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On the equation y™ = P(x)
by

A. BoroNzeLn (Warszawa) and R. Trodrwaw (Leiden)

The aim of this paper is to prove the following

THROREM. If a polynomial P(z) with rational coefficients has at least
two distinct zeros thewm the equation

1) Yy = P(®), @,y integers, y| > 1,

implies m < o(P) where ¢(P) ts an effectively computable constant.

For a fixed @ the diophantine equation (1) has been thoroughly
investigated belore (see [1] and [4]) and the known results together
with the above theorem imply immediately

OoroTTARY 1. If a polynemial P(n) with rational coefficienis has at
least two simple zeros then the equation (1) has only finitely many integer
solutions m, @, ¥ with m>2, |yl >1 and these solutions cam be found
ef fectively.

COROILARY 2. If a polynomial P(z) with vational ecoefficients has at
least three simple zeros them the equation (1) has only finitely many integer
solutions m, w,y with m > 1, [y| > L and these solutions can be found
effectively. _

A simple proof of the special case of Corollary 1 that P(z) has at
least two simple rational zeros can be found in a survey paper by the
second named author [67]. Corollary 2 is a step towards the following

CONIROTURE. If o polynomial P(x) with rational coefficients has at
least three simple zeros then the equation y*2® = P (@) has only finitely many
solutions tn integers @, y, & with yz + 0. _

This conjecture lies rather deep, since it implies the existence of infi-
nitely many primes p such that 2077 # 1 (mod p?).

The proof of the theorem is based on Baker’s work [2] and on two

lemmata. We denote by [#| the distance from @ to the nearest integer.
B
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Lemsa 1. For any complez numbers X, ¥ different from 0, a positive
integer kb and any choice of the roots X”’“ Y% e hove

(2) |-T
1y . 1 ;
[(1-u—)m1n(1,E\log]XY"‘H) if X |7,
1/k

P AR IEAD
1naX(i |J ] I) |4 I‘ logXY_l

’ X =T

Proof. We can assume without loss of generality that

X =1 =YY,
I |X]>1 we have

X1 > | X -1

= | XL — X7,

and if |X| 3= " the inequality (2) follows immediately. To settle the case
& > |X | > 1 we verify by differentiation that the function

J#) =

Iy decreasing in the inberval (1,e). Since f(g) = 1-g™?
on taking ¢ = | X
Suppose now that |X| =1,

“1) logt

{2) follows

X = cosp-Fising, ¢ =i"llogX.
Then '
o+2xi 2mj
XY = cog 7 +7,sm(p+ " o golne infeger §
{3
and
X% _1) =29 Hmfj—ﬁ—%tcil .
2h

However, siny/y is decreasing on (0, m/2). Hence for all real ¢

lingyl = 2| ¥
™
a;;id
_ +2nf | 4] logX
[X”h-—-—l ~ 4:” @ ~ >
1= 2xh |Z k| 9wi

In the following lerma we denote the height of an algebraic number
@ by Hia). . :

@
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Tmmnea 2. If yo, vy wve algebraie integers of Jield K of degree @ then

(3) Hlyfya) s<3d2 | [ max (193], 1),

T

where o runs through oll the isomorphic injections of K into the complen
fidld. Moreover, if I = K (the bar denoting complem conjugation) then

H(lyafysf) =2 3a2° [ [ max (el Iven®
. a .
Proef, (learly yp,/y, satizfies the equation
=[Trsa—p =0
F{x) has rational integral coetlicients, but it may be reducible. We have

Fa) = Nyjgp, fla),

wherefis the minimal polynomial of 4 /v, . By Gauss’s lemima F (@) = e-g(m),
where ¢ is an integer, g hag integral coefficients and is irreducible as a con-
stant multiple of £ By an inequality of Gel’fond ([3], p- 139) we have

1.
Sdﬂ(m Sd5111'(9)

where H{P) denotes the height of the polynomial P.
On the other hand,

\Hmwl

This nnpheﬂ ( ). Now if K =

H{lpyfyoP) < 3a27 | [max (lyfwil, lvs 7o)

H(F) =

"Jdnma,x ils lvzl)

