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On the arithmetic of quaternion algebras®
by

ArNOLD PrzER (Rochester, N. Y.)

Introduction. The purpose of this paper iz to study the arithmetic
of certain (in general) non-maximal orders in definite quaternion algebras
over the rational numbers. They are the orders of level m, m a positive
integer (see Definition 1). If m =1, they are the maximal orders of the
algebra and if m is square free they are the Eichler or hereditary crders
and are studied in [3] and [6]. Our goal is to obtain explicit formulas
for the “class number” of ideals associated to an order of level m (vee
Theorem. 16) and the “type number” of orders of level m, ie. the number
of isomorphism classes of sueh orders (see Theorem 26).

1. Foundations. In this section we set our notation and give some

“bagic facts and definitions. The basie reference for the arithmetic

of quaternion algebras is [1] in which the reader will find proofs of the
facts listed in this section. ’

9 will always denote @ definite quaternion algebra over ¢, the field
of rational numbers, i.e. % is a central simple algebra of dimension 4 over
@ such that AR is Hamilton’s Quaternions. Here R denotes the field
of real numbers. | _

For a finite primeé p of ¢, we let §,,v,, | |, denote regpectively the
p-adic numbers, the normalized exponential valuation on @,, and the

on @, If A4 is any algebra .over

()
normalized valuation (|al, = (—5) )

Q, 4, = A®,Q, and A* denoctes the invertible elements of 4. We also
let Q = R, A, = A®uR, and call the absolute value in @ the infinite
prime on . If I is any Z module contained in 4, we let I, = 19,2,
where Z (Z,) denotes the rational (vesp. p-adic) integers. ¥inally, for any
subring R of 4 (or of 4,), U(R) denotes the units of k.

A prime p of @ is said to remify (split) in L if 9, is a division algebra
(resp. 2 % 2 matrices) over @,. The set of ramified primes is finite, even
in number (if we count the infinite prime} and determines U up to iso-
morphism, ‘ :

* Written with partial support of NSF GP-42810.
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We let N(T) denate the reduced norm (resp. Trace) from % to @
or from %, to §,. Thus % is definite is equivalent to N being a positive
definite quadratic form on .

i A Tlattice on U is a finitely generated Z-module containing a base
of 9 over Q. An order of % is a lattice on ¥ which is also a subring s1.
The obvious analogous definitions hold for lattices and orders in 2%,
p < oo (i.e. p a finite prime). There is a local-global correspondence
between lattices (and orders) which goes as follows (see [7]): To @ lattice
L on %, we associate the collection of lattices L, = L®;%,, one for each
prime p < oo, Conversely, if we have a collection of lattices L(p) on
UA,, one for each p < oo, and if there exists a lattice X on A such tha,t
L{p) = M, for almost all p, then there exists a unique lattice L ( ﬂL

on 9 such that L(p) = L, for all p < co. Replacing the word “lattme”
by “order” above, we get the local-global correspondence for orders.
An order of 9 (or %) is said to be mazimal if it is not properly contained
in any other order of U (or Pl ). M is a maximal order of U if and only
if M, is maximal for all p < co. If U, is 2 dwmon algebra (p < co), there
eXlsts 2 unique maximal order = {weQII,| N(z)eZ,}. If A, is split, all

maximal orders are conjugate fo the order (g Z" . Let M be ‘any
» ,

maximal order of 9. Then for p split, %A, is isomorphic to 2 X 2 matrices '

over @, and by choosing an appropriate igomorphism, we can and do

Zy Zy
assume that M, = (Z 7

p split is identified Wlth 2 % 2 matrices over ¢, in

) Thus we assume from now on that 2%, for

in such a way that there

exists a maximal order M of U with M, (Z gﬂ) for all split p.
» n

DeriNrrion 1. Let % be a definite quaternion algebra over . Let g
be the product of the finite primes of ¢ which ramify in 9. Let m be a
positive integer prime to ¢. An order M of % ig said to be of level m if M,

is maximal for all »lq and Mﬂ‘ is isomorphic (i.e. conjugate) to ( Zy ZI‘)
mi, Z
for all piyg, p < oo.
By our above assumption, there exists a unique order © of level m
: Zy &
such that 2, = (m 7, Z,
guage) the camonical order of level m in 2. For the remainder of
this paper, D will always denote this order.

DEFINITION 2. The type number of orders of level m in U is the number
of isomolphism clagses of orders of level m in W. 'We denote this type
namber by T,

DEFINITION 3. Let M be an order of level m on . A left M-ideal

P) for all p'i’q. We call this {(by abuse of lan-

icm
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is a lattice T on 9 guch that L, = M,a, (ior some a,¢ ») for all p < co.
Two lefti M-ideals T and J are sald 1;0 be in the same class if I = Jao for
some @<, One has obviously the analogous concept of right ideals.

DErinrrioN 4. The class number of (left) ideals for any- order (M)
of level m is the number of distinct classes of such ideals. We-denote
this class number by H,,

We will see in the next ection that the type and class numbers
are finite and that the class number depends only on the level, not on
the particular order or on left or right ideals.

2, Class and type numbers. Let U be as above and M any order,
of . The ddele group Jy of Lis

Iy = {&, = (a )s[IQI:,I a,< U(M,) for almost all p}.
p .

Here the product is over all primes (finite and infinite). Note that since
given. two orders 3 and N of %, M, = N, for almost all p, Jq is inde-
pendent of the particular order used in its definition. Jy i & locally com-
pact group with the topology induced by the product topology on the
open sets ]‘_[ €A ﬂ U(M,) where § ranges over all finite subsets of primes

con’uammg o, If a = (a Jedy, we define the volume .of & as
i) = H IV ()],

Let Jy = {Gedy} v(d) == 1} and embed UA* < JY along the diagonal.
Finally if & is an order of level m of 2, let

w(N ~{a.—(a: Yed g sy U(N,

Then we have

PRrROPOSITION 5. 1) U* is a discrele subgroup of T, 2)
3) W(WN) is an open compact subgroup of Ji.

Proof. See Weil {117,

Now let ¢ be the product of the finite ramified primes of A and let-m
be & poritive integer prime to ¢. Fix O, the canonical order of levél m
in %, It I is a left O-ideal, then I, = Oy a, for some a,W, for all p < oo
and a,e U(D,) for almost all p (since I, =L, for almost all p). Thus

)f01 all p < o0}.

T4/ is compact,

‘there exists an element deJy with the pth component of & equal to a, for -

all p < oo, Conversely, if @ = (4,)eJy, then by the local-global corre-
spondence, there is a unique lattice I such that I, = 0,4, for all p < co.
Thus (via the loeal-global correspondence) we get a trangitive action
of J5 on the left D-ideals: '

@ == (ay): T {L}—+{L,a,}d
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and we write J = Id. Under thiz action the isotopy subgroup of D is

"(O) and we have the '
Propos1ox 6. The double cosets WD\ Jy /U™ are in 1-1 correspond-

ence with the ideal classes of left D-ideals. ‘

4
Proof. If Ji = g U(D)&A*, then Dd,, » = 1,..., H = H,, repre-

gent the distinet D-ideal classes.
“We also have the
 ProrosiTioN 7. J. u aots transitively (by eonjugation) on orders of level
m of A _
Proof. The action is: For & = (@p)edy and M ain order of level m:
M {M}—~{a; ' M a,} >N

and we write N = a~'Md. The action is obviously transitive by the
definition of orders of level .

