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On the probability that integers chosen according to the
binomial disiribution are relatively prime

by
J. B. NymMAxN and W. J. LEAHEY* (El Paso, Tex.)

Let n be a non-negative integer and denote by N, the set of integers
0,1,2,...;n Let P, be a probability measure on ¥, and for k & posi-
tlve mteger denote by PF the F-fold product measure of P, on NE,
Set 8% equal to the subset of all elements (a;, s, ..., @) of N* for which
(@1, By, oo, @) = L. (Here we agree that (0,0,...,0) = 1.) Tt is well-
known that if P, is the uniform probability measure (P, (j) = (n+1)"!
for all jeXN,), then

* EmPE(82) = 6/x=2.
F—+00
It is the object of this paper to show that this also holds in the case where P,
is & binomial distribution, i.e.,

() = (3)p'1—p,
where p is some fixed real number, 0 < 5 < 1.

In Section 1 we prove some generalities which are of some interest
in themselves and which will be useful in Section 2 where we prove our
major result. .

1. For any positive integer d, let 4,(d) = {jeN,: § = 0 (mod d)}.
We then have the following basic -

Luwmma 1. Let P, be any probability distridution. Then for n> 1

.

PRSE) = D) @ ({Py(Au( @) — {Pa({ON}).

d==1

.

Proof, Let p, <p:<... < p, be the primes less than or equal to %.
Then, if 8% denotes the complement of 8%, we have

Bt = CJI Al{Dps)

* The authors wish to thank the referee both for pointing out how to gen-
eralize their initial results and at the same time how .o sherten the proofs.
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where A (d) denotes the Oartesian product of A4, (d) with itself % times.

Therefore
CPE(8E) e= 1 —PE(FE) = 1 —PE({_JAE(p))
: =1

ﬂ*é? PN

r=1 ({45, T}

17 Pk {4k (p,) ﬁA"(piz)ﬂ . NAR(p:)

Where the inner sum is taken over all r-buples (i, 4s,...,4,) such that

1L iy < iy < <z §. Now for (dy,d;) =1,
Ak( I)F‘Ak(dz) = (d d )

I:Ienee t]m lIagt expression can be rewritten as
. g ‘
Y X (-

Fel (g3, --n iy}

1)T-P fa.(ﬁif (Pe,Pry - 1))

.NOW it p; Dy -

P >, AE (php% o) ={(0,0,...,0)}. Hence this
last explessmn is the same as
ZH(J)RZ: (Aﬁ(d))+ D apypy 2 )PE{0,0, ..., 08)). -
d=1 171:113.;2. . ;IJ.;T:_-’n _
Binee Y} u(d) =
dipl:pg...ps -

b LERS == >u@

PiDjgere Dy =00 Cd=1

~ This observation together w1th Pr{AX@) = {P, (4.l
the proof of the lemma, , '

CoROLLARY 2. If P, is the umform' désm‘bution, then

11111 P"(Sﬂ) = 1/¢(k

d))}*  ecompletes

_ for a,Zl k > 2 (C denotes the Rmma,nn zeta function.)
Proof. Define g, {(d) by the equation

Po(Ap(@) = &'+ e, (d).

Tt is easy to check tha.t 0 < g, (d) < 2t for all posmwe integers » and d.

By Lemma 1
PAS) = 3 w@a + ey @f - 041
d=l -

n

= Nt )+_)f(j.‘)2d’ Fuld)fe, (d))f-(n+1""2n

d=]- . i=I ] d-.1

icm
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Now for k= 2, S‘d “*u(d) = 1/¢{k). On the other hand since 0 < z,(d)

< a7k it is not d.lﬁleult to see that each of the terms
Z (@) (e, (D,
d=1 .

goes to zero as n gets large, This together with 1 wld) <

jml,;‘],...,lx‘,

n ehtablmhes :

the corollary. For ancther proof of this result see [‘?]