= K we have |yj| = y;;eK (i =1, 2). Hence

<2 820 [T max 1y, gl)- [ [ mes (78, 70
a &
Qi(lﬁflnnmx (il lyan
. .
Proof of the Theorewm, Let K be the splitting field of P and leb

b (m) == af] {0 —a,)"

have integral coefficients: It follows "'from-(l) that

n i
w3,

(4) ]1 ﬂm-—cmcc@)rl = b y™,

Fum] . i=1

(@; distinet, & integer)
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where the numbers e, are algebraic integers. Since for infeger =
(o — ooy, an— aa;) | {6e;— an;),

the highest common ideal divisor of any two factors on the left-hand
side of (4) iz composed exclusively of prime ideals of K dividing

A= [] taci—oaq).
1< i=<n

Hence, for each £ n we have
(5) (4~ aa,)" = e

for some ideals b and ¢ such that d is compored exclusively of prime
factors of abd and (¢, ¢bd) = 1. If p is a prime ideal and ptij¢™ then clearly

m |t and by (5) r;[t, thus [m, ]|t It follows that (—W::%:)— —i Moreover
b = bl and we geb from (5}
(6) (o — o) ="bxf, §=-—- LA

(g [T1y oey 71)

Let py, ..., pg be all prime ideal divisors of abd in K and let 7 be
‘the class number of K. We have
p=(m) (A<i<h),

¢ = (y) =

and by (6) for suitable integer exponents g = 0

(62— ac)* = | H i y3)
i=1

3

If &g, &, ..., & are a basis for the group of units in K we get

: 7 I
(7) (am — aw)" = ” agfunﬂ;jfﬁ vio (I<isn),
g=0 =1

where we can suppose without loss of generality tlat

gy, <s,

(8) O 0<ay,<s,

since any product
r k .
ey ¥y 3 —_ o
quqnnjf with #, = ¥; = ¢ (mod s), ¥y =0,
=0 =1

can be incorporated in y,.

icm

On the cquation y* = P (x) 203
By our agsumption 7 2= 2. We use (7) for i = 1, 2, denoting the right-
hand side of (7) by X and ¥, respectively. Tf X = ¥ we have

{am— oa))" = (ae — aa,)

and it follows, from o, # ay, that em—an, = &7 g — aay), 0 < g < hy
and-

oy Fa

ol < Jal il

28in(m /b &
Since |y| > 1, equation (1) gives m << ¢y, where e as the subsequent
congtants ¢y, ¢y, ... depends only on P oand is effectively computable.
log X ¥t H

IEX »+ ¥ we have either |X| # |Y] or |X| = |¥| and

i
# 0. In the former case we infer by (8) from Baker’s theorem [2] that

‘10;__1; [X-YI” > H'(Iy1/y2|2)fleﬂgs7
in the latter case similarly

log XY™

yzi X —eglogs
5o | > i) ;

where in case F{ ) =1, it should be replaced by 2.
In virtne of Lemmata 1 and 2 we have in both eases
ey — ety == | X Y

> ¢ maix (|2, [T [ Janae (1], s =

[

> 67" max (Jygl, lya))™ [ [mas (1], [ygh) ~s"

for some constant ¢, > L.
Applying any automorphism z of K to both sides of (7) and avguing
ad before we got '
o - aag] > e wax (Il [ [ [mas (7], 195700

On taking the product over all automorphisms v we obtain

, - h—csitlogs
| N e (e — aag)| > o5 ds”nmx (Iy5l, [yg] ot estloms,
o

Since the left-hand side is independent of s, this implies that either s < ¢, or

J o (11, il < ™

o
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In the former case we have m << 6,[7y, ..., 7], in the latter cuse, by (

. i
(9 N 0@ — aog)* (aw — Gt = 4 I IN(szj)”U M2jge,
. jeal

where @ = [Ny ys| < cb™. The greatest prime factor of the right-ha

side of (9) is boanded by abdei®™. The left-hand side of (9) is a polynom
in @ with integer coefficients and at least two distinet zoros. Tt his be
proved by the firet named author, M. Keates, 8. V. Kolov and V.
Sprindink (see [5]) that the greatest prime factor of such & polynom
exceeds ¢zloglog|s[. So we obtain |#| < ¢, and in view of (1) with |y| >
m K Gypr
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