ProPosITION 8. 1) The class number H,, is finite and independent
of the particular order {of level m) used in its definition. It is also the same
for left or right ideals.

2) The type number T, satisfies Ty, < Hy, . In particular, it is finite.

Proof. 1) H,, (say for D) is the number of points in the space
WD)\ Jy, /U But this is a compact discrete space, hence H,, is finite.
It D&, ...,Day, H = H,, represent the distinct left O ideal classes,
then &'0, ..., 470 represent the distinct right ideal classes. Tf M is
another order of level m with (say) M = b=2Db, then 5Dy, ..., b iy
represent all the distinet left M-ideal classes.

2) Let Od,, ..., Ddy be as in 1) above. Then any order M of level
m is easily seen to be of the same type as (at least) one of the right orders
of the Da;, i.e. d;'0d;. Thuy T, < H,,. Note that equality does not
hold in general and compare with the proof of Lemma 32.

DerINrriox 9. If M is an order of %, the normalizer of M in JY is

(GeJY| G Ma = M}

and is denoted by (M)
We will need the

PropOSITION 10. Let O be the canonical order of level m in U. Then
[M(D): U(D)J = 2°

. , i

where € is the number of distinet primes dividing gm. Move specifically:

For plq, let m, be an element of W, with N(=z,) = p. For p|m, let

01 .
m, = (pr 0) with ¢ = v, (m) .
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Let &, = (@)edy be given by: ¢ =1 if I < 0o, L#p, @ =, if | =p
and o, R 4s chosen so Fi,edy. Then

{lt o qfe| fuy ooy fo =0 or 1}

is a complete set of cosel representatives of (D) mod WD)y where Py, ..., Py
are the distinet primes dividing gm. ‘

-Proof. This follows easily from local considerations. If plg, all
elements of 9 normalize O, and [W;: U(D,)0;] = 2 with z,¢ U{D,)Qj.
If ptgm, it is easy to see that the normalizer of D, in %, is just U(D,)@y.
¥ plm, noling that (:(L) g) eD,, we see easily that the only maximal

orders containing O, are

Z, »7°Z, T - .
(WZ;0 z, for s=0,1,...,%.

Thus O, it the intersection of two unique maximal orders,

. Z, Z\ 1z, p'Z
— » D n p
O = (Zp Zp) A (p"ZI, Z, )

and a, <, normalizes Dp if and only if conjugatidﬁ by @, permutes these
two maximal orders, i.e. @, normalizes O, if and only if aye U(D,)¢5 or
ape”pU(’Dﬁ)Q;' ' ‘

3, Optimal embeddings. The following question will be central to
our study, Let K be a quadratic field exfension of ¢} contained in 9L
If o is an order of K and M is an order of 9, we say that o is optimally
embedded in M if KM = o We ask: In how many essentially different
orders M of level m can we optimally embed an order o of K% i m =1,
the answer i 0 or 1 depending on whether the conductor of o is prime

-to ¢ or not — this is a special case of the Chevalley—-Hagze—Noether Theo-

rem. If m is square free, the answer is again 0 or 1 a8 was shown by Eichler
([3] and [41). The solution of the general problem is due to Hijikata ([5]).
We first note the important trivial equivalence:

EnM =pwB,nM, =0, foralp< .

Also any order M of level m can bé written as M = Ejbﬁﬁwith B =M(b?’) edy .
and © the canonical order of level m. Suppose K Qb“’Db =0, B N(OY,
then K ~5~1510éb = o, s0 we need only consider beJy mod N(L). Further

if Gedgz, then we have
‘ Kna b '0bd — & 'od = n,}
i.e, if o is optimally embedded in M, it is optimally embedded in a1 Ma

i — Acta Arithmetica XXXX1
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. iom
for all &eJy and we Wlll consider these embeddings as being essentially
the same. Thus we have the .
Deriwerior 11, Let o, X, and U be ag above. Then D (p) will denote
the number of double cosets N(O)bJL in Jk such that End-0b = o.
D(o) iz the number of essentially different orders (of level m) of ¥ In
which p is optimally embedded.
Locally, this reduces to
DerNmrron 12. Let o, K, % be.as above. Then D(p,) will denote
the number of double cosets ¥ (D,)b, K m%IP such that K,n b, 0,b, = 0,.
Here '

N(D,) = {%6%! 050, 0y =Dp}.

We now determine the numbers D(o,). There are three cases:

Case plg: K,nD, is the maximal order of K, and N(D,) =U;.
Thus D(n,) =1 or 0 according as o, is maximal in K, or not.

Case pfgm: Chevalley-Hasse-Noether implies D(p,) =1 always.
This is easy fo prove, see [4], p. 97 for example.

Oase plm: We follow Hijikata ([51). Note first that

E,nb;'0,b, =0, <0, K, b O, =b,0,b5"

An isomorphism ¢ of K, into U, is called an opiimal embedding of 0, /K,
into 0,/ if p(K,)nD, =¢(o,). If H is a subgroup of N(D,), we say
two optimal embeddings ¢ and ¢ are equivalent mod H and write

¢ ~ ¢ (mod H) if there exists heH such that
¢’ () = hp(w)h™’

For us H will always denote either N (D,} or U(D,). X K, c U, it is
obvious that there iz a 1-1 correspondence between optimal embeddings
of ©,/K, inte D,/%, mod ¥(D,) and double cosets N (D,)b, K, satisfying
K nb"prp = 0y. Thus D(p,) is the number of equwalence classes of
optimal embedding and Hijikata’s result is (see [5)).

THEOREM 13. Let A,, O, be as above and assume p|m. Let g, 942,
have ‘minimal polynomial f(m) = o®—in+n over Q,. Let A be an order
of Qp(g) = K containing g with [A: Z,+Z,9] = p*. Finally lei v = vy(m).

Let @ be the set of all solutions in Z, (mod p"™) of the simultanecous
equations flz) = 0 (mod p™**) and 22—t =0 (mod p*). Let P P be
o comblete set of representatives .of @ mod p™+° (d.e. if <D, there emists
&V such that & = £ (mod p™) and if & Fe¥, & = & mod p™t= £ = 5)

For &<, lot _
| & 2
Pelg) = (&“P_Qf(é) t—E)'

for all weK,.
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. Then g induces an optimal embedding of AQ,(g)->D, /%, end any optimal
embedding is N (O,) equivalent to some @g(g).

Further for & &'e ¥, we have:

if pTR(12—4n) is o unit;, then

ps ~ @y (MOAN(D,)) = & =1— & (mod p™*?);
if pTR(12—4n) is not a unit, then
Pe ~ P (mOd N(Dp))¢§ =t—¢& (mod p'te)
and  f(&) # 0 (mod pretly,

(Note: since plp~2(8 —4n), this last condition is well defined.)

