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and Guorer Cooxwn™ (Ithaca, N.Y.)

1. Introduction. Lot » be a Igusitive prime, p =1 (mod 8). Harlier
work by Barrucand and Cohn [1], [2] dealt with h(—p) the class number
of the field(Y)

(1.1) ky =Q(/ ~p).
It was shown that the representation
(1.2) p = 2} +8y}

determines whether A(-—-p) =0 or h{—p) == 4 (mod 8), according as y,
is even or odd. Nevertheless no natural way emerged for consfructing
the eight clasy field (i.e., the class field whose ideal group consists of

- classes which arve eighth powers).

The two class field (the genus field) and the four class field are clas-
sieally known to be ([8], [2])

(1.3) Ty = kyld), Ty = ky(Ve)

where & denotes the fundamental unit of Q(l/g_?) (z¢’ = —1). In this paper
we construet the eight class field of k,, namely

(1.4) g = Tey (V(F+V =) (1 —5)Va)
where ¢ and f are intogral solutions of
(1.5 wp == f2=2e% >0, f= —1(mod4).

Historieally the fivet such class field was found by Weber [13] using
complex multiplication, for the prime p = 41 (= 3248 2%). Here h(—p)
== 8 and (ignoring minor migprints in [137) the value of the Weber function
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appears as f(V —41)? = V24, where

(1.6) A1 =3EHVD,  {=(34V4L)2
Thus A is of degree § and, alternatively, ks = k;(1). Although the method
of complex multiplication is still being pursued (see [12]), subsequent
collections of examples (see [7], [14]) have not included further cases
tor such primes by any method. The class field construction in this paper
was fivst given for p = 41 in lecture notes of Cooke [8]. .

We actually find %, in the form

B = [(f+V —p)(L -4

and the adjunction of a 4-th root to %, is the key method. The fact that %,
contains ¢ but not ¥i indicates a limitation in attempting to cope with
{say) the sixteen class field. Regardless, we note that the succession
kg — Ty —ky—k;; is accomplished by parameters from various quadratio
- fields, hence the phrase ‘‘parametric form?.

Finally, we determine the fundamental unit ¢ = §+17 Vp of oVp)
module 8, as follows:

(1.8) _ 8 =

4 _.
(1.7) Tiyg = o (VB),

—p) (mod 8},

(1.9)

T = p";' (mod 8),

when § and T are chosen positively (see Theorem. 4.8). For this we require

the result that T == 1 (mod 4), due to J. (. Lagarias [10] which consti-
tutes part of Proposition 3.4. We conclude with a traditional illustrative
interpretation of the eight class field in terms of quadratic forms.

2. Ideal class groups. In this section we start with a general theorem
concerning class structure in unramified extensions of certain number
ticlds. We apply it to the field Q(V ~p); we obtain thereby a general
result about the tower of uwnramified 2-primary extensions of Q(I/_:;E)
(Proposition 2.14) and a specific result about the eight class field, when
it exists (Proposition 2.27). We originally proved the theorern. for the
prime 2; Olga Taussky communicated to us the proof given here, which
is & simplification of our original proof and applies for general 1.

- Notation. If X is a number field, and ! is a prime, H;(K) denotes
the I-primary class field, i.e., the maximal unramified abelian extension
of K whose degree over K is'a power of L. The Galois group of H;(K)/E

i3 just the I-primary component of the ideal clags group of E and is
denoted Cl;{H). :
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(2.1} TrmoREM. Let K be a number field, and assume CL{K) is cyclic. Then
(2.2) Hy(H(K))

Proof. Let K, = H{K), K, = H,;(K,), and consider the tower of

fields K —K,—K,. The Galois groups satisfy:
(2.8) Gal K, /K is cyclic,

= HI(K).

(Gal K, /E)® ~ GalK, /K.

Therefore GalK, K iz a p-group which when abelianized is cyclic. By
direct argument or reference to the Burnside basis theorem [4], p. 176,
GalK, /K iy cyclic. Therefore K, = K,. m

Suppose K is a field such that Cl,(K) is cyelic of order I". Consider
the tower of cyclic tnramified Ith degree extensions.

