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A semigronp with a divisor theory in which all factorizations into ;
' Received on 23. 1. 1975 ‘ (666) irreducibles of a given element have the same length i3 called a c-semi-
: group. ) ;
In hig paper [1] L. Carlitz has proved that the maliiplicative semi-
. group of the ring of all algebroic inlegers of a number field is ¢ c-semigy 0up
if and onlvj if that ving has class number < 2.

In Narkiewicz's book [3] the following problem (no. 29) is posed:
Characterize Dedekind domains in which all factorizations into irreducibles
of o given element have the same length..

In this paper it is shown that the property o bz e c-semigroup depends
on the so-called e-characteristic of a semigroup (with a divisor theory)
that i3 equal to the pair consisting of its divisor class group and of the
image of the canonical mapping of all prime divisors into that group (Prop-
osition 2.3).

From Claborn’s Realization Theorem ([2], Theorem 15.18) it follows
that for every pair consisting of a commutative group and its eny strong
systems of generators there exists o Dedekind domam for which that paz?
is its c-characteristic (Theo ¢m 2.4). .

For a subset of & commutative group the notion of c-set is introduced
by means of the properties of that group only. Tt .is shown {Prop-
osition 2.3, Theorems 2.6, 2.7) that the o-chargcteristies of c-semigroups
are just the commatative groups and their sirong systems of generators which

o are c-sets of those groups.

- ' ' In Section 3 the e-sets of elements of finite orders of a commutative
group are characterized by Theorem 3.1, from which the character-
ization of all e-sets of the cyclic group of order p” (p a prime, n a positive
integer) is dervived (Proposfiion 3.4). An analogous characterization of

- all e-sets of a finite cyelic group remains an open question.
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1. Fondamental concepts . _ i

1.1. In this paper all groups considered are commutative and addi-
tive notation is employed. For semigroups multiplicitive notation is
employed. (If a semigroup is a group, then we use additive and multi-
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plicative notation when speaking about the group and the semigroup,
respectively.) -

1.2, Let I" be a group. The zero of I' will he denoted by 0, and the
order of 0, will be the number 1.

A subset M of I' will be said to be a sirong system of generators of the
group I' if for each gel’, g + 0, there exist ¢,, ..., gpe M (5> 0} and
positive integers 9, ...., 7 such that g =m0+ ... F00.

Let I be a set and, for each :el, let &, I, where almost all @ are
. equal to 0p, which means that the set {iel:a, 7= 05} is finite. By the
gymbol >a, {ceI) we understand the finite sum D a, {refvel: a, = 0,)).
In case I =@ the symbol }'a, (:ef) means the element Op. -

1.3. Let © be a commutative semigroup with identity element-
An element e is called an drreducidle of the semigroup D if it is not a unit
of © and the equality r = a-b (ae®, D) implies that ¢ or b is a unit
of D, whence b and r or a and t are associated.

The semigroup D is ealled a UF-semigroup (abbreviation for & unique
factorization semigroup) if the identity element is an only unit of ® and
every element be®D different from the identity element may be written
uniquely (with the exception of the order of factors) in the form

b_=r1...r;c (k>0),

where t; (1 <4 < k) are the frreducibles of the gsemigroup D.
UF-semigroups are Gaussian semigroups with an only unit and they
are free abelian semigroups. The sets of generators are equal to the sets
of irreducibles.
The set of all irreducibls of a UF-semigroup will be denoted by (D)
Every elenient b of D may be uniquely written in the form of the formally

infinite product )
b=[]p"  (peB(@NO),
where a, are non-negative integers almost all équal o the number 0

14 A semigroup @ is called a d-semigroup if it has a divisor theory,
i.e,, if there exists 2 UF-semigroup & in.which & is embedded and,
1° for g,e@, g6 we have g, [g., if and only if g1 | g2(%),

2° for each bec@ there exist elementb Jis ooy U (k> 0) of & such
that b = (g1, ..., g4 (%)

(1) It the index sef is empty, then under the profluct over this set we under-
stand the identity element of the semigroup .
(3 The symbol l denowes the relation of divisibility in the semigroup G.

