspond to those listed in the statement. This completes proof of Theorem 3.

## 3. Remarks and examples.

(A) EXAMPLE 1. Let 
$$q = 3 = |K|$$
,  $G = K(x, \sqrt{x^3 + 2x + 2})$ ,

$$H = K(x, \sqrt{x^2+1}),$$
 and  $F = K(x, \sqrt{(x^2+1)(x^2+2x+2)}).$ 

Then,  $g_G = 1$ ,  $g_F = 2$ . We shall show  $h_F = h_{FG}$ ,  $g_{FG} = 3$ . We have

$$FG = H(\sqrt{x^3 + 2x + 2}) = K(\sqrt{x^2 + 1} + x, \sqrt{x^3 + 2x + 2}).$$

Let  $Y = \sqrt{x^3 + 2x + 2}$ ,  $Z = \sqrt{x^2 + 1} + x$ . Then,

$$Y^2 = x^3 + 2x + 2 = \left(\frac{Z - Z^{-1}}{2}\right)^3 + (Z - Z^{-1}) + 2,$$
  
 $Z^4 Y^2 = (Z^2 Y)^2 = 2Z^7 + Z^5 + 2Z^4 - Z^3 - 2Z.$ 

Algebraic function fields with equal class number

175

Which shows that  $g_{FG} = 3$ . It is also easily verified that the number of primes of degree 1 of F,  $N_{1,F} = 5$ ,  $N_{2,F} = 6$ ,  $N_{1,G} = 1$ . This gives [6]

$$L_F(u) = 1 + u + 4u^2 + 3u^3 + 9u^4, \quad L_G(u) = 1 - 3u + 3u^2.$$

These two polynomials are relatively prime and each divides  $L_{FG}(u)$ . Since  $\deg L_{FG}(u) = 2g_{FG} = 6$ , we have  $L_{FG}(u) = L_{F}(u)L_{G}(u)$  and, hence,  $h_{FG} = h_{F}$ .

EXAMPLE 2. Let |K| = q = 2 and the fields F, G, H be defined over K(x) in Hasse's normal form [5], respectively, by the functions  $x^5 + x$ ,  $x^5 + x^3 + 1$ ,  $x^3 + x + 1$ . We shall show  $g_{FG} = 5$ ,  $h_{FG} = h_F$ . Any two of the fields F, G, H gives the same composite E = FG. The infinite prime is the only ramified prime. It ramifies fully in E. It follows from the genus formula and the arithmetic theory [5] that  $g_F = 2 = g_G$ ,  $g_H = 1$ . To calculate  $g_E$ , let

$$H = K(X, Y),$$
  $Y^2 + Y = X^3 + X + 1,$   $E = H(Z),$   $Z^2 + Z = X^5 + X^3 + 1.$ 

The last equation is not in the normal form for  $P_{\infty}$ , the infinite prime of H. However addition of  $\left(\frac{Y}{X}\right)^5 + \left(\frac{Y}{X}\right)^{10}$  to each side reduces it to the normal form for  $P_{\infty}$ . One obtains that the degree of the different of E/H is 8. The different of E/K(X) is the product of the different of H/K(X) and E/H. This gives, by the genus formula,

$$2q_E-2=4(-2)+16$$
, i.e.  $q_E=5$ .

Verification of the following facts is left to the reader.

$$N_{1,F} = 5$$
,  $N_{2,F} = 2$ ,  $L_F(u) = 1 + 2u + 4u^2 + 4u^3 + 4u^4$ .

We know [6],

$$L_G(u) = 1 - 2u + 2u^2 - 4u^3 + 4u^4, \quad L_H(u) = 1 - 2u + 2u^2.$$

 $L_F(u)$ ,  $L_G(u)$ ,  $L_H(u)$  are relatively prime and each of them divides  $L_E(u)$ , a polynomial of degree 10. Therefore,

 $L_E(u) = L_F(u) L_G(u) L_H(u)$ , and hence,  $h_E = h_F h_G h_H = h_F$ .

EXAMPLE 3. Let |K| = 4,

$$F = K(X, Z),$$
  $Z^2 + Z = X^3 + X + \eta,$   
 $G = K(X, Y),$   $Y^2 + Y = X^3 + \eta.$ 

 $\eta$  primitive 3rd root of unity, E = FG. Then,

$$g_E = 2$$
,  $g_F = 1 = g_G$ ,  $h_E = h_F$ .