(2.4) HE=E"_gW_ K" =H(K).
Ideal extengion and norin define maps
28 | OII(K);:_-"GII(K“’).

The composition Noj ‘“‘multiplies” by I* (see [11]). Therefore kerj has
order <. On the other hand, by Theorem 2.1, H,(K¥) — H;(K) and
so CL(EY) has order ¥~ Therefore

(2.6) COROLLARY. The map § in (2.b) is onto fwv,th Ternel Z[T.

We now specialize to the case where | = 2. Jach successive field
KU is obtained by a square-root adjunction:

(2.7) | RO —RO(/a), 0<i<r—1.

Since KUY E® is unramified, (e;) is an ideal square. Write

(2.8) (o) = af. .

The ideal class of o i8 well-defined. It must be trivial or of order 2 in

Ol,(K®). Suppose & =V —1le K. Then each extension KCT?/E® ig
obtlainable as a 4th-root extension:

4 "
(2.9) KD = KDWE), 0<i<ri—2.
Now, sinee KEF2/R® js vnramified, (8,) is an ideal fourth power. Write
(2.10) () = Bi.

The ideal class of b; is well-detined.
Since KU+ = E®(Va) = KW(VB),

(2.11) a; ~b; .

we have
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Since KUY = K(i'}“])(l/r;;:) = K‘””{l/l/—gé;), we have
(2.12) Qipy ~ D0 iy
The following is an immediate consequence of (2.11), (2.12), and Corollary
(2.6).
(2.13) PROPOSITION. Assuie te . Hither a, is principal for iz
has class of order 2 for 12 0.

Specialize to the case K =1k, =Q(l/m—1)). The 2-primary part of
the ideal clags group is cyeclic of order divisible by 4. As remarked in §1,
ick, = KO, and E® =, = k,(Ve). Apply Proposition (2.13) and (2.11)
.o ky to deduce the following:

(2.14) ProprosTrToN. In the case K =k, = Q(]/_:ﬁ), emeh  field in the
tower (2.4) (I = 2) is obiained from the preceding one by adjoining the square

root of a unit, Por i1, we have KUY — K‘”)(I/,E’;) where
(2.15) (8;) = b}
and b; i3 principal or has class of order 2.

We now study the inifial portion of the tower: %, 7o — k-~ &y;-
We are going to assume that k;; exists and see what form it must take

(2.16) Notation. Let D, denote the integer ring and O} the unit group
of %,.
‘The field g, I it exists, is &, Vﬁ

(2.17) ' . = 0% for some Ok,
(2.18) (8, =0 where DBi~1.

There are thus two possibilities for the ideal class of b,.

0or a

and since % == km(l/;), we have

4 .
“Case 1. b, ~I. In this case &y, = 764(]/[,5) for some unit w. The units
of %, are given (see [6]) by

(219) CDOf R~ 2 X T = () X (e

By (2.17), u == 6¢ for some unit 6. Therefore we need only conaider the
4 4__ ...

fields % (l/_) ki(l/_ g). But h(}/s iy not (xalom over ky, because fhe

conjugate of ¢ relative to %, is —s~' and

: R— 4.
(2.20) V™ e By (Ve).

L
The same holds for 754(1/—3) Therefore Case 1 mever occurs.

Case 2. by has ideal class of order 2. By considering ideal extension K
Ol (%y) > Cly(k,) and applying Corollary 2.6 we see that the ideal class
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of b; comes from an ideal class of order 4 in Cly(k,). There is a parametric
representation of such an ideal, obtained as follows: Since p = 1 (mod 8),

p splits completely in @ }/_) The latter has class number 1 and fundarmental

unit of norm —1. It follows that —p is a norm from Q(l/2 . Let ¢ and f
be solutions of (1.5). Then

(2.21) = frrp = (f+V~p)([—V —p).

