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1. Intreduction. Let 2 = p, < p, < ... denote the sequence of prime
numbers and let g (n) < gy(n) < ... < g, (n) be those primes which
divide n; that is, with some positive integers a;,

) B = g0 (n) g (n) ... o(n).

The present investigation concerns the order of magnitude of ¢;(n) where j
may also depend on n. The results will be average type of statements,
that iz, we consider g;{n) for n < « and we let &— oo, We then decide
whether a set n < 2, specitied by a condition on g;(n), is “large” or not
and, in a particular, if its density exists. Here we apply the natural density.

We say that a set 4 of positive integers has density d(4) if, as =400

lima,(n: ned) = d(A)

exists, where »,(n: ...} denotes the number of integers 0 < n < # which
satisfy the condition stated in the dotted space.

In the representation (1), w = w (%) obviously depends on % and
thus, if § = j{«n) is chosen in advance, g;(n) may have no meaning. In
order to avoid the need for distinguishing several cases in our statements,
we extend the definition of ¢;{n) as follows.

DEFINITION, q,(n) is the j-th ferm in (1) Lf 1<i<g cu(n). If 50,
g;(n) =1 and g;(n) = +oo for j > w({n).

This extended meaning of g;(n) does not affect the fact that our
statements concern actual prime divisors, that is, elements of (1). This
is made possible by w({n) being close to the monotonic function loglogn
for “almost all »”. More precisely, it is well known ([3], p. 41) that, if
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A{y) denotes the set of integers »n for which w(n) =
(2) dlA(1—e)) =1 and

yloglogn, then
a{A(1+s) = 0.

(2) will always be one of the guides in our choice of §j = j(n).
The present investigation was induced by a letter from . Erdds
t0 the author, for which I would like to express my appreciation.

2. The results and discussion. Let us, first of all, quote results on
Jor(®)y, B =0,1,2,... The case k =0 iz due to de Bruijn [1] and
arbitrary k fo Levin and Falnleib f4].

THEOREM A, For any fiwed integer k2= 0, there is a differentiable dis-
ribution funetion F,(2) such thai, as -+ co,

(3) lims,(n: logg, ;(n) < zloga) = Fy(2).

It is evident that the above statement cannot hold for ¢,_,(n) with
E = %(n)—+ co with n. As a mafber of fact, reversing the inequality in (3),
the limit will be 1 —F,(2) > 0 for 0 <<z << 1. But for any 0 < 2 < 1, there
are only a finite number of prime divisors of # < # which are larger than
#°. For this case the following result holds.

THEEOREM 1. Let ¢ > 0. Then, for k& = k{z)>-+ oo with @ and for which
E(z} = o(loglogs), a5 @— -+ oo,

Limy,{n: ¢ %loga < logq, ,(n) < e ~Plogs) =1.

In addifion to Theorem 1, we ghall prove the following results.

THEOREM 2. Lel § = j(2)—+-F co with & in such a way that j{») < logloge,
and ' ‘
' with some h > 1.

17{x) —loglog | = (loglog =)

Then, as x— - co,
a
(4) limw, (n: loglog g;{n ) —j< zjm) (27) 12 fg“zfzdt.

THEOREM 3. For j(#) < (L—e)logloge, where > 0 is an arbitrary
number, 08 £—+cc and a8 j{z) =+ oo,

limy,(n: logg;..(n)flogg(n) <z) =1—1fz, 2> 1.

Some comments are in order. First of all, we wish to emphasize that
the assumptions on k(z) and j(x) are to serve only fto guarantee that
the results equally apply fo elements of (1) as well as to the extended
values of g;(n). As a guide, (2) can he consulbed and, in the course of the
proof, further references will be provided.

It i interesting to look at the statements with some detaal If we

take loglogq,_x(®) in Theorem 1 and apply (2) we get, roughly speaking,
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that loglog g, ., (n) 18 “about o (r) —k(x)?. Notice that a similar asymptotic
property of loglogg; () is implied by (4) and therefore Theorems 1 and 2
show a common property of *large” and “small” prime divisors. Besides
Theorem A, this weaker form of Theorer 2 seems to be the only explicit
staternent in the literature on g¢;(n), which appears in Erdss [2]. Similarly,
& common property of small and large prime divisors is expressed in The-
orem A and Theorem 3. If for bounded % we wrife

1080 i{n) _ 10gqu_s(n) . logg, ., (n)
~10g gy 1 (%) log loga

then {3) suggests; and indeed, from the arguments of Levin and Fainleib [4]
it follows, that the left-hand side has a Hmiting distribution. This is the

- exact statement of Theorem 3 for k—>—|—oo with z. Of course, the forms

of the limits differ.
We conclude this section with a snnple remark. Tt can easily be seen
that, for fixed j and ¢,

({”:‘ g;(n) = Pt}) = Oy

exists and is positive. This remark is added only to cover the whole range
of possible values of j:in the statements of this section.