Sketeh of proof. Hijikata's idea is as follows. Suppose A = Z, -+
+Z,9, i.e. ¢ = 0. Let ¢ be an optimal embedding. Then ¢{g)c, and
by conjugation by elements of N¥(D,), we can assume the (1,2) entry
in @(g) is 1, i.e. we assume

& 1

where £ is some elerent of Z,. As ¢,(g} D, we must have f(£) =0 (mod p").
It is easy to see thab @z ~ @y (mod U(DP)) if and only if & = & (mod p7).
A little work gives a set of distinet representatives mod N{D,). If ¢ > &,
the procedure iz more complicated, but the ides is the same. For the
complete proof, see Hijikata [5], Theorem 2.3.

ProrosrioN 14, D(o) = [T D{oy).

p<oo
Proof. This is obvious.

4. The Selberg Trace Formula. Let & be a locally compact group.
with an open compact subgroup U and a diserete subgroup I’ with G/I°
compact. Then @ is unimodular (i.e. every left Haar measure ig a right
Haar measure (see [8])) and we normalize Haar meagure dr on G such
that f dz =1. Let L(G¢, U) be the set of complex valued continuous

functlons F on @ Wlth compact support such that Flugu’) = F(g) for
all ge@, u, ' ¢ U. Let L(UN\ G,/ T') be the set; of all complex valued con-
tinuous funetions f of & such that flugy) = f(g) for all ueT, ge@, yel
For any yel, let {y} denote the conjugacy class of y.in I' and let I'(y)
denote the centralizer of » in I'. For a diserete subgroup § of &, we also
denote by dx the invariant quotient measure on G(8, Le. if f is continuous
with compact suppori on &, then

Jf(a:)dm. == f (Z‘f(ms))dm

HIS s
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Any FeL{U,@) induces & linear transformation on the finite dimen-
sional complex vector space L(UN\ & /T) by convolution,

(F ()| ) = (Ff)(@) = [Flay™)fly)dy
&

and its trace is given by
ProrogrioN 185 (Selberg Trace Formula).
Trace # = 2 f (@) do
{¥} H{Iy)

where p,(w) = Floye™) and the swin is over representatives of all conjugacy
classes in I :

Proof. SBee [9] and [10].
5. The class number. We seek a formuls for the class number H,.
Let us firgt state the result.

TEnorEM 16. Let U be o definite guaternion algebra over Q. Let q be
the product of the finite ramified primes of % and let m be o positive integer
prime to g. Then the class number H,, of an order of level m in U is '

e S [Ib-HT03)

JHIR-EI I ) o o
0 _ B if  4|m,
LT GOITEA) o om
0 o if " 9im.

Here (3) is the Kromgcher symbol . and the products are over} distinct
primes dividing g or m.

Proof. The proof will be given after & series of lemmas and propo-
sitions. Note-that by Proposition 8, it suffices to consider left ideals for
the canonical order O of level m. In order to simplify the typography,
for the rest of thiy section we let G = Jy, U =U(D) and I = 9"

‘ LExmea 17. Let I be the characteristic function on U. Let dw be the
measure on G normalized so that [ dw = 1. Then '

: g

1 Hy = 3 [ g (w)de
: - B ey
where () = F(mys). o
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Proof. &, I', and U satisfy the hypotheses of Proposition 15. Since
[ dz =1, it is easy to see that Finduces the identity map on L(UNG,/T).
T

Thus Trace F = Aim L(UN\G /1) = |UN\ &,/ I'| = H,, and we use the
Selberg Trace Formula.

Levma 18, If

@Iy

then v = +1 or has minimal polynbmial 22 +1 oF 4w +1.
Proof. p,(¢) = F(ayx') # 0 for some

peGeoyr A (O) ey (a7 100 A" = U™ D).

Thug p is & unit of some order of A. I ye@, we have y = 4L1. If p¢@Q,
then T (y)eZ and N{y) is a unit of Z. Thus the minimal polynomial of y
is flw) = @*—tw+n where teZ, n = 1. If f(z) had a real root, it wounld
mean that R is a splitting field for 9, contradicting the definiteness of 2.
Thus 2—4n <0, le. n =1 and ¢t =0 or 1. '

Since two elements of A* are conjugate if and only if they have the
same minimal polynomial, we have determined all possible conjugacy
classes which give a non-zero contribution to (1). We first caleulate the
eontribution to (1) from p = X1. .

LevMA 19, Let © be o mazimal order (i.e. assume m = 1). Then

HeIr) =L '(1—l)
IVO(/)—24piq :p'

Proof. Recall the measure do is normalized so that vol(U (D)} = 1.
qu :

G =JY = L_jlu(D)g,*lI*

where Og,,» = 1,..., Hy, represent all the left D-ideal clasges.

Yol I) = ) vol(M(D)g,|T) = D vol{g w(D)g.IT)

» ¥

. ; y 1
= Dvellule om0 = X rresgy

But 2 m___j’l__.___ is by definition the Mass for O-ideals. Tts value is
| U (g 0g,)] _ _
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well known to be that given in the lemma. Itg computation involves
the evaluation of the residue of the zeta function of U at 2 {or
at 1 in Eichler's notation) by two different methods. See [2] and
[4], p. 95. ' '

PROPOSITION 20. Let © be an order of level m in . Then the Mass
formula 1s: ’ '

(2) vol(@/I') = %H(l~%)ﬁ(1+ %)

bl lm

Proof. We assume O is the canonical order of level m. Lot O be
the canonical order of level 1. Then © < O and

| | .
(0 4 = [ [ o)) oot < m [ [{14 )
» plm

since

vl Z\.pl%  Z\]_[rp+l i ¢ =0,
p"zp 'Z.'D ) pr+1Zp Zp o 13 j.f 7";1.

Thus

volfo) = m [ [ {142

Bim
Lemma 19 gives the volume of @/ under the assumption vol{(D')) =1

* . : I

hence the volume of G/I" in the present case is m H (1 —i—~p—) times as
large. .

Remark. The above proof works for definite guaternion algebras
over any (totally real) number field and one gets the obvious general-
ization of Hichler’s mass formula 12 in [3]- '

We now consider the computation of [ w,(@)dw for p = L1

Iy -

Lewva 21, dssume v 7 +1 and suppose y,(w) is not identically zero.
Let K = Q(y). Then the support of (@) in G consists of the disjoint union
of the double cosets WM(D)bJY satisfying Knb~'0b = Jor some o of K
contatning .

Proof. v, (§) # 0=Fpf e U(D) -y En§™'0F = o (say). Conversely,
if Enj~'Df =poy for some §edy, then §pj—tell(D) (since N(y) = 1)
=u,(y) =1 _ .

