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1. The first elementary results in the theory of Dirichlet’s L-functions
are due to Mertens, who gave direct elementary proofs for the non-van-
ishing of L(1, x) in case of & real non-principal character y (see Landau [7],
§106). Later several authors proved this fact in an elementary way.
A very important elementary achievement about real L-functions was
Linnik’s proof [87], of the famous theorem of Siegel [17], that for any & > 0

(1.1) L(ly %) > D
From this it easily follows (see Waltisz [20]) that
{1.2) L(s, ) #0 for se[1—D7%1]

for a real primitive character y (mod D)), provided that D exceedsan ine-
ffective constant Dy(e)} depending on &. (The author [156] gave a simpler
elementary proof of Siegel’s theorem using the ideas of Linnik [8].)

Another partly elementary result due to Davenport [1], states
that for a real non-principal character

e
(1.3) L(s =£0 for ge [1 _——— 1]
e ¥ Dloglog D ’

with a computable absolnte constant ¢ (*).
The other important results concerning real zeros of real L-functions,

* The results of this series wore presented with defailed proofy in the seminar
of the Department of Complex Function Theory of the Mathematical Institute of
the Hungarian Academy of Sciences, September—October 1974,

(4 In connection with Davenport’s resnlt we mugh mention a paper of W. Haneka:
Uber die reellon Nullstellen der Divichletschen T-Reihew, Acta Arith. 23 (1973), pp.
pp. 391421, where he asserts

(o}
L(s,x) #0 for SE[IM—;:.——, 1].
. YD
But the proof is incotrect as just in the last of his 23 lemmata, estimating the sum
¥ (1+z(p))p~" he neglects those primes for which x{(p) = 0, ie. p|D. If we correct
2500 . - _
this fanlt, Haneke’s paper gives only Davenport’s result (1.3) {(proved in another way).
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which are unavoidable in studying the distribution of primes in arithmetic
progressions, namely Hecke’s, Landau’s and Page’s theorems were proved
. until now only by the uee of complex analysis.

Hecke’s theorem states that if the L-function belonging to the real
primitive character y (mod D) does not vanish in the interval

¢
4y - — e 1
(14) [1 logD’ ]
then ‘
y I, > b(e)
(1“)) ( s X ].Og_D

(the proof is in Landaun [6]). (Here ¢ is a constant and b(c) is another
constant depending on e¢.)
Landau’s theorem [6] asserts that if

{1.6) L(1—8yy g1) = L(1 8y, 25) =0
for real primitive characters g1 7 xp {mmod Dy) resp. (mod Dy), then

¢

NeRp max (dy,-8;) > Tog DD,

with an absolute constant c.

Page [14] proved the theorem of Landau mentioned above for the case
21 = e = x(mod D), ie. when L(s, xp) bas at most one simple zero in
the interval :

¢
(1.8) [1— TogD 1]._

In the direction of the effectivization of Siegel's theorem ((1.1) and
(1.2)) besides Davenport’s result (1.3) another interesting theorem is
due to Tatuzawa [19], who proved that one can determine with ab
most one excepfion all the real prlmltlve characters for which (1.1)
and (1. ) fail.

~ The great interest for real L-functions can be attributed to the fact
that they play a fundamental role in the theory of quadratic fields
28 well a8 in prime number theory. ‘

Thus these theorems of Hecke, Landau, Siegel, Tatuzawa have their
analogue for class numbery of imaginary quadratic fields, which one can
get from the cited forms of the theoreins by using Dirichlet’s class number
formula ard in fact they were originally formulated in this way. (In
the case of Landaun’s theorem we get this' analogne Jf we nse. Hecke’s
theorem as well.) ‘
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The results of Hecke and Landaun were the first steps towards the
proof of Gaunss’s conjecture [3], that the class number A{—D) of the
imaginary quadratic field belenging to the fundamental diseriminant
—D < 0 tends to -+ oo as D—co. Gauss’s conjecture was proved by Mor-
dell [13] (improving @ result of Deuring [2]) under the assumption that
the clagsical Riemann-hypothesis is not true, and a little later by Heil-
bronn [5] assuming the falsity of the general Riemann-hypothesis. Heil-
bronn’y result showed the truth of Ganss’s eonjectore, as by the theorem
of Hecke the conjecture iz obviously true if special real zeros of real
T-functions (see (1.4)) do not exist. The values of real L-funcfions in the
point ¢ == 1 (and in the neighbourhood of s = 1) are further closely con-
nected with the class numbers and fundamental unifs of real quadratic
fields and with the distribution of -quadratic- residues and non-residues
modulo a prime,

Thus Linnik and A. I. Vinogradov [11] proved, using Siegel’s theorem
(and also Burgess’s inequality), that for the least guadratic prime residue
P(p) (mod p) (where p is a prime)

(1.9) P <pi® i p > pole)

with a p,(s) ineffective constant depending omly on .
D. Wolke [21] proved that if P(p)> p°, then

1 7 _ ¢
where ¢ iz a computable absolute constant.