Since 2 is rmﬁiﬁed in ky/Q, we let 2, denote the unique prime of k, over 2.
The class of 2, iy of order 2. From (2.21) we can write
(9.22) e = (f+V—p), Na = et

It follows that a is the square of an odd integral ideal b whose class is

. of order 4 in D,. Therefore we can take

{2.23) _ b, = bD,.
Applying (2.18), we find
(2.24) (81} = 54 = 5494 = @0,

Now 2, becomes principal when extended to k,, by Corollary (2.6). In
fact, by considering the subfield Q) of k,, we have :

{2.25) 2,0, = (1 +4).
Therefore, applying (2.22), (2.24), (2.25)
(2.26) _ (B) = (F-+V —p)a(144)~".

Applying (2.17), we get '
{2.27) PrOPOSITION. Assume 8|h(—p). Then the eight class field of

- 4 __
by = Q(l/—— p) 18 obiained by adjoining l/,b’l to k,, where B, i8 of the form
(2.28) pEFHY = pR(L+0)%,  weDy.

This is as far as we wish to proceed before studying congruence
properties in &, and kg in § 8.

{2,209} Remark. Since 2 is split in the subfield Q(I/Eg;) of k,, we can write
(2.30) (1 —H) PPy I - O,

The ideal tactors py, py of (1-+4) in k&, split or are inert in &, according
a8 whether or not A(—p) =0 {mod 8). For the ideal 2;, which has ideal
clags of order 2, must split completely in kg (the four class field of k)
exactly when ity class i o fourth power in k.. Apply (2.17) and (2.18).
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3. Congruence properties im &, and k. We let (small or large) roman
letters denote elements of Z while small (and large) greek letiers denote
elements of D, (and 0, respectively). Then the integral bases of Z [4],
D4, Dy are denoted by the succession '

(3.1) .1:17'”7 1l x [, 0], [l X1, o] x[1, £2]
where :
_1 +Vp o+Ve
(3.2) @ 2? e
where o is any solution of
(3.3) _ o == g (Taod 4).

The choice of ¢ iy related to the following information abount e
(3.4) ProvosiTioN. When p =1 (mod 8) the fundamental unit s of Q( V;p
saftsfies € = S+Tl/p, with §, T >0, and ¢ = Vp mod 4).

Proof. The fact that ¢ = §-- Tl/p, 8, Te Z, iy an immediate con-

‘sequence of the splitting of 2 in Q¢ }/p Since ¢ is the fundamental unis,
we must have § >0, T > 0. Since p =1 (mod 8), Ne = —1, and’ .it
follows that § =0 ( mod 4). The fact that T = 1 (mod 4) is due to Lagarias
[10]. For completeness we present the following argument, based on an
idea communicated to us by Harold Stark, due to J. Lagarias.

Prootf that 7 =1 (mod 4). Noting that
35 eVp = Tp+8Vp = T (mod 4),

there exists a unique choice of sign so that if 7 = Q(Vp) (I/ ;L.sl/p), then
L/Q (Vp) is unramified at even primes. Since the conjugate of sl/p in

— 1/;[3, L is Galois over Q. Since L/Q is abelian, Kronecker’s theorem as-

serts that I = Q(Z,) for some » where ¢, = exp (2mi/n). By construction,
L0 is ramified only at p (and perhaps at oo). Since [L:Q] == 4, we see
that L < Q(f,). Therefore L is the field fixed by the unique subgroup H
of index 4 in Gal{@({,)/Q)~(Z/p)*. Bince p =1 (mod8), —1le¢H and
80 L is real. It follows ﬂwms the plus sign is the correct xign in the defi-
nition of L and so T =1 (mod 4). m

Since %, = k,( Ve) a,nd.lﬁg/k,, is unramified, an integral bases for Oq
is given by (3.2), (3.3).
{3.6) LEMMA. o =4(l+(1+4)w) (mod 2).. ~

Proof. First note that if 2¢O, and 1 is odd, then, in O,,
(3.7) 2= 41, (20 1) (mod 4),

(3.8) # =1 (mod 8).
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These are obtamed by observing that the odd rezidue classes (mod 2)

in D, are

(3.9) {1,'!1}><{1,1—|—(1+'5)(0}

and that if A; = 1, (mod 2), then i} = 15 (mod 4), i} = 1! (mod 8), ete.
Since & = S—l—Tl/p = +2w—1 (mod 4), one sees that Lemma {3.6) is the
only possibility by squaring the residue clagses (3.9). w

According to Remark (2.29), 8{ A( —p) if and only if the even primes p,
and p, of Oy split in kg/k,. The Hilbert condition for splitting [9] in this
case is solvability of the congruence

{3.10) s =o'mod 4(1+4), oel,.
(3.11) LeMMA. The congruence (3.10) is solvable if and only if

(3.12) -1+ 27 _oimoeas).