On the ariihmetic of quaternion algebras 1

PROPOSITION 22. Assume yel*, p¢Q and the minimal polyﬂ;oua?ia}
of y s flw) = a*—sw+n with s, neZ. Let K = Q(y)ﬂciﬁlmcl agsume Kb “?16
= p>v for some b = (b,)edy. Finally assume yeR(b Db).~T1hm R(D)VbJ &
consists of the disjoint union of B(v) translates of WU(D)bJx where E(o)
= [] E(v,) and where:

p<eo

if pam, Blo,) =13
1 if p vamifies in K,

¥ rie E_(Dp )= 2 if p remains prime in K;

if plm, we let vy(m) =7 and [p,: Zp+Zpy] = pi

We can assume by Hijikata's Theorem 13 that

. :
byybyt = (——j‘ef(rf) j;_ E) for some EeZ,.

Then ,
1 i 9 [f(8) =r+2e and w{s—28) =r+e,

2 otherwise.

E(Dp) = l

Proof. RD) = UaAL... &xU(D)Jy where fi, ..., f m(} or 1 iﬂd
Dy re; D, are the distinet primes dividing ¢m by Propesition 10. Thus

NOVbTE = UL ... sl W(DBJk, fip.fe=00r 1.

As the #,. commute with each other one can -seeﬂthajj: fve need only de-
termine ffow many d, are absorbed into ¥W{D)bJLb~" But

i e W(D) BT B " e aye T (D) b, Epby™
Tor plg, m,eU(D,)b, Kb <p ramifies in K (see [6:], Le.mma, 13). Note
that p c?a,npnot split in K? for that would imply %, is split. For pim,

Tp = (g’ 3)5 U(D,)bp Kby = U (Op) (@5 +.Q1’(bpyb51))

if and only if |
. Q
a0 1 ap” w \ __ (10 -5_ [ )
(;LPT ’v) (10’ 0) - ('019" bﬁ") “m(O o T\ st
’ ) 47 1
for some w, v units of Z,, a,beZ, and @, y5Q,. Thus m,e U(D,) b, Kby |

— . Conversely i »,{f(£)
impli £) =r+2¢ and w(s—2§)=r+e _
132-1:;91)27&];1{&))%(3—»25);zr-{-gf then there exists ®¢@, such thab
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Pt =p%s— &)+ = 0 (nod p7), Then

- £ »° _jap™ 1
ate (—p‘gf(f) S—E) - (’up” bp")

for some @, beZ, and v a unit of Z,. Hence w,e U(D,)b,E;b;" and the
proposition is proved.
‘We obviously need the

Levma 23. Let v, K, b, 0 be as in Proposition 22. Then

h(p)
w (o)

vol(W(D)bJY/EY) =
where h{o) 1s the class number of 'Zocally principal o-ideals in K, i
CR(D) = TR/ (o) K]

where U(o) = U(D}ndy = ( [T U{o,) xEL)nJk and w(o) = [U(v)|. The
<™
volume s taken with vespect to the quotient measure on Jy|K*.

7o)
Proof. Let Ji = {J &U(o)EK* (disjoint.) Then
=1 : .

Vol(U(D)BT5/K"} = vol(M(ED8) Tk /K*) = vol C(J) (FU(G 0b) K [KY)
fuul

' e v . ~ y;
= h(n)vol(l[(b“lbb)/ll(b.‘lﬁb)nK"') = w—m.
w{n)

PROPOSITION 24. Lei y, K be as in Lemma 21 and let o be a fiwed order
of K containing y. Then I'(y) = K* and the volume in G/I'(y) of the support
of p,(@) attached to v, i.e. the sum of the volumes of N(O)bT%/E* over all
doublo cosets satisfying Enb™0b =0 is D(0)E(o) j%—

. : w(n
Proof. It is well known that the centralizer of y in 9* is just @{y)*

= K*. The rest follows immediately from Definition 11, Lemmas 21
and 23, and Propogition 23, '

Proof of Theorem 16. We evaluate {(1). By Lemma 18 we need

only conmider y = 41 and ¥ aroot of #*+1 or @ 4w+l If y = £1,
I(yy =TI and

[ w(@)de = vo ¢/

& I(y)

which is given by (2) and gives the first term. of the formula for H,,.
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Now consider y a root of #2+4-1. Let K = @(y) and assume XK is em-
bedded in % By Lemma 21 and Proposition 24 we must consider all
I(p)
(o)
As y generates the maximal order of X, we need only consider o = Z-1+-Zy.
It is well known that A(p) = 1 and w(o) = 4. We caleulate D (o) and F(p).

It pfgm, then D(o,) = E(o,) =1.

—4
If pig, then as n, is maximal, D{o,) =1 and H(o,} = (1—(?))

orders p of K containing .y and for each such order compute D (p) F (o)

Note H(n,) 0 as K < U :
If p|lm, p # 2 we let the notation be as in Theorem 13 (A =p,).
Aso, =Z,+Z,y, 0 = 0. 2*+1 =0 (mod p") has a solution in Z, (mod p7)

¢,(_f_"£) = 1. If (;1) =1, we have two solutions & p (12 —4dn)
P» P

= —4 iy a unit and & =0—(—§) (mod p"™) implies there is only one:
equivalence clags of optimal embeddings. Thus

b ()

D(o,) = N
|o () -
P

wp(t—28) =, (26 =0<1 as  N(§ %1_

I D(o,) =1, we have

Thus by Proposition 22,

=25

Tf 2}m, again using the notation of Theorem 13, we have two cases:

if # = 1, then 2241 = 0 (mod 2) has one solution & = 1. Thus D(o;) = 1.

‘ —4 .

vy (1—2&) =1 and #,(f(1)) =1 implies F(og}'=1 = (1+(—2—)), if

722, @*4+1 = 0 (mod 2") has no solution so L}(o,) = O./ Thus D{c) = ¢
or 1 and D{p) = 1=H(n) £ 0 and 4t¢m in which case

so= [T

pla Blm

Finally K = Q(y) ¢an be embedded in % if and only _if _Kp.splits ne
for all p (Brauer—Hasse-Noether Theorem) if and only it K iz totally
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imaginary and K, is a quadratic field extension of @, for all plg if and

only if H ( ( )) 52 0. Thus if K can not be embedded in U, F(o)
pig
i3 already zero so our initial assumption that K = 9 is no restriction.

These considerations give the second term of H,,

Remark 25. The phenomenon explsined in the above paragraph,
that assuming K < U iy no restriction on the final formula will ocemr
so offen in the remaining caleulations that we designate it “Remark 257
50 that we can brieﬂy call the reader’s aitention to it from. time to time.

Now congider a root y of w*+o+1 and let £ = §(y). As y is a root
of 22+ 241 if and only if —y iz a root of a2 —a +1 and since y and —y
both generate the same field K and the same order Z +-Zy of X, we need
congider only one, say ¥, a root of @2 --1. Assome {Remark 25) that
K = % and note that Z4Zy = p iz the maximal order of K. Again we

need only compute .

3 1.
Do) (o) w((?) =% DB
It ptem,
D(ny) = B(o,) =1.
It plg,

Doy =1, By~ f1=[=2)

It p}m, P #2, p # 3, we use the notation of Theorem 13. a2+ =

41 = 0 (mod p") ﬁ&s 2, solufion ¢(—73) =1 Tt (_-73) =1, there -

are two solutions & = fa—% and & =

—%a— % where o = —3 (mod p").
P —dm) ==

—3 14 @ unit and & =t— & {mod p") %o

{
D(v,) = i|
|

R

I D(oy) =1, 5,(t—28 =0<r = Bo,) =2 :(1+(:§3—)\}. T 2m,

@?+x--1 = 0 {mod 2} hag no solutiony, i.e.

