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On a linear diophantine equation™
by

EvGEne L. GorpRere (New York, N.Y)

Given a finite set of positive integers § = {815 o0y 83, Lot

: i
sp(8) = {2 @;8;1 ¢; are non-negative integers}. '
=1
Thus, sp(§) is the subsemigroup generated by 8 considered as a subset-
of the semigroup of non-negative integers under addition. It is known
that sp(§) contains all sufficiently large multiples of GCD(sy, ..., s,).
In pavtienlar if this GOD is 1, sp(8) containg all sufficiently large integers,
and we let ' , '
6(8) = the largest integer not in sp(S).
The object of this paper is to caleulate (S} for two special types
of sets. The principal results are:
1. Given posifive integers @, b with 1 < g < b and GCD (e, b) = 4,
for all sufficiently large % such that GOD(n, d) = 1; '

8{n, n4a, n--b})

(%+wn+y0+d—3)?z+b(% _1)'—a, it duy > b—a,

_— b - ‘
(E +y0+d—3)n+b(~2—w—l)—a(l‘u+]), if D.Ot,

where di = az,+by, Wwith 0 <2y < b/d and 0 < y,.
-2 Givenl < o < @ < ... < @y sueh that ay Gy fore =1, ..., k-1,
let 8 ={n,n+1,n+4a,...,01a} I nis large enough,

" . B ay. . n |
B(S) :([?]+af1T‘;" T —+ —L—Q)%%[a—k]ﬂrkf&k“ajoﬁ—l,

T 1 A1

where a; is the smallest a; with @, — a;, < % — [—]ak.
. ‘ ay,
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The basic idea in the proof of the first result is to reduce the problem
to a problem involving only two numbers. For two numbers sp(8) is
known completely. The following lemmas and cor ollary express the situ-
ation.

Ly 1. If GOD (e, b) = 1, then for any integer n, the equation n = ax -+
4 by i¢ solvable in integers. Fmthe: more, if (i, ¥o) 48 one solution, all other
solutions are given by

@ =2, —0t, Y =7y +at

Proof ({2], p- 21).

From Eemma 1, we immediately deduce

Lmama 2. If GCD(e, b) =1, then the equation n = ax+by does not
have o solution in non-negative integers if and only if

as t varies over the integers.

n o= agy— by, with 0<Cz,<b and 1< ¥,

Letting #, = b—1 and ¥, =1, we obbain

COROLLARY. If GCD{a,b) =1, then 6{{a,d}) = ab—a—>b.

All of the work in the proof of the first result is in the case of
GCD (¢, b) = 1. Thus, in the interest of clarity, we first assume the GCD

1. Note, that the assumption that » = ax,+ by, can be solved in non-
negatwe integers is, after the corollary, true for n = (a—1)}(b—1).

TowoREM 1. Given «, b such that 1<a<b and GCD(a,d) =1,
if n>b(b—a—2) end n = ar,+by, with 0w <b and 0y, then

if o=
if not.

(-t +y—2)n+bla—-1)—a, b—un,

(b+¥—2)n+bla—T)—a(z+1),

Proof, Observe that if the equation X =a(n+a}+f(n+b)-+yn
has a solution with non-negative a, 3, y, s0 does the equation with X
replaced by X +mn with m > 0. Hence, for each congruence class modulo %,
there is a dividing line, before which all numbers cannot be represented
while after they can. The first part of the proof studies this line. It will
be shown to be a simple function of the first number in the congruence
clags that can be represented by a, b. The second part of the proof maxi-
mizes over congruence classes and produces 8.

Part 1. For each r, 0 <r<m, leb

B{{n, n+a, n-{-b}) =

Xir) = the smallest integer X congruent to » modulo # such that
X = q(n+a)+A(n+b)+yn has a solution with a, ﬁ, ¥ non-
neg&tlve integers.

It is clear that in the representation of X(r),y = 0. Thusif o + b = r4 dn
then_ X{y) = (a+p-+8)n+r. For r, s such that aw+by —r+ dn has
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- gince X --cn

. Using the fact that the expression in braces is =
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a non-negative solution lef

(1) X(r, d) =min{(la+pg-+6)n+r} over all solutions to
. aag+fb = r4-dn with «,820

Then '

X(r) = IH;LDX(T, d).

From the corollary X (r, 8) is defined for all sufficiently large 4. However,
= X +c¢{ax,+-by,) we see that for a fixed r, if X(r, §) I8
defined for some 4, then it is defined for all larger J.

Claim: X(r, 8) is a non-decreasing function on its domain of defi-
nition. Among all solutions to r+dn = ae+by with , 920, o+y i
smallest for the solution with 0 < 2 < b, Thus X{r, §} = {a+ -+ Hnt+r
where 0 < o << b, 0< B, and aa-+8b = r-+ 6n, Now we caleulate X{r, §)
explicitly as a funefion of 8. Choose a', b’ 2> 0 such that as’ —bb' = 1. Then

.-r—[— n == ala’ (r-+ on)) b —b'(r+ on)).