(%) Hcre the symbol {g1s++-s gr) denotes the greatest common divisor of the
elements g1, ..., gz in 6.
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The semigroup ¢ is then commmtative, it has an identity element
that is the only unit of & and in & the cancellation law holds. The semi-
group oF is uniquely defined with the exception of the G-isomorphism.

For elements b,ecd, byt we put by ~g b, if there exist g,e6,
gse@ such that ¢,-b; = g5 b,. The relation” ~p is a congruence on the
semigroup ¢ and the semigroup of the classes of this congruence is & group
that iz called a divisor class group of the semigroup G and is denoted by I e
{additive notation is employed). The canonical mapping of ¢& onto [}
is denoted by g4

1.5. Let R = (R, 4+, -) be an integral domain {i.e., a commutative
ring with an identity element and without zero divisors). By the symbol B
we shall denote the gsemigroup of principal ideals of R different from the
zero ideal. This semigroup can be considerad &s the multiplicative semi-
group of R,

The integral domaing & for which R* is a §-semigroup (i.e., has a divisor
theory) are just Krull domamins.

1.6. The Realization Theorem introduced below iz due to Claborn
and is taken from Fossum’s book [2] {Theorem 15.18).

A gubsemigroup G of a UF-semigroup D is said to be o dense sub-
semigroup of CD it for eaeh Y ¢ P(D), cardY < cardP(D), and each
be®D, b = Hp (peP(D d being non- nega,tlve mtegers almost all
equal to 0), there ext@.ts % geG g = ”p (peP (D)) {a, being non-nega-
tive integers almost all equal to 0) such that a, = 4, for each peY. '

TupoREM (Realization Theorem). Let D be a UF-semigroup, and
G a dense subsemigroup of © such that for g, <@, g.<G we have

g1 | go if and only if g1 ] ga.
& _ S
Then there exist a Dedekind domain B and an isomorphism o of the
semigroup cRB* onfo the semigroup D such that o(B*) =&

1.7. Tet m be a positive integer and let b, 4y, ..., @ (k > 0) be in-
tegers. We say that (2y, ..., 2, 18 a minimal solution of the congruence

k

Eéjaj = b(modm) -
j=1
it #,, ..., @, are non negative integers, at least one z; (1<j<k) is dif-

ferent from zero, 2, ;o = b(modm) and if ¥1,..., ¥ are non-negative
=1

integers such that Zyja, = b(modm) and ¥; <& for each 1<j<k, .

we have ¥; = .-. '_.ykMOUr y; = @; for each 1 <j <
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LmaMA. Let n, iy, ..., 0 (B> 0) be non-negative integers, > 5y
(L <F<<k), p a priine number, and b, t inlegers, where {p" << b < ({4 1)p™
Then for the minimal selution (., ..., x,) of the congruence

&
Zé’jp"j = b(mod p")
j=1

e have '

I

Za'j]a"f = b—1ip".
=i :
Proof. We prove the lemma induetively with regard to k.
I. Let £ =1 and let (»;) be a minimal solution of the congruence
£ p™ = b{modp™). Then 0 < z, < p* ™, whence

— (NP b <mp—b < P17 =

which implies @ p™ —b = —ip™
II. Let the assertion hold for sach I < L’
be a minimal solution of the congruence

—(t—1)p",

E—1 and let (2, ..., 2)

k
D& = b(modp“)
j=1

We can suppose that x,- iy,
Then p™%b. Put

1] and n < ny for each 1<<j<

h
Yo = Tk —tptT,

P ¥, =0 for 1<jCk—1.