—3 i
5 ))']i.Z[m.
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T 3{m, there are two cases: »(m) = 1 =r in which case #2+s+1 =0
' -3
(mod 3) has one solution, so D(p;) = 1 and we see H(pg) =1 = (1 + (—3—))

also; in the other case v 2, #4011 =0 (mod 3" bhag no solution so
D(o;) == 0. Thug D(p) =0 or 1 and D(p} =1 if and only if

o = [T ) o

gl pim

and 9'gm. Recalling we must consider both -Ly, we get the thlrd term
of the formula for H,,. This eompletes the proof of Theorem 186.

6. The type number. Let % be a definite quaternion algebra over
Q with ¢ the product of the finite ramified primes-of % and m a positive
integer prime to g. Before stating the formuia for the type mumber Ty,
of orders of level m in U, we infroduce some notation which will remain,
in effect for the remainder of this gection. First for any ¢, beZ we write

. b .
a||d to mean &b and (a, E) = 1. Secondly for any s<Z, s > 0 we write

84, 8, to denote the unique positive integers with s = 8,8 and 8, sguare
free (i.e. »,(s,) =0 or 1 for all p).

THEOREM 26. Assume U, g, m, ele. ave os above. The Type %umbe’r
a8 given by the formula

Hy gttt Dt

3 l/ L——
where: #
H,, 8 the class number given by Theorem 16
[£6(8,1)+56(4,1) if 2 lgm;

o , if  2fgms; or 4igm;
8(3,1) i 3[gm and 27gm,
+4(3,1) _ if - 3lgm and 2|g,

=143(3,1)--4(8,2) if  3llgm and 2 or 4|m,
0 : if  8(m,
0 ; if 3t gm or 9gm.

We consider two cases for 'ts with § = §,85:
Cage 8 =1 or 2 (mod 4). Then
"o if  4lm ond 41s,

b = 1 8(dsy, s)h(—s)  otherwise.
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Cage 8, =3 (mod 4). Then

1 .
38051, )h(~9) 1+—S—~) if 2o,
. 1 N
aley
1 :
58(s1, 8)h(—s) i 2]g,
9.
b
36(8y,8)R(—s) _ if  2im and 2|s,

5(s1, 26)h( —8) +3 8(3,, )h{ —8) i 2|m ond 24s,

3501, 25)(—s) (3 +( o ))+

+48(5;,8)B(~—8) ————— if 4|m and 2%s,

8lm and 24s.

38(s5, 5)i( —3) (3+— !

— i
e
2
Here:
€ is the number gf distinct primes dividing gm,

s H10- b )

pig Bim
ptr

h(—s) = class number of the order Z+ZV —s in the ﬂéld Q(V’ié)
{see Lemma 44). '

Proof. The idea of the proof is similar to that of Theorem 16 and
the proof will proceed by a series of lemmas. We first note that J acts
transitively on orders of level m (Proposition 7) and the double cosets
R(O)\ T, A" are in 1-1 correspondence with types of orders of level
m. However, M(O) is not compact so we have to consider

G o= Jyldy, I'= W T Ty =AQ*, and U = E)}(D)/JE;
and we fix this notation for the remainder of this section. Under the
quotient fopology G remains a locally compact (unimodular) group, U

icm
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is an open compaet subgroup (by Proposition 10) and it is not hard to
see that [ is a discrete subgroup wik compact quotient G/ As Ton

= |UN\G,/Tland @, U, I satisfy the hypothesis of the trace formula
{Proposition 15) we have : o
Levma 27. Let T be the characteristic function on U. Let do be the

Haar measure on G normalized so that [ de = 1. Then
o

(4) | L= Y [ wle)ds.

el GII(Y)

Procf. The proof is the same as that of Lemma 17.

We introduce the following notation: if yel' = A*/Q* we write
y = g with a<%* t0 mean that a is a representative of y in U*. As 9, (»)
% 0wy = aeN(z"'DOp), we are inferested in

Tevma 28, If yell, v # 1 (ie. y =b¢Q") and yeJ(F) for some
order F of level m, then y =a for some acFnUA" having minimal poly-
nomial ©*—izm+n with 1, neZ and (1) nigm; (i) »|t; () #—4n < 0.

"Proof. First assume F = O and let y normalize O with y = ¢<2".
Then

if pigm, ¢ = u,b,,

I plg o =upn;1.’bp, 6y =0 or 1,

it pim, ¢ = uﬂwff’bp, e, =0 or 1,
by the proof of Proposition 10. Here u, is some unit of O, T is as .i;u
Proposition 10 and b, is some element of Q;. There exists beQ” and unifs
wue U(Z,) such that b = byw, for all p < co. Taking a = e{)", we have
y =a and aeD (as aeD, for all p). The minimal polynomial of @, say
fl@) = 2 —ix +n, satisfies n, teZ and n|gm. Now if p|n and p .lg, tlfen
p|t by Hengel’'s Lemma (pft=2®—ix-+n has a root in Q, =, is split).

. 01
Tt pin and p |m we must have »,(n) = w,(m) = 7 (say). Then & = u, (pw O)

and it is easy to see that p”|T(a). Thus n|f. Finally as N ig definite, f(x)
can have only complex roots, ie. t*—4n < 0, As every order of level m
is conjugate locally everywhere to O, the lemma is proved.

Leyma 29. If yel, y # 1 normalizes an order of i_!_e'nel i, t?um there
emists W with v = a such that the minimal polymomial of a is one of

w241 or ot -a4-1,

x2+2 or @+ 2¢+2 if 2”&"’"’1
B ‘ R
) s or ot+30+8 i 3lem,
22 n, nzd for  mllgm.



8 A, Pizer

Proof. Let a be as in Lemma 28. The minimum polynomial of «

can be written as ®#>—en-+n where ceZ, % jgm. (en)?—4n < 0 implieg-

#>0. Then e*n—4 < 0 implies ¢ =0 or ¢ = 41 and n =1,2, or 3.
Finally, we can assume ¢ > 0 by replacing ¢ by —a if necesgary.

DEFNITION 30, A polynomial listed in’ Lemma 29 Wﬂl be called
an admissible polynomial.

Remark 31. Lemma 2¢.shows explicitly that we mneed consider
only finitely many conjugacy classes in the sum (4). Also note that
admisgible polynomials represent distinet conjugacy classes in I (see Le-
mma 6 of [67) except that #2+ o and #*+b with a and b|/gm will represent
. the same clags if and only if ¢ and b differ by a perfect square.