By Lemma 1 | .
Hence
%(X (r, 8+1) X (r, 8)
= Ln(a —b)+(b— a{[ ] [‘?'(T+(§+1)ﬂ)]}.

> ((a'nfb) -1 and the
bound on z, we obtain

1n(X(r, 64+1)—X(r, 8)) > —1.

Rince the left-hand side is an integer, the elaim is proved.
Therefore

(2} X(r) = X(r, &) where &, is minimal such that r+dn = as+by -

has a noxr-negative solution.
Part 2. Clearly, '
b({n, n+a, n--b}) = max{X(r) —n).
The numbers # + 8,7 that appeared in Part 1, are precisely those numbers B
such that B = az +by has a non-negative solution hut E—n does not.
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Thus by (1), {2),

O({n, n+a,n+b}) = max{(a-+ B)n-+R—n)over B suchthat B = aa+
+05, 0 a<b, 08 and B —= does not have
a non-negative solution. '
By Temma 2, B—n =by—ar, ¢Sy <a—1,1Kx
The argnment now splits inte three cases according to the size of .
We compute the maximum for each case and # is the maximnm of the
three.

Case (i). 2= b Thus Rm:la —b. Hence

R—bZzR=aut+by with O0<Lu<bh 0<K»

- b —an
Therefore, n+uv < u4-+- [_b__}

The function of » on the right-hand side ix clearly non-decreasing, so

. Wb —alb— —b—a '
u -i—ué(b—l)v%[j-a—;g—l—)]é(bml)-l-[ﬁ*jaﬂg] =b=2+y,

Finally X (r) <<
.

Case(ii

(b—2-+yyn—& in this case.
1< &< 2- Then
B = a(ay—2)+b{y,+ )
is. the appropriate representation of R, and
A< (@+yp+a—1)+bla—1)—b—n
with equality for
r=R =ab—a—bmodn if g=1.
Case(iii). #, <z b—1. Then
_ B o=t —o-+b)+b(y+y—a)
is the appropriate representation and
X< (b+y—Ln-b(a—1) —a(zg+1)—
~ with equality for
r=Ry =ab—a—b—az,modn i w,<b-1.

Tn Cases (ii) and (iii), the choice of z, i made maximizes both the sum
o 8 and E. As 4 is obviously & monotone function of B this choice maxi-
mizes X. Notice that the maximam in (iii) majorizes the bound in (i).
Finally since 0< az, < n o

B, > R,2 R, —an.
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The statement about which case leads to the maximum follows easily.

I GCD{a, &) = d > 1, then we must assume GCD{n, d) = 1 in order
to have GCD(n,n-a,n+d) =1. Also, since ar--by now only rep-
resents multiples of d, we change the assumption to ml can be 1eprebented
The proof will show that we may caneel all the @%.

THROREM 2. (ven a,b with 1 <a<b and GED(a,d) =d>1 i,
{(n,d) =1, nd>>bb—a-2d), and dn = ar,-tby, with 0 < &, < bjdf
0 < y,, then ‘

O{n, n+a,n+b})

(—Z +ft-‘u+;ifo~5~d-‘3)n+b(%—1)—a, if drg>b—a,
. il

b
(“d- +}l/o+d—3)'n+b(% "-—1)—'1(%"1—1); if not.

Proof. With only minor alteration of the proof as in Theorem 1
we obfain equation {2) again
X(r) = X(r, &) where d; is minimal such that aw-+ by = r-+ &n
" has a non-negative solution.
Let B = v+ §gn.
The representations of R tell us that R = 0modd and R = rmodn.
Hence there is 4 unique congruence class vy, modulo nd such that
R =r;modnad.
Since r, = 0modd we have .
) ry = dr,modnd
‘for a unique r,modn. Thus ‘
R =dr,+6,dn
and

o b
R =oar =20y if and only if ro--dn = Er-{—Ey
Therefme if B leads to 8{{n, n-l—a]cl n-+-b/d}) then dR will lead to
O({n, nta, nt0b})
: ik, = blajd—1)—a+dn,
AR, = b{afh — 1} —ale,+1) -+ dn.

Finally since #({n,n+a, n+b}) = max(X(r)—n) the theorem follows.

The case where ¢ — 1 has been excluded so far becanse in that case
r = gz+by is antomatically satisfied. Thus the second and third cases,
which are primarily concerned with # such that- &, > 0 do not arise. How-
ever this case is contained in the followmg
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TuEOREM 3. Given indegers 1 = @y < @y < ... < a; such that ajla, 1
Jori=1,..., k-1, i n> a,(a,—2) then.

B{n, n+1, n4a, .0y B+ )

i ﬂv2 (Lk : V
=[{— —J.-al+—_+... + —k—2)n+ — |+ oy — ay — L,
&y, 12 @z

g1
where a; is the smallest a; such that ay — a; < n— o, [n]a,].

Proot. The proof follows the lines of the proof of Theorem 1, except
now R will be represented by 1, 4, @, ..., ;.

Part 1. For 0<r<n let ,
\ X(r) = B+0+ ... £h)ntby+be+ ... +bya
be the smallest X =rmoda such that
X =bo(n+1)4b(nta)+ .. +hy(nba)  with 530,

‘Claim: among all solutions to B = b+ bya;+ ... +bya, with b, > 0,
by+ ... +b; is smallest for the solution that has b, = [R/ak] and 0 < 'b
<aj+1/a for  =0,...,k—1.