-
Then g, > 0 and 3 y;p"™ = b{modp"), whence y, > z,, from which we
J=1 )

obtain  b—azp"r > tp". Put b =b—mp™. Since ... &, # 0,
© k-1
(#yy +-., #x_;) is & minimal solution of the congruence 2 a;p™ = b (modp™).

=1

As "< b < b {t+1)p" : we obtain from the 1nduot1ve supposition

2 2;p" = b —tp"; hence 51 ;p" = b—1p™ and the proof of the lemma -

J =1 .
iy complete,

L.8. DEFmNITION. A mapping f of a set M into the set of negative
integers 155 sald to be a divisor map. of M or briefly a d-map of M, if
M —f70) is a finite set. If I = f7(0), then f is called the zero divisor
map of M, or briefly the zere d-map of M (The empty mapping which we
can speak aboub.in case M = O is supposed to be zero divisor map of M.)

- Let M Dbe a subset of & group I'. The divisor map f of ¥ is called a
principal divisor map of M m T, or briefly a pd-map of A in Iy it

2 A“E-BI) =0p.
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A pd-map f of M in I'is called & minimal principal divisor map of A in T,
or briefly a minimal pd-map of M in I'y il fis not-a zero d-map of M and,
for every pd-map g of A in I' with the property g(u) < f(p) for each
ue M, g = f or g is the zero d-map of AL

2. ¢ characteristic

2.1. DeFmTION. Let & be & d-semigroup. The pair [Iy, g6($ ()]
is called the c-characteristic of @ and denoted by ¢(G).

If o is an isomorphism of the group Iy onto a group I, ther we con-
sider the pair [I7; oqg(P(¢@))] equal to the pair [, (B ()]

TUnder the c-characteristic of a Erull domain R we undelstand the
c-characteristic of the semigroup E*.

Evidently:

2. 1.1, If [, B is the c-charvacleristic of a d-semigroup, then MM is
a strong system of generators of the group I

2.2. DEFIRITION. A §-semigroup @ ix said to be a c-semigroup if for
the irredneibles Py, ..., P, (»> 0) of & and non-negative integers a,, ...
eey @y by ..., By, the eguality

n n

2, 1 )

J]EE=]Px
=1 =1

2.3. PrROPOSITION. Let &y, Gy be d-semigroups suck that ¢(G,) = ¢(@)
Then G is a c-semigroup if and only if G s & c-semigroup.

Proof. For simplification we put P(cG;) = &5, ¢g, = ¢; and Iy, = I
for § =1, 2. Further, we pub p,(%;) = JI Smce c(Gl) =@y, “there
exigts an isomorphism o of the group I, onto the group I'y such that
opi{P) = M.

Let & be a c-semigroup and let @, ..., @, (n>>0) be. the irreducibles
of G, and a,, ..., Gy by, ..., b, nOn-negative integers such that

Dl = k.
Ci=l

1wl

n 7
implies Ea’,- = Z b;.
q=1 i=1

For each 1< is<(n there exist non-negative integers d;, (q<2,
almost all equal to zero and such that

Q= []a™  (qe2).

Therefore we obtain for each qe#,

gaidiq =€=§;bidiq‘
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Further, let 1 i< n.
For each ge2, there exists a p,e#, such that

api(Py) = @a(a)-

Then we put dy; = ¢; . For a ped; for which there does not exist a qe&,
such that p = p,, we put ¢, = 0.

¢y (Pe;) are non-negative Integers almost all equal to zero. Then

Pietdy, where

P«:"‘"”Pc’:" (pe?s).
We have ’
L . ()

HP.?’: — H:p‘!l_p (:peyl) and pri = ”:p""p (:p Egl)j

=1 i=1 .
where

Uy = Z%ﬂz-p Tand o, = Ebi Oy
i=1 i=1

Bince Cpg = dyy Tor ge#, and ¢, = 0 otherwise, we have w, — », for each

pe#;; hence

E13 n
a; 5.
[75 = []rh.

ci=1 =1

For pe M we pub f,(u)
mal pd-map of M in Iy, T we put g,(») = fi{o( ) for wea‘I(M) then 9
is & minimal pd-map of o~ (M) in IY. Since g;(») = Yoy, (peor(»)) for
vea™ (M), P; is an irreducible of @,. Since G is a ¢-semigroup, we have

[ [
o w2
=1 =1

therefore &, is a e-gemigroup, too. The proposition is proved.