EXAMPLE 4. Let |K|=3,

$$F = K(X, Z),$$
  $Z^2 = X(X^3 + 2X + 2),$   
 $G = K(X, Y),$   $Y^2 = X^3 + 2X + 2.$ 

E = FG. Then,

$$g_E = 2$$
,  $g_F = 1 = g_G$ ,  $h_E = h_F$ .

EXAMPLE 5. Let |K|=2,

$$F = K(X, Z), \quad Z^2 + Z = X^3 + 1,$$
  $G = K(X, Y), \quad Y^2 + Y = X^3 + X + 1,$ 

E = FG. Then,

$$g_E=2$$
,  $g_F=1=g_G$ ,  $h_E=h_F$ .

(B) In a constant extension E = FL of degree n,

$$h_{FL}h_{F}^{-1} = \prod_{w} (1 + a_1w + a_2w^2 + \ldots + q^gw^{2g}),$$

where  $w \neq 1$  varies over the *n*th roots of unity [2].

This gives:

(i) 
$$n = 2 \Rightarrow h_{FL} = h_F \text{ iff } L(-1) = 1.$$

For 
$$g = 1$$
, this means  $a_1 = a_2$ , i.e.  $N_1 - (q+1) = q$ , so  $h_F = 2q + 1$ ;

(ii) 
$$n = 3$$
,  $g = 1 \Rightarrow h_{FL} = h_F$  iff  $a_1^2 + q^2 = a_1 + q(1 + a_1)$ .

EXAMPLE 6. We give an example of a function field of genus 3 defined over GF(2) for which the class number is equal to that of the quadratic constant extension. Consider the projective plane curve of degree 4 defined over GF(2) by the equation

$$Y^3Z + Y^2(X^2 + Z^2) + XYZ^2 = X^3Z + XZ^3.$$

It is easily checked to be non-singular. Therefore the number of primes of degree 1, 2, 3 of the corresponding function field F = K(X, Y) of genus 3 defined by

$$Y^3 + Y^2(X^2 + 1) + XY = X^3 + X$$

can be directly calculated. One finds

$$N_1 = 7$$
,  $N_2 = 0$ ,  $N_3 = 1$ .

Using these values to calculate  $a_1$ ,  $a_2$ ,  $a_3$ , we obtain

$$L_F(u) = 1 + 4u + 9u^2 + 15u^3 + 18u^4 + 16u^5 + 8u^6, \quad L_F(-1) = 1.$$

Thus by (i), 
$$h_F = h_{FI}$$
, for  $[L:K] = 2$ .

EXAMPLE 7. Let |K| = 4, F = K(X, Y),  $Y^2 + Y = X^3$ , [L:K] = 2. Then,

$$g_F=1, \quad h_{FL}=h_F=9.$$

EXAMPLE 8. Let |K| = 3, F = K(X, Y),  $Y^2 = 2X^3 + X + 1$ , [L:K]= 2. Then,

$$g_F = 1, \quad h_{FL} = h_F = 7.$$

EXAMPLE 9. Let |K| = 2, F = K(X, Y),  $Y^2 + Y = X^3 + X^2$ , [L:K]= 2. Then,

$$g_F=1, \quad h_F=h_{FL}.$$

Example 10. Let |K| = 2, F = K(X, Y),  $Y^2 + Y = X^5 + X^3$ , [L:K]= 2. Then,

$$g_F=2, \quad h_{FL}=h_F.$$

EXAMPLE 11. Let |K| = 2,  $Y^2 + Y = (X^2 + X)(X^3 + X + 1)^{-1}$ , F = K(X, Y), [L:K] = 2. Then,

$$g_F=2\,,\quad h_F=h_{FL}.$$

EXAMPLE 12. Let |K| = 2, F = K(X, Y),  $Y^2 + Y = X^3 + X^2$ , [L:K]= 3. Then,

$$h_F = 5 = h_{FL}, \quad g_F = 1.$$

Examples 7-12 are easily verified using (i), (ii) or by using, as in the proof of (f) of Theorem 3, the information [6] of the fields of class number one. Examples 10, 11 are the exceptions in Theorem 3 (f).