The claim will be prmed by induction on k. It is clear for & =0,
Suppoge if for & = j—1.

Let B = b,+bya,+ ... +-b;e; be the recommended solution and let
B =¢-tea+ ... +¢a; be any other. Finally suppose
(3) G =bh—8, 820,
By induction hypothesis

(4) Gtert .. FGazdtdi+ ..+ d
where : '
E—b.a,L b, i o,
di_s :I:—»%——-—J-:I, 0<d; < ;*'1, do+dyoy -+ ... +dya; = BR—ca.
7= %

Since @;/a;_, is an integer

R—b,a :
(5) A= [T] + d{a;/a / =b;_,+ d(ayfay_,).

i~

Then R—¢;a;—d;_,a; =7 —bya;—b; ,a; ; and therefore
(6) by=d;, for i=0,...,§-2.
It follows from (3)~(6) that

CoF Oyt e 6> by +by+ .o+ b

and the claim is proved.
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As in the proof of Theorem 1, we define X (r, 8) and as before the
assumption on # insures X(r, &) is non-deereasing. Thus § = 0.

Part 2. We are reduced to copsidering » with 0 < » < » and we must
maximize b, + ... --J, and then choose the largest r in case of & tie. Clearly

we have
g, —1 n—1
b, = [ ] or [ ]— 1

since in any other case we could replace by Ly b, 1, leave all other b,
the same and remain less than n.

(by+ ... + by} is maximum for a; — 1 and is within 1 of the maximum
only for a,—a;,—1, j =0, ..., k—1. Hence the maximum value of

Byt oo 4B, :[i]+(a1—1).+ ach VI (. S] BEY
R a Tp—i

Note. Onty in the case where 2 = O0moda, can we realize both the
maximum possible values of b, and by ... +¥8,_,. The change from n—1.
te n in the greatest integer function is to include this case.

From the characterization of which numbers have maximal sums

® ‘
"= I:*— QT g — g, — 1,
g

where g;, is minimal such that r < n.
' Subtractmg n as before the theorem follows.

In conclusion there are a few points to make about the hypotheses
of the theorems. In all ¢éases the lower bound for # can be lowered by
better estimates. However in no ease can it be eliminated by this method
of proof.

If n is sufficiently small, the functions that were shown to he non-
decreasing are not. It then appears complicated to chose the proper 3.

In the first two theorems, the assunmiption that » can be represented
allows us to only look at B such that B-—n cannot bewrepresented. If #
is not representable then it iz possible for B-—n to be unrepresentable
while E—2n is. For example if R—n = ab—a-—b and = cannot be rep-
resented then R—2n can be.

Finally, the divigibility conditions of Theorem 3 are only used fo
show the form of the solution with minimum sum. However with no eon-
dition the answer is wrong. For example ¢, = 1, a4, = 3, 6, = 4 and E = 6.

For the inferested reader, I have listed a few of the many related
papers. A¢ an historical note, the gquestions raised were first posed in
a lecture by Trobenius.
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A semigronp with a divisor theory in which all factorizations into ;
' Received on 23. 1. 1975 ‘ (666) irreducibles of a given element have the same length i3 called a c-semi-
: group. ) ;
In hig paper [1] L. Carlitz has proved that the maliiplicative semi-
. group of the ring of all algebroic inlegers of a number field is ¢ c-semigy 0up
if and onlvj if that ving has class number < 2.

In Narkiewicz's book [3] the following problem (no. 29) is posed:
Characterize Dedekind domains in which all factorizations into irreducibles
of o given element have the same length..

In this paper it is shown that the property o bz e c-semigroup depends
on the so-called e-characteristic of a semigroup (with a divisor theory)
that i3 equal to the pair consisting of its divisor class group and of the
image of the canonical mapping of all prime divisors into that group (Prop-
osition 2.3).

From Claborn’s Realization Theorem ([2], Theorem 15.18) it follows
that for every pair consisting of a commutative group and its eny strong
systems of generators there exists o Dedekind domam for which that paz?
is its c-characteristic (Theo ¢m 2.4). .

For a subset of & commutative group the notion of c-set is introduced
by means of the properties of that group only. Tt .is shown {Prop-
osition 2.3, Theorems 2.6, 2.7) that the o-chargcteristies of c-semigroups
are just the commatative groups and their sirong systems of generators which

o are c-sets of those groups.

- ' ' In Section 3 the e-sets of elements of finite orders of a commutative
group are characterized by Theorem 3.1, from which the character-
ization of all e-sets of the cyclic group of order p” (p a prime, n a positive
integer) is dervived (Proposfiion 3.4). An analogous characterization of

- all e-sets of a finite cyelic group remains an open question.
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1. Fondamental concepts . _ i

1.1. In this paper all groups considered are commutative and addi-
tive notation is employed. For semigroups multiplicitive notation is
employed. (If a semigroup is a group, then we use additive and multi-
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