These questions are in connection with the old conjecture of I M. -
Vinogradov that P(p) < ¢(e)p’. The upper bounds for L(l,y,) are
similarly connected with the least quadratic non-residue (mod ). (See
the work of Linnik sand Rényi [10].}

The best known upper bounds for L(1, ) (x primitive) are due to
P. J. Stephens [18], who proved :

(1.11) | L1, x) < 1 (1——17— +o(1 )) logp - (p prime),

using Burgess’s inequality, and, for general D, to Pdlya [15]

(112) I(L, 2p) < (h+o(1)log D.

By Dirichlet’s class number formulae these estimates imply upper
bounds for class numbers and (in the case of real fields) for fundamental

units of quadratic fields.
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2. In this series of papers we give elementary proofs for all the resulty
mentioned; in some cazes we prove even more. In this paper we prove
Hecke’s theorem. In. papers IT and IIT we investigate L(s, ) belonging

: —D
to the real primitive character y(n} = (T) where D >0, and h(—D)

is low ({which means in these papers h(—D)< (logD)**). In paper IT
we determine the distance ¢ of the real zero 1—3 of L(s, ) from the
point s, = 1 up to a factor 1+o(1). Thiz makes it possible to improve
Davenport’s result (1.3) in an effective way to

12 - o(1)
VD

and to show what further results in the 2(—D) = 4 problem are necessary
to improve (2.1).

In paper IIT we show that if h(—D) iz low then, except for the
exceptive real zero mentioned above, neither the corresponding (s, y)
funietion nor {(s) has a zero in a great domain T' of the complex plane
and we determine up to a factor 1+o0{1) the values of L(s, ) in this
domain T, i.e. we show for seT' that

1
( ) H (HP”-)'

»D

(2.1) ’ ' 0>

(2.2) Lis, ) =

This also proves Mordell’s theoremn in the weakened form that if
¢(s) has a zerc in the half-plane Res > §, then A{—D)—co.

In paper IV we prove a weakened form of Linnik’s theorem con-
cerning excepiional zeros [9], i.e. the Heilbronn—-Deuring phenomenon,
and from this we derive Biegel’s theorem in the somewhat effectivized
form proved by Tatuzawa (loc. cit.).

In paper V (applying only elements of real analysis) we prove Landan’s
and Page’s theorems ((1.7) resp. {1.8)}). In the case of Page’s theorem we
improve the congtant in (1.8).

In paper VI we demonstrate the results of Linnik, A. L. Vmogladov'

and Wolke, about the least quadratic prime residue (mod p).

Tn paper VII we prove Stephens’s regult {1.10) and we generalize
it to a primitive character x {mod D), where D iz not a prime, ie. we
improve Pélya’s result (1.11). We also demonstrate the consequences of
Stephens’s and our results concerning the class numbers and units of
quadratic fields.

Finally, in paper VIIL we prove in a simple unified way (which is
mainly elementary and is distinet from the methods of papers I-VII)
the basic results concerning real zeros of real L-functions, i.e. the theorems
of Hecke, Landau, Page, Siegel and Tatuzawa mentioned above. As the
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investigation of zeros of complex I-functions, and complex zeros of real

- L-functions require other methods, our proof makes possible to discnss at

least the real zeros of real L-function in a unigue and more direct way,
and to get & clearer look on these problems. (It allows 18 e.g. to improve
the constant in Landau’s theorem from 0.1 {see Miech [12]) to 1+o(1}.)

3. In our series we use only the following results of number theory:
{a) Dirichlet’s class number formulae in papers IT and T (but it
is unavoidable only in Theorem 3 of paper IT) and furiher to demonstrate
the congequences of our results concerning guadratic flelds {in papers

IV, VII and VIIL);
(b) 8 easy lemmas from the theory of quadratic fields (in papers IL,

T, VID);

() The easy elementary effective lower bhound

1
L1, xp) ¥ =
I ' #0) Vﬁlogal)

due to Gelfond [4] (in papers IL and V); :

(1) The Pdlya—Vinogradov inequality (in papers IT and III and
only to get a better constant in V);

(e) Burgess’s inequality for character sums, where it plays a funda-
mental role in the theorem, i.e. in papers VI and VII (and once in paper
V to get a better constant). We note that an elementary proof of A. Weil’s
theorem from which Burgess deduced his inequality is due to W. Schmidt

167; . ‘

[ ’(.f) Simple properties of the zeta function and the easy estimate
for it in the critical strip (in paper III), namely for 1 # s =1 —v--if,
o<y h

| 1
12(s)] < Is|” log([s] +1)max ( T I)

(g) 3 easy lemmas from the elementary theory of numbers.