We first calculate the contribution to (4) from y =1, i.e. we need

2
Levma 32. vol(G/I") i8¢ given by§M(D) where M (D) is the mass
of O and is given by (2).

Proof. Let 7107, =O;, t =1,..., T = Ty, be a complete set of

representatives of the types of orders of level m in W and let U, = N(D)/J.
Then

T
vol(G/T) = Zvol( U3, IIT) = \ vol(U,I|T")
p=1 u=l
: Va 7 1
B
~ é vol(T, U, T) = ;f AT

as vol(U) == vol(U,) = 1. Let g, - [T;n | and T, be the class number
of two-sided D, ideals (an ideal 0,4 iz two-sided if 0,4 = 40, and two
two-sided £; ideals I and J belong to the same class if I = Jb for.some
be*. Note this forces bD; = O.b). We claim 2° = Jf‘qg where recall
) t
w(Dy) = [U(D,)]. By Proposition 10,
2° = [M(Dy): (D) ] = [R(D): WD)

Let T, be the group of all O, ideals of the form D,a, a¢Q* and let 8, be
the group of all two-sided D, ideals. Then the map R(D,)» d-+0,d induces
an isomorphism RO, (0" =~ S,/.T‘ and we need only show [8;: T%]

2Ht§'ﬁ

W(Dt) w(D)

.Then [8;: P‘] _H, and it remains to show [P T = w(g) For
1

Let P; be the group of all prineipal two-gided L, ideals.

- this consider the surjective homomorphism U;nI'->P,/T; jnduced by,
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U,nI["6-0,a. Then kernel is T{D)Q*/Q% ~ U(D)/(+1) and the elaim

is proved. Thus
H
vol(G/T) = S’_ — 2 Z_D;}
¢

w(
r
. H, .
and we claim that M (Q) = Z . But this is almost clear for as
| & (D)
in Proposition 8, if Ody, ¢ =1,..., Hg,, represent all O-ideal classes,
then d; 0d;, 1 =1, ..., Hy,, will represent all types of orders of level

m in W and it 18 easy 110 gee that exactly H; of these orders will be of the
qm,
same type as O, (thus H,, = Y H,)and as orders of the same type are
i=1 o
igomorphic, we are done.

Now we need. to consider the contribution f v, (w)de to (4) for

y # 1. Let aell* be a root of some admissible polynor;mal and suppose
b = (b,)edy satisfies bab leR(D). We wish to classify such b. Tf plg,
then b, ab; "« N (D) for all b,e%; so there is no restriction on b, and we have
6 byabyleN (D) <byab;'eD, for plg.

It ptgm, then byab;" e N (Oy,) if and only if b,ab," = u,6, for some u,e T(D,)
and ¢,¢Qp. As N(a)eU(Z,), we have

(1) byabsle N (D,)wb,ab; e U(D,) for plem.
The case pim is more complicated. If pim, then
(8) bpaby e N (D,)<byab;! = Wars
fo 1
where u,e U(D,), seZ, m, = (p" 0), 7 =»,(m}), and f =0 or 1 by Frop-

ogition 10. If b,ab, e N (D), then
N(a) = w,p¥p™ with w,eU(Z,).
Thus we have the following poqsﬂ)ﬂmeq for (8):

vp(¥ (a)} =0 n(N (@) =7
9 rodd s=f=0 s=0,f=1
(10) reven §=f=10 $=0,f=1
(10") or s =—12 f=1 or s =r/2, f =0,

Huppose we are in cage (10 ). Then + i8 even and @ iz a root of gome 22+ n,
n > 4. If ,(n) = 0, letting t = »/2, ap' is also the root of an admissible

polynomial and
b, abyteM(D) «b,ap'b, e N(D).
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Finally as b,ap'by’ = u,p**'m, = w,m,, we see that case (10') with
»{¥(a)) = 0 is equivalent to case (10) with »,(N (a)} = r. Similarly case
(10') with #,(N(a)) =7 is equivalent to case (10) with vp N (@) = 0.
This leads us to consider b e, with

0 it w,(N(e) =0,

-1 " —
0D byabyleU®pm,  whete =), 4 v(a) =7

LEMMA 33, Let ye@, y #1 be such that v (@) is not identically zero.
‘Let A(y) be a complete seb of voots of admissible polynomials (B5) in U, at
most one for each polynomial, such that aeA(y)=y = a. For acd(y), let
{ay ={b = (b,)ed5| by smtzsfws 8), (7), or (11) depending on whether

A pig, ptem, or pim}.
Let {a) be the image of {a) in G == Jy/Jb. Then the support of (&) in &
. consists of the disjoint union of the ZE)ﬁ over ged ().

Proof. We have shown that the support of 4,(x) in Jy consists of
the sets <a>, aeA(y). It is easy to see that the image (a) of these sets
remaing digjoint in G

'We need the following .

LEMMA 34. Let ¢ = byab %, be as in (11). Then either ceU(D,)
or v, (N(0)) =7, w{T(e)) = r, and w,(eys) > where oy s the (1,1} eniry
of e. Goawersely if 0eD,, satisfies .%the'r of the above conditions, then ce U(D,) xd,
with fas in (11}

Proof. This is trivial.

DEFINTIION 35, Let yel” with ¢ = a for some a«¥W* aroot of an admis-
sible polynomial. Let K = @(a) and let o be an-order of K containing a.
For p|m an optimal embedding @,: 0,/K,—~0,/%, is said to be admissible
it either @,(a) is a unit of O, or vp(N-(qap(a))) =7, vp(T(cpp(a)))zr, and
v,(by) > v where by; is the (1,1) entry of ¢,(a).

Remark 36. S8ince the & in Definition 35 is the root of an admissible
polynomial, for each plm either »,{N(a)) =0 in which case g@,(a) is
a unit of O or v, (¥ (a)} = in which case vp(N( ) =7 and ¥ ( (%(af)))
> # Thus the only real condition on ¢,(a) is the condition on &,; when

(N (@) =r.

LEMMA 37. Let a be as in Lemma 33 with K = @ (a). Then {a) consists
of the disjoint union of the double cosets M(D)bI% where Kb~'Ob = p
for some order v of K containing o where n—>b,xb;" induces an admissible
optimal embedding of v, [H,—C, /N, for ail p|m Hew b= (by). (Oompa.re
Lemma 21.)

Proof. First note that if conjugation by b mduces an admissible
optimal embedding, so does conjugation by any tale]:nemL of N(D,)b, K*
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If & = (¢,) e {a), then aeK nd"OF =p (say) and by Lemma 34 conjuga-
tion by ¢, induces an admissible optimal embedding for all pim. Con-

 versely, if aep = K né~1 D¢ for some deJy with conjugation by ¢, inducing

an admigsible optimal embedding for plm, then de{ed by Lemma 34.

DerNITIoN 38. Let a, K, and b be as in Definition 35. Then D'(o)
will be the number of double cosets RN(L)bJL satisfying K608 = o
where a@-»b,zb;' induces an admissible optimal embedding of np/K
-0, /%, for a,ll p|m. D’ (o,) will denote the local component of I’ (p), i.e.
if pﬁ’m D'(0,) = D(vy,) and if plm, D'(v,) is the number of double cosets
N{(D,)b, K, satisfying Kpnb,'O,b, =0, where g—>b,ob," induces an
admissible optimal embedding of o, (K, —»Dp A,

Remark 39. It is obvious that D'( HD 0,,). For ptm, we have

already caleulated D (0p) In § 3. For p|m, Theorem 13 together with
Remark 36 allows us to easily caleulate D' (0,).