3. Proofs. The proof of Theorems 1 and

2 ig based on the following
relation. For ¢+ — 1,2, ..., let '

it n
g (%) — .'ptl 3

‘ 0 otherwise.
Then,, putting - '

3 nplm) = ea(n) F )+ - Fop(n),
we evidently have ‘
(6) : n mpln) < §} = {n: g(0) > Pr.

We can now turn o the details of proof.

" Proof of Theorem 1. We apply the Turdn—Kubilius inequality
([3], p. 35) in the following form, Let I' = T'(z) = " where 0 < a{s)—0
a8 #—+oo. Then, as #—+- oo,

() lima, (7 | D st(n)—l-loga(m)l<10g3'41/a(m))=1.
. t=T+1 _
Now, since fcu n< T, w('n) = nw(n), we get by (6),

x

® fn Y e(n) > k} = fn: np< w(‘% —I;}

t=T+1

{% Tosel) >pm}
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Guided by (2), we take & = k(x)> -} oo with @ in such a way that %{x)

= o (loglogx). Then, since for any 6 > 0 (see [5], p. 106)
) logT < logpy < (14 d)logT,
(8) implies

&
(10) A
f=T+1

g (n) > k) = v (n: logg, ,(n) > logp,)

K vy logg, g (n) > logT).

Tet us now set a(@) = exp{—(1+e)k{®)) and T({z) = 2@, Then a{z)—=+0
and T{z)—>+co a8 -+ o0 and thus (7) and (10) imply that, as —+ oo,

(11) limo,{n: logg,_;(n) > (logz)exp(—(1+4)k)} =1

On the other hand, nsing the upper inequality in {9), we get from (8)

(12) 1, (%: D g(m)> k); vp(1: 108 gy (n) > (1+ 6)log T).

i=T+1 .
Since with the choice of a(#} = exp{—(1 —a)k(a&)) and T(zx) = 2@, (1)
i agam a.ppheable, we get that, as #—+ oo,

(1-+ 6)(10gm)exp(—(1—s)7r]} = 0.

(13) limy, {n: l_ong_k(n)
Because both 4> 0 and £ > 0 are arbitrary, § plays no role in (13) and
thus Theorem 1 ig established.

Proof of Theorem 2. Here we need the asymptotic normality
+ of pp(n) as T = T'(z)->+ co with z. More precisely, by a theorem of p_roB-
abilistic number theory (see [3],.p. 61), if T = T(#)—~-Loco with #, and
T(#) < &, then for each fixed real z,

(14) ' Hmy, (n: p(n) —loglogT < z(loglog.’l’)”z) e O(#

)

where @.(z) gignifies the standard normal distribution functi.on oceurring
on th.e rlght-hand side of {4). (6) and (14) yield that if, for a given func-
tion j = j(w), we determine T = T'(x) from the relation

(16) j(@) = loglog T{x) + 2 (loglog T ()™

then, as #—-+oo, }

(18) ' limy,(n: loglogg,(n) > loglogpy) = B(z).
In view of (9), loglogp, = loglog? 40 (1) and thus by (15)

(17) ' loglogpy—j(z) = —2z'" 4 0(1).
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(16) and (17) imply that, as #—+-os,

limw,(n: loglogg;(z) —j > —#'f) = @(2),

what is equivalent to (4) by &(z) = 1 —&(
of Theorem 2.

Let us remark that we did not make use of our assumptions on j(z)
in the course of the proof, except that T'(z) <« and thus by (15), j(»)
< loglogz. The additional assumptions were made only to guarantee
that the conclusion remain the same if g;(n) is restricted to its valoes
oeecurring in (1).