2.4. THEOREM. Let M be a strong system of generators of a group I
Then there exists a Dedekind domain whose c-characteristic is the pair [I', M.

Proof. Let M # @ be a strong system of generators of a group I
(In case M = @ the theorem holds.)

Let m be an infinite cardinal number such that m > card M, and
for pe M let X, denote an arbitrary set with the property that card.X,
=1 and for ae M fe M, a +# f the sets X,, X, are disjoint.

Let © be a UF-semigroup such that P(D) = X, (ue M). For
simplification we shall further write (D) = #. Then card® = m. For

peX we put ¢(p) = x and for bed, b = []p% (pe?) (a, > 0) we put
' Zapc;a(:p) (pe?). ¢ is a homomorphlsm of D onto I

= 3 d;, (qegs ' (#)) The mapping f; is a mini-

icm

On e-semigroups 208

We put & = {deD: p(2) = 0} Clearly, @ is a subsemigroup of D
and for ¢,¢@, g, we have ¢, ] gy if and only if ¢4, } s

We show that ¢ ix a denﬁe subsemigronp of Q Let ¥ = 2, cardY
< card#, and let b = ]—_[p‘zv (pe?)eD. We put ¢* = H:pdp (peX). If ¢(a®
= 0p, we put a = o*. Otherwise thele exist py, ..., g e M (5> 0) and

positive integers a,, ..., a, such that 3 “1.“1 = —g(a*). Since cardIF

> card ¥, there exist Pe X, —Y (1<z E). We set q =4* Hp In

both cases ¢(a) = 0,; hence ae@ and if a = ITo™ (pe2), theu for pe¥
we have a, = d,. Therefore ¢ iz a dense subsemigroup of D.

By Olaborn & Realization Theorem 1.6 there exists a Dedekind domain
R and an isomorphism ¢ of the semigroup cR* onto the semigroup D such
that ¢(R*) = G. Hencs G is a s-semigroup and we ean suppose that o = D.
There exists an isomorphism & of the divisor class group I onto the
divisor clags group [}y such that Fogp. = geoo.

. Let by e®D, 0y¢D. Then there exist ¢y, ¢,, tz<D such that b ¢ = byey
and @(c) = —@(q). Pub g3 = ¢ty g2 = Garcs. I @(D;) = @(by), then
@(c1) = ¢(cy); hence g,e@, g,¢6, whence b, ~y b,. If, on the other hand,
by ~g by, then elearly ¢( b,) = g(b,). Therefore there exists an isomorphism =
of the divisor class group I'; onto the group I" such that zogza == . The
situation ig demongtrated by the following diagram:

P’k
£ T
G——D =G ——T
3 A
UlR'T Tu* lo-
R* > CR r}g«

R

Here o|z denotes the restriction of ¢ to R*(¢/R*: B*~>&) and the unde-
noted morphisms denote the identity embec_ldings.
We have

e(R*) = [Ipe, 0 {P(BY)] = [, 100w {BEY]].

.Fur’qher;

F s (P(EY) = 1950 (B(EY) = wpa(?) = p(#) = M.