We now turn our attention to binomial distributions. In particular
we wish to show that the conclusion of Corollary 2 holds when P, is a bi-
nomial distribution. For k> 3 this is relatively easy and will be proved
shortly. The case % = 2, which is the principal result of this paper, is
dealt with in Section 2

From now on P, will always be understood to he a binomial distri-
bution relative to some fized parameter p,0 < p < 1. We define &, (d)
a8 in the proof of Corollary 2. Thus

bl d) = P (A (@) — a7 = "()p (L—p)*—a?

E=0(d)
for » and 4 positive integers with d < 7.
Leyma 8. s, (d)] < w™? uniformly in d.
Proof. Wé wish to show that

|2 3 (i)era—pr- ;(’;)p’f(lwp)“—* <,

F=0(d)

Let us write (z)] for (”) p*(1—py* % The term Wlthm the absolute

value s1gns on the left-hand side is the same as
a1 .
Sisti-3 (;:)}-
F=1 “E=0d) k=F(d)
Set ¢ = [15(9@;;;1)] ﬁnd let ¢ be the lalgébﬁ integer such that id < s. For

given j-we look at that portnon of the sumg within the braces for which
k< td. We have -

S0 26 Sl L)

(where to take care of the i = 0 term we agree that (Z) =0 for k< 0).



icm

208 J. E. Nymann and W. J. Leahey

Sinee (k

) is non—decleasmg for 0 < & < s this is a sum of the type

"

D (m—=b)

i=d

with byL @ <l <y < ... < Dy, < 8y, The value of such a sum does not
exceed its largést term: a,,. Hence

Y’ 3 (n}’ _ [n)
2 (Tc) 2’ (k) g(s) '
k=D k=7
Je<ttd k<td
Similarly the absolute value of the sum of those terms of
[AY n\’
2 (k) o 2 (k)
k=7

k=0

for which k> (t+1)d is also bounded by f) . Finally there is only one

term from these sums for which #d < & < ({4 1)}d. Hence

Z6-Z =l
() 2(;)’}'<3(d_1)(?),

Fe=t) k=]

Therefore
: d-1 l_ ’ ;
<3d("’) :
21 <ol
The lemma now follows from Stirling’s formula. _
CorOLLARY 4. If P, is a binomial distribution, then

UmPE(8%) = 1/2(k)  for all k2 3
00
Proof. Using the estimate for &,(d) given in Lemma 8, the proof

is almost identical to the proof of Corollary 2 and will not be given in
detail. We remark that for the case k =2 the estimate e, (d)| < a1

is not sufficient to show that the § =2 term, 2 wld

)[ea (@))%, goes to zero
a8 n gets large.

- 2. In this section we show that llmP" 2 (82) == 6/n* ( -1 [2(2)) when P,

is a binomial distribution. As outlmed in Sectmn 1 we must show that
the- sums

DA u(@e,(d), Zu(d)(sn(d))ﬂ and D' u(@)(1—

= d=1 d=1

"mate of the type |g,(d)

or
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w

£o 1o zero as n gets large. The last sum clearly goes to zero. Hence it is

sufficient to show that

n

2 (ealdl)?

=1

Dl Mg, ()] and
d=1

.
tend to zero for large n. The estimate of Lemma 3 shows that 3 d 7' |e,(d)]
d=1

is bounded by a constant times n» *logn and hence goes to zero. I we

had an estimate of the type e, (d)] < 1/d, then, using it together with
8, (@} € » 2, we would have that the second sum is also of the order
of n"logn. This estimate is not correct however. For example, if p
is rational, and n = p~'k, then ,(%) is of the order of 1//'k rather than 1/k.
As it turns out, however, this sort of situation does not oceur too offen.
The plan of our proof is essentially as follows, We will show that an esti-
| <€ 1/d holds for a rather large set of d’s; in fact,
for a set; of @’s which is roughly of the order n — #¥%. For the remaining d’s
(roughly #** in pumber) we use the estimate |g,(d)| < »n™". This will

be enough to show that the term 3 (s,
We need the following lemmag, ¢!

Levya 5
n r
<7l
I IR

[k—pnl>pm

(d))* goes to zero as m gets large.