Proof of Theorem 3. First of all note that

—2). This completes the proof

e ga(n) > 85 gy{n) = pu} = {n: &(n) =0, < B < 85 45(n) = P}

Sinee {n: g;(n) = p;} can be expressed in terms of gin), 1<tk by
Lemma 1.4 of [3], 1. B, for s < 2, where (2} > 0 and a(2)->0 as £+ o0,

(18)  mp(n: graa(n) > s, g(n) = py)

= (1+0(1)) { [] a

Pp<pss

—'1/1’)} vp(n: gyln) = i),

where ¢(1) is uniform in s and k for p, < s < < 2°®@, Por a fizxed real number
# > 1, let us choose s so that logs ~ zlogp,. We then have, as a conse-
quence of the prime number theorem {see [B], p. 108)

(19) H (1w 1) _, logs

Dp<A<8 P logpk

+ O(exp ( _—ﬁ(logs)”?"}) = (1+o0(1))e7,

where f > 0 is a uniform constant and thus 0{1) can be made tending to 0
uniformly for p; > U(x)—>-+oo with z.
‘Writing now

. Too .
. long+1(%) ) . ( . loggj-l—l(ﬂ’) - n) = )
(20) vm(n. Tog g, (n) > 2 gvg n: ——_H__Iogqj(ﬂ) , Gi(n) = By

we apply to the tails of the above sum that

(21) 2 ” (n:

logg;.a(n) 2, qj(ﬂ) = Pk) < v, (e gyin) < O)

Py logg;(n)
and
: -  loggpatm) :_)- gy > ).
(22) Z v, (n o gy (n) > 2, g;(n) = Dy gvm(n‘ g;{n) )

oy 4
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For a given ¢ = 0, we choose

U =explexp[(l—¢)jl} and W = exp{exp[(L-+s)]]}.

By Theorem 2 we get that the left-hand sides of (21) and (22). tend to 0
a8 ©->+oco. Bince the above U = U(w)~>+o0 with «, for U < p, < W,
we can apply (18) and (19) and we get

5" ( . log g;,,(n)
PN ek A
._,

28)
) logg;(m)

> 2, gj("':!") =.'pk)
U<gp< W

= {1+o(1))e v n: U< g(n) < W).
Another appeal to Theorem 2 yields that, for our j, as @— - oa,
v(n: U< gp(n) < W)-»1,

and thus (20)—(23) lead to the conclusion of Theorem 3. This completes
the proof.
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Uber die maximale Norm der ldealteiler des Polynoms
az™ -+ fy" mit den algebraischen Koeffizienten -

von

8. V. Eorov (Minsk)

1. Einleitung. K. Mahler bewies {16], daB der allergr6f8te Primtfeiler
P des Polynoms :
(1) Gz, y) = az™ +by", _
wo mz2, n=23, a =0, b0 ganz und rational sind, unbegrenzt bei
X = max(|z|, ly])-—+o0, (&,¥) =1, wichst. Um das Verhalten von P zu
erforschen, betrachtete K. Mahler Ergebnisse von C. Parry [17] fiber -
die p-adische Verallgemeinerung vom Thue—Siegelschen Satz. Da sie
nichteffektiv sind, war es unméglich anch im Prinzip die Geschwindigkeit
des Wachstums von P bel X oo festzusetzen. '

Zum ersten Male brachten A. Vinogradov nnd V. SprindZuk [2] (%)
das prinzipielle Sehema. der Effektivisierung des Ergebnisses von K. Mahler
fiir m = n > 3, wenn &(x,y) die irreduzibele binire Form ist. Spiter,
wenn J. Coates [13] und V. 8prind#nk [7} die Gleichung von Thue-Mahler
analysierten, bekamen sie explizite Abschitzungen fiir P im Falle, daf
G (x, y) eine bindre Form ist (sieh ausfiihrlicher [4] und [1] auf den: Seiten
200-211). ' o _

Auf die Moglichkeit der Effektivisierung (1) deutete V. Sprindink
in [8] hin. J. Coates [14] realisierte diese Maglichkeit, wenn m = 2, n = 3.
Er setzte fest, dal der allergréBte Primteiler die Zahl
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itbertrittt, wenn (z, y) = 1. In diesem Artikel bringen wir einen effektiven
Beweis des Ergebnisses von K. Mahler [16] und 1osen die dhnliche Aufgabe
fiir relative Korper. Sei, K ein gewisser Kérper von algebraischen Zahlen
des Grades [K: Q] = 4 tiber den Kérper der Rationalzahlen Q, wo G (=, ¥)
=ar™+fy" (m=2,n=3,m #£n) ein Polynom mit Koeffizienten
aus Zg-Ring der ganzen Zahlen des Kérpers K, #,ycZgund (z,9) =1
ist. : ‘

1y Konkret, warde die irreduzibele binire Form G {x, y)- in allgemeiner Form
betrachtet. :