Therefore, ¢(R*) = [I', 2] and the theorem is proved.
2.5. DEFINITION. A subset i of a group I"is called & ¢-sef of the group I
if for minimal principal divisor maps fi, .., fp (n > 0} of M in I' and in-

the equality 3 @,f;(x) = 0 for each pe M implies >z =0.
=1 :

=1

tegers oy, ..., x,

4 — Acta Arithmetica XXXT.3
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2.6. THEOREM. Let M be a strong system of generators of a group I
Then the following statements are equivalent:

(a) M is @ c-set of the group I

(b) there exists a c-semigroup whose e-characteristic is the pair [17, M7

Proof. I. Let M be a e-set of the group I By 2.4 we can suppose
that there exists a d-semigroup & 'such that

=1, and Mmmg@(cf}))-

We show that @ is a e-semigroup. Let Py, ..., P, (n> 0} be the irre’
dueibles of G and aq, ..., @&,, by, ..., b, integers such that
£ [ .
Mps= >'Ph
i=1 i=1
For each 1< i< n let ¢ (peB(cd)) be non-negative integers almost
all equal to zero and such that

Pi= [ (peB(et)).

For each ue M we set fi(u) = My (Pegg’(u)). The mappings f;
are miinimal pd-maps of M in I

. n " .
For each peP(cd) we get Y a6, = D byey; hence for each ue M
©oi=1 i=1

. n i n
we have Y (a;—b;)f,(z) = 0, from which it follows that 3 a; = 3 b,
f=1 i=1 i=1
Therefore G is a c-semigroup.
II. Let @& be a c-semigroup, ¢(@) = [I', M]. We can suppose that
T = Ty M = g(Pic). Let fy, ..., f, (5> 0} be minimal pd-maps of M

L)
in I' and @, ..., , integers with the property >'wfi(s) = 0 for each
we M. . i=1 .
For each pe M there exists a p, <P (cf) such that ge(p,) = p. We pub

Po= [P (pe )

for 1 <1< #n. The elements P; are the irreducibles of @. There exist non-
negative integers @y, ..., &,, by, ..., b, such that », = a;—b;. Then

() R E3 .
[[75=[]P¥;
i=1

q=al
n o . 7 '
hence Y a; = > by, from which it follows that > @; = 0. Therefore M
i=1 i=1 1=l
" is a e-set of the group I '
The proof iz complete.
From 2.3 and 2.6 we get
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2.9, TBJEORE.M. Let the pair [I', M1 be the c-characterisiic of o S-semi-
group G. Then G is o c-semigroup if and only if M is a c-set of the group T
. 2.8, GogOLLARY. In a Dedekind domain all factorizations into irreduc-
ibles of a given element have the same tength if and only if the set of all

ideal classes containing at least one prime ideal is a c-set of the ideal class
group of that domain.

3. c-sets of elements of finite orders
3.1, THEOREM. Let py, ..., py, (k> 0) be different elemenis of o group I’

with finite orders m,, ..., my,. Then the set M — {to1y ooy iz} 35 @ c-sef of

the group I' if and only if for every minimal principal divisor map fof MinI
the eguation

Sk‘f(.uj) _q
£ om, .
F=1 7

holds.

Proof. I. Let M be a c-set of the group I and let f be a minimal
pd-map of M in I'. For 1 <j<k we put f;(u) = 0 for ue M —{p;} and
Si(#6;) = m;. Then f; are minimal pd-maps of M in I". We put 2, =my- ... oMy

H
Ty = —(My- ... M) Fpy) (1§ k). For each 1§s<k_we geb

k
mﬂf(}us) -+ ijfj (:us) = 0.

k
Since M is a e-set of I', we have } 2, = 0, from which it follows that

& ) =0
Zf(ﬁg) -1
F=1 mj k . .
I Slus) . .
1, Let Z";;;"_ = 1 hold for every minimal pd-map f of M in I
=1 ]
Let fi, ..., fu {n> 0) be minimal pd-maps of ¥ in I, and let #, ..., 3,

be integers with the property X #,f;(#) = 0for each ge M. Then we have
1=1

E 7 _ 7 n o
0= 3L Stesin = 3o Vi _ S,

t=1 j=1 =1

hence M is @ c-veb of I
Thus the proof is eomplete.