Ag to analysis, besides some easy lemmas of real elementary analysis,
we make nge of simple properties of real continuous functions and (in
papers IIL and V) of their derivatives. In paper VIII, which regarding
the applied methods is different from the other papers of this series, we

- use also some complex analysis (namely the notion of the a,na.ly"tic

continuation).
The papers will be almost independent, only in paper IV we apply

Hecke’s theorem (proved in paper I) and Landau’s theorem {proved
later in paper V of course without recourse to the results of paper IV),
further we use Theorem 2 of paper IL in paper IIY, Lemma 1 of paper II
in papers III, IV and VI, and Lemma 2 of paper IT in paper V.

w»
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Finally the auther would iike to express his gratituda to Prof. P. Turén
for many helpful advices.

and as o < 0.01

‘ : 14®
3 I 1f20log 12 . 1/10 1100 ]

4. Now we shall prove the theorem of Hecke, i.e. we shall show the (+8) o< (a) <00 < 1.2.
following . '

THEOREM. If an L-function belonging to the real non-principal char- So we have from the formulae (4.4)~(£.8) (as 1ja—c,>0)
acter y (mod D) (where Dz 200) has no zero in the interval [1—a, 1], x” 1 ‘
where 0 < a < (20log D)™, then : (4.9) 1.5 <7 L{L, )+ 0.015° — (; —ca) L(1—a, y)+0.012" 42"

L1 > 0.23a. .
2 i PP EICT Ry R CILE o) |
Proof. We shall use the following a a ’

LEMMA OF REAL ELEMENTARY ANALYSIS. For an arbitrary 1, Jor

which 0 <7 <1, _there evists 4 ¢, 0 <e, <1, such that for all u>1

Thus (4.9) proves the theorem.

1 1 & Added in proof (28.6.1976). In the meantime I was informed hy Prof.
(4.1) ZF =‘;‘(“T —1) +81+F (P <1). Haneke that with some modification his proof for
MMt . .
Let L(s, ) #0 for se[l—é, 1]

‘s . D De y | _ VD
(42) @ =_071;00 (<T)’ g(n) = Zﬂd) comld be completed [see the present issue of Acta Arithmetica, pp. 88-100].

. . .
Then *
{4.3) gn) == 1+y =0 ) =

ﬂ( KR H-e g (17)) y gimh) =1 References
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On the arithmetic of quaternion algebras®
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ArNOLD PrzER (Rochester, N. Y.)

Introduction. The purpose of this paper iz to study the arithmetic
of certain (in general) non-maximal orders in definite quaternion algebras
over the rational numbers. They are the orders of level m, m a positive
integer (see Definition 1). If m =1, they are the maximal orders of the
algebra and if m is square free they are the Eichler or hereditary crders
and are studied in [3] and [6]. Our goal is to obtain explicit formulas
for the “class number” of ideals associated to an order of level m (vee
Theorem. 16) and the “type number” of orders of level m, ie. the number
of isomorphism classes of sueh orders (see Theorem 26).

1. Foundations. In this section we set our notation and give some

“bagic facts and definitions. The basie reference for the arithmetic

of quaternion algebras is [1] in which the reader will find proofs of the
facts listed in this section. ’

9 will always denote @ definite quaternion algebra over ¢, the field
of rational numbers, i.e. % is a central simple algebra of dimension 4 over
@ such that AR is Hamilton’s Quaternions. Here R denotes the field
of real numbers. | _

For a finite primeé p of ¢, we let §,,v,, | |, denote regpectively the
p-adic numbers, the normalized exponential valuation on @,, and the

on @, If A4 is any algebra .over

()
normalized valuation (|al, = (—5) )

Q, 4, = A®,Q, and A* denoctes the invertible elements of 4. We also
let Q = R, A, = A®uR, and call the absolute value in @ the infinite
prime on . If I is any Z module contained in 4, we let I, = 19,2,
where Z (Z,) denotes the rational (vesp. p-adic) integers. ¥inally, for any
subring R of 4 (or of 4,), U(R) denotes the units of k.

A prime p of @ is said to remify (split) in L if 9, is a division algebra
(resp. 2 % 2 matrices) over @,. The set of ramified primes is finite, even
in number (if we count the infinite prime} and determines U up to iso-
morphism, ‘ :

* Written with partial support of NSF GP-42810.