‘We need the following

DEFINITION 40. An element ae¥*, a¢@* is said to be pure if T{a) =0
and impure otherwise.
and

Lmmws 41, Let yell

(i) If y =a, o impure, then I'(y) = @(a) yQ*.

(i), If v = a, a pure, then [I ) Q (a)[Q*] = 2.

Proof. This iz easy, see [6], Lemma 9,

By Lemma 37 and Definition 38 we have broken the support: of -
¥, (@) in Jy into & number of double cosets J(D)bJL and by Proposition
22 we breal these double cosets into the smaller pieces W(O)b . Thus
to evaluate (4), in addition to a lot of counting we need to calculate the
volume of the image of H(D)ng in @/I'(y). By Lemma 41, it suffices
to calculate this for I'(y) = K*/@" where y =a and K = @(a) and we
have ' _

LEMMA 42. Let a, K, 0 be as in Definition 35. Lei bedy satisfy

= Enb'0b  where a—b,zb;’

induces an admissible optimal embedding of 0,/K,—D, /N, for all plm
Then .
h (0}

(o)

Proof (compare Lemma 23 and also [6], Lemma 14). Let

L\D’w

vol{(U(D) BTk /T o/ K* Q%) =

J‘lK = U S!H?,;II(D_)K*.

6 — Acta Arithmetica XXXTL1
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Then
VOl{(W(D)BIL/TE/E* Q%) = k(o) vol(M(BDb) K™ [Ty K™ T} T3
= h{o)vol (U508 E* /M (%) E*)
= h(0)vol (M (b05)[ U (0) W (Z)] U(Z))
_ 2h(0) 2h(o) 1

vol(W{5708) () =

w(o} w(n) 2°

as
vol (M (5105) A (2)) = vol (M (D)%)} = Vol(lI )b Th)
which. is 1/2° by Proposition 10.
We need two technical results before putting all the pieces together.

Lieaaca 43, Let o be an order of Q(l/w—s) & a square free positive in-

teger. Then w(p) = 2 ewcept in the following two cases: § = —1andp =24+
1 3
+2ZV —1 in which case w(p) =4 or § = —3 and o = J+Z(—_i—"g'_)
in which case w{o) = 6.

A Proof. This iy frivial. _

Lmmma 44, Let o be an order of K = Q(}/—f-s], § & square free positive
integer. Let o' be the mawimal order of K and lot f = [o':p]. Then

s s b0

Note that h(o') is the class mumber of K.

Proot.
B{0) = [Jig: UW(0) E*] = R(o") (U (0"} E": W(0) K*]
= k(0") [U(0")/T(0'): U(0}/ U (0)]
Thus '
h(o) _ R{0) . .
'?.D(D) —W[H(D).u(ﬂ)]
and _ _
! ) + 'K 1
w0 = [ [ 0 v =1 [ (1-(2) 5
P it »ir
where o
% 1 if- p splits in K,
(—) =10 - i p ramifies in K,
P —1 if  p remains prime in K.

icm
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Proof of Theorem 26. We need to evaluate (4). The contribution
of y =1 to (4) is ‘

G"lzpl sy = Vol(G/I’)
which is given by Lemma 32: For y s 1, by Lemmas 29, 33, 37, Defini-
tion 38, Propositions 22, 41 and 42, we must consider for each admissible
polynomial belonging to (5) one root say a (if @ can be chosen in Ay and
for each such a, we consider all orders o of §(a) containing a and for each
such order caleulate

(12) 9¢ ‘ w{0)

where (by Lemma 41), g = 1/2 if @ is pure and 1 otherwise. The sum of

2 oo )
I3e D (0) Bl0) s
over all appropriate orders gives the contribufion of all y =1 fo (4).
By Remark 20, no generality is lost in assuming all admissible poly-
nomials have roots in 9. We will use Remark 39 and Proposition 22 to
caleulate D'(0)E(p). Also Lemma 42 will be used without mention.

If @ is 2 root of @41 or #*+%-+1, then D'(n) = D(p) and D{(0)E(n)
hag already been calculated in the proof of Theorem 16. Thus the con-

1
tribution of y =1 or y = a with a a root of #*+1 or #*--2+1 18 o H e

The polynomialy #*+2 and @*+25-4-2 (resp. #*+3 and w2+3m—1—3)
oscur in (5) only if 2 (resp. 8) llgm. We consider these cases first.

Assume 2| gm. Let ae¥* be a root of #2+2 (see Remark 25) and
let K = @(s). a generates the maximal order say o of K s0 we consider

only o and caleulate D'{0)E(o). ¥ ptem, D'(n,) = E(n,) =1. H p|g,
—8
D'(n,) =1 and Ep,) = (1—(?))
If pim, p £ 2 it is eany to see
o ()
'D’{Dp) = _8
o it (m_) = —1,
v

and H(o,} =2 if D'(v,) = 1. Thus

D' (0,) B(s,) ~ (1+(—;—8)).
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If pim, p =2, we have
—8
D'(o,)E(o,) =1 = (1+(w)).
»
As @ is pure, (12) becomes
1 -8 -8\ 1
s —f— 14+{—])=.
2‘*”(1 (13 ))”( +(p ))2
pig Dl

Now let K =@Q{a) with ¢ a root of 2*+28+2 = (#+1)*+1. Then a
again generates the maximal order, say o, of K. We have: if p|g,

. P A}
vimes - (51

it plm, p #2,
) —4
Do) Biwy) = {1424}
and if plm, p =2, .

' —4
"Thug (12) becomes _
) .
=L L5
2 1—[— 1 ——] |~
2 Q( ( r Blm p /14
and we have computed the term 1, of (3).
Now agsume 3| gm. Let K = @(a) with a a root of #*+3. We must
consider the non-maximal order o = Z-+ZV —3 and the maximal order

, 14V -3 . . .
0 =Z+7 (——4—"——2—*) There are several cases to consider. Tirst note
that

h(p) 1 R(o) 1

wip) 2  w() 6

7
Oase 2|g: then D'(p;) = 0=D'(p) = 0. If p|g,

i ’ ! _3
I p|m,

. . —3
D' (0,) E{n,,) =(1+(?))
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Cagse 2|m: then D'(0}) =0 by Theorem 13 as [0j:0,] =2! and
z®-+3 has no solution mod 8. If plg,

D' (0,) Blo,) = (1_(:5))

K opim, p = 2,

—3
D'(0,)B(o,) — (1+(7))-
If p =2, then
D'(0)B(0) =2 if 2 or 4)m and D' (o) E(ny) = 0 if 8|m.
Case 2fgm: Then o, = o, for all p|gm. Thus
I’ (0,) B(0,) = D' (o) E(0,)
and we have: if p|g,
e300 = - 2
it plm, p #3,
-3
v - 1()
and if p|m, p =3, '
: —3
D (o) Blo,) =1 = (H(T))

Htill assuming 3lgm, let K =@(a) with a a root of g Bx 43

= (z-+3/2)2+-3/4. Then o generates the maximal order o of K. I p kg,.