(C) Let F/K be a function field of genus one and E/L a finite separable extension. In Theorem 1, we have shown that L = K, E/F unramified implies  $h_E = h_F$ . The above examples show that for each value of  $q \leq 4$ , neither of these conditions is necessary. However, for q > 4, each of these conditions is necessary. The necessity of L = K has been established in Theorem 1. Also, the function T(g, q), introduced in the proof of Theorem 2, is positive for g > 1, q > 7 and g > 2, q > 4. To prove that  $g_E > 1$  implies  $h_E > h_F$ , we have, therefore, to consider only the two cases q=5, q=7 for  $g_{\mathbb{Z}}=2$ . It is known that if a field of genus two has a subfield of genus one, then, it has one more subfield of genus one and its zeta function is the product of the zeta functions of the two subfields. This implies  $h_R > h_R$  because, for q > 4, there are no fields of genus one and class number one. For q = 7, we indicate an independent proof. The equality  $h_{\mathbb{R}} = h_{\mathbb{R}}$  implies T(2,7) is not positive. Together with the Riemann Hypothesis applied to F, we obtain 12 and 13 as the two possibilities for  $h_E = h_F$ . The non-existence of function fields of genus 2 defined over GF(7) of class number 12 or 13 is established using the method of [7], p. 428. The method fails for q=5.



(D) For |K| = q = 4, E = FL, [L:K] = 2,  $g_E = g_F > 1$  implies  $h_E > h_F$ . This statement is a special case of Theorem 3. We give an alternate proof for it.

If  $h_{FL} = h_E$ , then (10) implies

$$L_F(-1) = 1 = \prod_{i=1}^g (5 + 4\cos\theta_i).$$

Thus,  $\cos \theta_i = -1, i = 1, ..., g$ . Substitution in the expressions for  $a_1$ ,  $a_2$  obtained by comparing coefficients in (10) gives

$$a_1 = 4g, \quad a_2 = 8g^2 - 4g.$$

Also,

(13) 
$$a_1 = N_1 - (q+1) = N_1 - 5,$$

$$2a_2 = N_1^2 - (2q+1)N_1 + 2N_2 + 2q = N_1^2 - 9N_1 + 2N_2 + 8.$$

From (12) and (13), we obtain  $N_2 = 6(1-g)$ , a contradiction because  $N_2$ is non-negative.

## References

- [1] C. Chevalley, Introduction to the Theory of Algebraic Functions of one Variable, Amer. Math. Soc. (1951).
- [2] M. Deuring, Lectures on the Theory of Algebraic Functions of one Variable, Bombay 1959.
- Die Typen der Multiplikatorenringe elliptischer Funktionenkörper, Hamburger Abhandlungen Vol. 14 (1941).
- [4] M. Eichler, Introduction to the Theory of Algebraic Numbers and Functions. London, New York 1966.
- [5] H. Hasse, Theorie der relativ-zyklischen algebraischen Funktionenkörper, insbesondere bei endlichem Konstantenkörper, Crelle's J. 172 (1935), pp. 37-45.
- [6] J. Leitzel, M. Madan, and C. Queen, Algebraic function fields with small class number, Journ. Number Theory 7 (1975), pp. 11-27.
- [7] M. Madan and C. S. Queen, Algebraic function fields of class number one. Acta. Arith. 20 (1972), pp. 423-432.
- [8] M. Moriya, Über die Divisorenklassen nullten Grades in einem abstrakten elliptischen Funktionenkörper, Crelle's J. 181 (1939-40), pp. 61-67.
- Rein arithmetisch algebraischer Aufbau der Klassenkörpertheorie über algebraischen Hunktionenkörpern einer Unbestimmten mit endlichem Konstantenkörper, Japan J. Math. 14 (1938), pp. 67-84.
- [10] F. K. Schmidt, Analytische Zahlentheorie in Körpern der Charakteristik p. Math. Zeitschr. 33 (1931), pp. 1-32.
- [11] Die Theorie der Klassenkörper über einem Körper algebraischer Funktionen in einer Unbestimmten und mit endlichem Kocffizientenbereich, Sitzungsberichte Erlangen 62 (1930).

DEPARTMENT OF MATHEMATICS THE OHIO STATE UNIVERSITY Columbus, Ohio, U.S.A.