Proof. To determine solvability of (3.10), we consider the aggregate
of odd residue classes modulo 2(1--i), namely : :
(3.13) {£1, 29 x{1,1+0+de,1+(1 ~i)o, 1 +20].

A solution of (3.10) is in particular a solution of (3.3). Therefore, by Lemma
(3.6), referring also to (3.13), we have that if o solves (3.10) then

(3.14) o= il (1£4) @) mod 2(1+4).
Squaring,
(3.15) ot = — ﬁ;—_ 20 mod 4(1 +14).

Therefore o?, as well as e, lies in Q(l/g_o) modulo 4(1+7). But‘s:ince 218
unramified. in that field, the modulus escalates from 4(141) in (3.15)
to 8; and (3.10) is solvable if and only if

P»+1

(3.16) 6= - + 2 mod 8.

This leads to (3.12) upon equating coefficients of the basis [1, w] for
Q(Vp). m '

Pinally we have a lemma concerning solvability of a congruence
in O,.

(8.17) LimmmA. If R{ - p} == 0 (mod 8), then the congruence
(3.18) B¢ =y (mod 4(1 +1))

t¢ solvable for odd yeD, (and Fey) only when y =1 (mod 4(1+)).
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Proof. First of all, assume I™ =y (mod 4(1 +i)) is solvable, I'e O,.
Writting I" == o, 4- 1 2, compute

— g2

r =ai+ﬁ%(s ) +(2a, 8, +plo) 2

Since ye¢D,, the congruence mod 4(144) implies
(3.19) 2, B, - fro = 0 (mod 4).
Since o is odd, it follows from (3.19) that
{3.20) 2|8,

Now assume {3.18} is solvable, and set

(3.21) B =T.

Write & = ay+£,, and equate coefficients of © in (3.21). Tt follows
that '

{3.22) 20,8, + i = f,. |

Now apply (3.20) and deduce that 2|f2c. Since o is odd, this forces
{3.23) (1+8)18s, & = ap-+-5{1+9) 2

Since » iz assumed odd, so is =, 80 a, is odd. Compute 5% and obtain
(3.24) ' y =8 = o} =1 (mod 4)

- applying (3.23) and (3.8).

- Assume, contrary to our desired conelusion, that in (3.18), y # 1
mod 4 (1 44).- Write 5*-—af =44 (use (3.24)); then, since (3.8) has mo-
dulus 8, A % 0 mod (1+1i). Expanding 5 and reducing mod 4(1-+1),
we find, using (3.23),

{3.25) A =g @+ 0" # 0mod (1+14),

50 B, is also 0dd. Now in %, (L+41) has 4 prime factors (by Remark (2.29),
and our assumption A( —p) =0 (mod 8)), each of degree 1. For one of
them, (say) P, 4 =1 (mod PB). Then, from (3.25),

(3.26) ' 1 = 2%+ 2% (mod )
2 clear contradiction in the field O/ of two elements! m

4. Main results. We shall show that when 8|4(—p) the eight class
field is given by (1.7), while the criterion (1.8) emerges incidentally (see
Theorem (4.11)). :

(4.1) LEMMA. If an eight class field ewists for ks, then 4 must be given by (1.7)-
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Proof. We start from the result of Proposition (2.27): The field &
4 .
must be &, (1/,8 ) where, rewriting (2.28) slightly,

(4.2) B =p(f+V —pla+ite, ped).

Now computation with (1.5) demonstrates that

(4.3) (Ff+Y —p)(1+4)"* =fVp (mod 8).