—3
‘ weame = i[5

If plm, p #3,
—3

D' (0,) E(0,) = (H(T))‘

' —3
I plm, p =3, Do) B(ny) =1 = (1+(-—j;——)) Thus (12) becomes

16T

ol '

and adding this to the contribution from a*+3, we get the term #; of (3).



86 A, Pizer

We now consider all the other polynomiais in (B), ie. #2435, ¢ 24
gllgm. We write s = wv? with % square free and ¢ = Z+2Z ¥ =% and fix,:
this nobation for the remainder of this section. We consider two cases.

Case » =1 or 2 (mod 4): Let ¢ = V' —s == vV —u be a Toot of VIR
and suppose as always (by Remark 25) that @< Then all orders of
K = §(a) which contain a are of the form Z +Zw) —u = Dy, (8ay) with

wlv. We must evaluate D'{o,)E(n,). If plg, v,, =0, is maximal and
we have

D' (0,,) B(og,) = (1 —-( —du ))
)

It plm, p{s, p + 2, then v,, =0, and ¥(a) = s is a unit mod p and

D (05) Bl0,) = (1+( “4'”)).

»

If 2|m, 245, then o,, = p, and Jetting 2" jm, we have two cases: if r > 2
2%+5 has no solution mod 2", 5o : ’

D' (09) B{Dyp) = 0;

i r =1, #*+s has a unique solution med 2 and Proposition 22 shows
H{n,) =1, so0

D (0,) (D) = (1 +( ‘24“)).

If p|m, pis, let p"[lm (so p"|s). D,, must b b —u
. ; . Dyp e of the form Z,+Z,p"V —u
forsome? = 0, 1, ..., [#/2]. Then [0,,: 0,1 = pfor some p = Of)l, ..p., [»/2].

In order to caleulate D’(p,,) we must by Remark 39 find all solutions -

mod p™* of the simnltaneous equations
#*+3 = 0 mod p™+,
(13) . 22 = 0 mod p°,

@ = 0 mod p".

If these have a solution, ¢ must equal zero. Thus only orders o,, wilih .

Oy = 0, for all p|s can possibly have D' j = "
o =20 and- {13) has a uniqﬁa soluif:rion modl;’(,ﬂg.)g.# m0=]3: ;%UPD’“(? ’) il(:)]'l
we see eagily that H(n,,) = 1. As 0,, = o, for all pts, we see DE? ) == 6
uniesg o, =0 and in that cage (12) becomes the terrci i, of (3). )
Oase w =3 (mod 4): Let a =V —s. All orders of K — Q(a) which
1+V—u ) '
2

contain @ are of the form Z -l—Zw( == 0, (8ay) for some wi2v.
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We must evaluate D'(o,)E(o,). If plg, » # 2, then p,, is maximal, so

im = {5

If 2|g, then D' (o) =1 if (w,2) =1 and 0 otherwise. Thus

D' (0,0) F (0y) = (1—(;)&)) if  {w,2) =1 and 0 otherwise.

If p|m, pts, p # 2, then o,, =0, and N{g) =s is a unit modp and
we have '

, —U
Do Btow) = (14(2))
_ »
. - L=

It p|m, pls, let p"|im. Then o,, must be of the form %, +%,7" (Wj“_é_“)
for some t = 0,1, ..., [*/2] (or [r/2]+1 if p =2). Then [pyy: 0p] = P°
for some ¢ =0,...,[r/2] (or [#/2]+1 i p = 2). In order to caleculate
D'(0y,,), we must find all solutions mod p™** of the simultaneous equa-
tions (13). But if these have a solution, g must be gero, Thus only orders
0, With 0, = 0,forall pls, p|m can possibly have D' (ny) # 0. T 0y = Dpy
then (13) has the unique solution & =0 and we see

D' (D) B (0yy) = 1 I Dy = Dy for allp|s, pim and is zero. otherwise.

Note that we have shown D' (0,,) = 0 unless n,, = o, for all p = 2. We

now consider the prime 2. It 2¢gm, the only orders possibly giving & con-
14V —s .

tribution are o and o =Z+Z% (%—) Noting that A(p) = k{—s)

and h(0) = h(—8)/{2 —(—u/2)] by Lemma 43, we get the term % in
this cage. It 2|g, 0" =Z+Z (ligﬂm—s—) iy the only order which contri-
butes and we again get the term %,. If 2|m, 2|8, we have already con-
sidered this case and only the order o can contribute and again we geb 4.
Finally we have the case 2|m, 2+s. The only orders which can possibly
contribute are o and 0. Let 27 |lm. Assume ¢ = 1. For D' (o,) we consider (by
Theorem 13} solutions mod 2 of #* 4§ = 0 {2). This has the unique (mod 2)
solution # — 1 and we see D'(ng) =1 and B(oy) = 2. For D'(n;), we
consider solutions mod 8§ of the simultaneous equations #2+¢ = 0 (mod 8)
and 2z = 0 {mod 2). These have golutions = = 7(8)7in which cage
@ = 1,3, 5, 7 are all solutions. The inequivalent solutions mod 4 can be’
taken as @ =1, @ = 3. As 27%(—4s5) v a unit- snd L = —3 (mod 4),
9y ~p,. Thug D'(oj) =1 if s =7(8) and 0 if s =3(8). It s =7(8),



icm

88 A, Pizer
it is easy to-see that H(o;) = 2. Thus ' (4]
, —5
Doy Bl =2 and  D(o)B(oi) = (1+(~—2—))- )
This gives the ¢, for 2[m and 24s. Assume r = 2. We find by employmg [61
Theorem 13 and Proposition 22 that (1
Doy |+ E B0 Blog =2 in either case (8]
0y) = : ar Dy} = se.
2 2 i s =7T(8) *
Thug 9]
: —8
D’(Dg)E(Dg) = (3 —{—(—“a“*)) [10]
For o;, we find e

1,or t —§
D6 B(o}) = (“(—z—))
This gives ¢, for 4[m and 2'|’s Assume 7> 3. For D' (n,), we consider
solutions mod 2 of @?+s = 0 (mod 2"). Such szolutions exiszt if and only
if & == 7 (8) in which case there are four solutions (mod 2"), say La, da-+
+2'1, Ay —4s is not a unit letting £, £e{ta, d+a--27"1),

p; = @ (mod N (D,)) <« & = —& (mod 27) E24g == 0 {mod 2M),

It is easy to see that one pair {p., ¢..} OF {Papor—1; Ponsor—1} Of Optimal
embeddings must be equivalent mod N (D;) and the other pair is mnot.
Thus '

and

0 i s=3(8),

Ditos) = l3 i s =

Obviously, F(p,) = 2. A. similar, though simpler argument shows thatb

D' (0} Blo)) = (1 +(gi))

Thiz gives the term ¢, if 8{m and 2{s and completes the proof of our-
Theorem 26.
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