3.2. Prorosimion. Let M be o subgroup of & group I' and let each 6l-
ement of M have a finite order. Then M is @ c-set if and only if card M < 2.

Proof. If card M < 2, then clearly M is a c-set of I. Let M be a c-seb
of I .
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If there exists in M an element g with order m > 2, we pub f{x)
= f{—p) = 1. Then f is & minimal pd-map of the set {w, —u} in I' and

PLIOIIS (ol
m m m

Hence the set {u, —pu} is not & c-set of I'; therefore even the set M is
not a e-set of I'. Consequently all non zero elements of M have order 2.

If card M > 3, then there exist ae M, e M such that O, # a # B # 0p
Then for y = a+ﬁ we have y¢{0, a, f- We put fla} =f(f) =f(y) =L
Then f is a minimal pd-map of the set {«, §, ¥} in I" and

fle) | f(B)  F»)

2+2+2

Therefore, {a, A, ¥} is not a ¢-set of I'; hence even the set M iz not a e-set

of I
Thus the proposition is proved.

3.3. Remark. Proposition 3.2 generalizes Carlitz’s result [1] concern-
ing @ ring of algebraic integers. Here the fact is used that the e-charac-
teristic of such a ring is [I, I'], where I' is a finite group.

The proof of 3.2 is a modification of Carlitz’s proof from {1].

8.4. ProPoSITION. Let T be a cyclic group of order p™, where p is a prime
number and n o positive integer. Let y, ..., py (B> 0) be elemenis of the
group I with orders ™ > p™ > ... = p" = 1. Then the following statements
are equivalent:

(8) {pbys---y pzt 18 @ c-set of the group I

(b)lé'i%jékwﬂ,*p*"“%: :

(0) 1<j<h=p =™ (%)

Proof. We can suppose that I' is the additive group of the ring of
rest ‘classes modulo p® Then there exist integers 1 < by <P ™, ptb; such
that bp™ ™epy;, (1<j<k).

1. Let (a) hold and’'let 1<i<i<<h 4 # u;- The set A = {u;, u}
ig a ¢-set of I'. There exists just one integer 1< & < p™ such that

‘wh;+byp™iT™ = 0 (modp™).

Then #u;+p; = 0y We put fu;) = @, fluy) = 1. Then f is a minimal
pd-map of A in I', whence according to 3.1 we have

f(ﬂi)_]_f(ﬂj) __f_' 1

L= T T

{*) Proposiiion 3.4 has been proved independently by J. Sliwa.
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from which we get p™ = @+ p™~"; therefore

By = — &gy = Py — M = p™ .
Thus statement (b) holds.
II. Implication {b)=-{c) is evident.
IIT. Let (¢) hold. Then & = b,(modp™). We can suppose that the
elements g, ..., g4, ave dlfferent
Let f be a minimal pd-map of {u, ..., ,u.k} in I\ Then {f(g); ---5 Flp)

is a minimal solution of the congruence 2 §bp" T = O(mOdp") Hince

bip" " = bljg Hmodp™), (fluy)y ..y J{ ,u,k) is & minimal 801111310]1 of the

congruence Y £;p"""% = 0(modp") and by Lemma 1.7 we have Z flps)p™™™
i=1

&
= p", thus Zf;:::} = 1. Then Theorem 3.1 implies that {u,, ..., g}
i=1
is a ¢-set of I
The proposition iz proved.

3.5, Remark. In the case of elements of infinite orders we can prove
the following result:

If a, B,y are rational integers, a> 0, f< 0, y <0, then the set .

{a, B, v} 18 a c-set of the additive group of rational integers if and only if
Bla,y) =y(a (mOda ﬁ;)’))

_ There remains the open problem of how to characterize all e-sets
of the infinite cyclic group. :

(5) The symbol (¢, ¢) means the greatest common divisor of rational integers ¢, y.
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