Furthermore, since ¢ is odd in (1.5), p = f* (mod 16). Since ¢ = §+TVp
hag morm -1, and 4|8, p = T° (mod 16). Therefore f* = I* (mod 16).
Apply Lemma (3.4) and our choice of f in (1.5) to deduce

{4.4) ‘ f = —T(mod 8).
Now combine (4.2}, (4.3), (44):
(4.5) B = —urTVpe (mod 8) = p*(1 + S¥p) (mod 8)

gince 8 = 0 (mod 4). The effect of u? in (4.5) is only to introduce a 4 sign,
since the units of D, are generated by {i, £}, (2.19) and &* =1 (mod 8).

Now, since & = k& (I/I/E) is unramified over k; we must have

(4.8) . & =V (mod 4)

is solvable in ©,. Squaring, we find
4.7) B = B (mod 8).

Apply Lemma (3.17). It follows that § = 1 mod 4(1 --¢}. Therefore, in (4.5),
p? = -+-1 and § =0 {mod 8). This proves that if 8/k(—p), then the

4 _ .
eight; clasg field is 704(]/,8) where # is given by (4.2) with p? =1. m
Furthermore we proved that if 8|i{ —p), then 8|8. Conversely,
assume 8|8; then, taking u =1 in (4.2), direct computation shows that
(4.6} is solvable in ©,;. Alternatively, note that g = 1 (mod 8), and apply
the general nonramification criterion for a 4th-root extension given in

4, .
Hasse [0]. In any event it follows that 704(1/,6) is unramified eyclic over k.
It is indeed cyclic over k,. This may be proved by direct computation.
Or apply Theorem (2.1) to deduce H,(k,) = H,(k,) (compare [8]). Therefore

LA I/B), which is unramified abelian over k,, must be 11kew1se over ky.

Therefore 8|k(-—p). This proves (1.8)..
We conclude this section by collecting information on g h{—p).
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(4.8) THROREM. Assume p =1 (mod 8), let = = S+Tl/§ denote as usual
the fundamental unit of Q(l/p). Then

(4.9) 8 = h(—p) (mod 8),

. 1
(4.10) T = -3%'—— (mod §).

Proof. We have already demongtrated (4.9). As to (4.10), the result
of Lemma (3.11) may be restated as

1
(4£11) - ;S’-—T-f—g—g;— = h{-—p) {mod 8).

Apply (4.9). &
3. (.]ongruential criteria. To illustrate the main theorem in terms of

quadratic fprnls, take p = 41, where there are h(—41) = 8 inequivalent

forms of diseriminant --4-41. Let P be a prime (3 2-41)

P 3a® 4 20y 4-149°, (e.g., 3)

(5.1a) =
6" 4 22y +Ty?, (e.g., 7)

<4 true, B false,
(3.1b) P = 5wt 4day + 992, (e.g., 5) <4, B true, O false,
(8.1c) P = 2o°-+2my 4 21y% (e.g., 61) = A, B, ¢ true, D false,
(5.1d) P = a*+4132, (e.g., 173) = A, B, U, D true,

where 4, B, 0, D refer to the rational solvability of the congruences

(5.2a) A: 2i+41 = 0 (mod P),

(5.2b) | B: o241 =0 (moa?),_

(5.2¢) | O: @3 = 32 + 5, », (mod P),
(6.2d) ’ Dz af = (3+4my) (1 +2y) 2, (mod P).

We should recogmize in (5.2bed) the adjunctions shown in (1.3)

and (1.4) as they affect the splifting primes in (0.2a). (Note g == 39 - ﬁ]/ﬁ

. and 2;532 = 41 +3%. The forms in (5.1a) correspond to ideal classes mg

and m*=’, while those of (5.1b) correspond to m** and those ofz. (5.].c;) Ato m*
~and (5.1d) to m’~1, where (say) m = (3, 1+ I/:_AH) in k,. |

I: l 16 pI Oblem Df “C‘O]ﬂlg‘ruenfiallv ” “it'. g; .S II I |g I he E()[ mMs 1 ! I
: i Lad I A dlx 111 'Lll-s} . ) Tox" i a
18 8 111 u nfELf}h()l 1112 Ple’- . : e (l) . )
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