Proof. We refer to Thecorem A{i) of Section 18.1 of [1]. Using the
notation of that theorem let X, be the random wvariable which takes on
value 1 —9 with probability » and valne —p with probability 1—p.
We have then § = Vap(i—p) and ¢ = afs where ¢ =max{p,1—p}.
I we take ¢ = {p/(1 —p)}"*n* then ec < n~ Y, and hence e <1 for »
sufficiently large. According to the theorem then

P{8ls> &)< expl—b—(l_— %f»)}

n'f? n M
P{8 > pn*} < exp{?J(lp 2 '(1 — C:!L—p )}

But P{8 > pn*} is exactly )

o opndit A, s
— X, and applying the theorem again gives pX " (Z)

k—pR>—pn

n\’ . n)’ o
(k) and hence > 3.'4(76) <.n .

k—pn>pn

Repiacing X, by

< 77! from which the lemma follows.
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COROLLARY 6. If d > p{n+n'), then le, (@) < 47 uniformly in d
Lmsna 7. Let K, be the number of infegers d which satisfy pni < d
<pln—n
the interval (p(n—n¥), p(n+0*"). Then

- K, <»’logn.

Proof. Let w =pn, v =pr*%, and let s = [(w--v)/v]. Suppose
that Ade(w—v, w+v). Then we must have 2 < k< s For each such %
we ask how many possible d’s are there such that kde(u —v, %+ v). Such
d's must necessarily lie in the interval ( —a)/k, (u+v)/_k} and hence
there are no more than (2v/k)+1 of them. We have then that X, is
bounded by ‘ '

L]

Dl2eik)+1)

k=2

< 2vlogs+ (s — 1) < 2pn®*log (0 -+ 1)+ 2 < n¥logn.

We now state and prove our main resulf as
THEOREM 8. Let P, be o binomial distribution. Then

HmP2(82) = 6z,

N—>00

P1 oof. According o the ideas outlmed at the beginning of thls heb-_

tion we must show that

(1) o tim 2(8 (@)?,

ﬂ."*ma
Let ny = [pn®*], 2y = [p(» z~n”“)}, and ‘ny = [p(rn+n¥]. The sum in
{1) can then be written as

Ty n-

® : 22+2+Z+Z~

d=1 A=n,--1. d=nyt+1 cﬂvna—{-l
(“We assume, of course, that = is large enough so that n, <<
We will examine each of these sums separately.

By Lemma 3 3

n, and ng & %)

2(8 HP <nn < oMt = pH

and hence the flrst term on the right-hand side of (2) goes to zero as a

gets large. A similar argument works for the third sum on the right-hand
side of (2).

By Gorollary 6 |£n( )J <d? for d > p(n-+x*"). Hence for the fourth

sum
n ' i .
2 (ez,,,,(d)]1 < noH a7 <n P logn.
. d—ﬂ3—rl d=ng+l )

Therefore this sum goes to zero as » gets large.

Siay amd which have the property that some mult@ple of them lies m'

icm
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The second sum on the right-hand side of (2) is somewhat more
difficult to deal with. We break it into fwo parts:

Ny g iy
2 , ¢

(3) 2 = Z T L
d=ny+1 d=ny+1  d=ny+1

where the summation with the prime on it is taken over those d's which
havethe property that some multiple of them lies in the interval {p (n —a%*),

p(n+n") and the double primed summation is taken over the remaining

d's. By Lemima 7 we have

V' (a (D) < (n¥*logm)n™! = n~Hlogn.

d*n1+1
Hence the single primed sum goes 'to_z-ero with large #. We now examine
the double primed sum. Recall that

i) = Py (i) -

For the d's in question we have by Lemma 5

SE- 2 W= 2.6«

N - 34
e 1k—pni>nd Ve—pn] >
Hence for these d’s [g,(d)} < d~'. Thus for the double primed sum
g . . .
Zu (En(d))z < pol2 a1 < %_llzlogn.
de=ny4l e

This cnmpletés the proof of Theorem 8.

i
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