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On the other hand one can prove that the series

converges for ¢ > 0 and that its sum tends to f{n) as s tends to zero through
positive values. So, if the series (2) converges for some o, 1ty sum must
be fin).

Added in proof. It has been proved by . Schwarz that the series (2)
actually converges for every n (Aeta Avith. 27 (1973), pp. 269-279).
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A counterexample to a conjecture on multinomial degree
by

LAWRENCE J. Rismaw (Haifa)

Let K Dbe a field. A polynomial p(z) with coefficients in K of the
form ay+4-a,@™+ ... aze™ with all #; 7 0 is ealled a multinomial of
length d. The d-tuple (m,, ..., mg)is the exponent vector of p(a). An el-
ement 6 in a field extension of K is of multinomial degree d over K if 6
satisfies a multinomial of length  and no multinomial of smaller length.
Clearly, § has multinomial degree 1 over & if and only if some positive
power of § lies in K.

The following conjecture is posed in [2]): H K is & field of charac-
teristic 0 and 6 is an element of multinomial degree d over K so that
there exist d 4 1 multinomials of length d satisfied by 6, p;(%), 4 =0,1,...
.-y d, where the corresponding exponent vectors are mnot proportional,
then [K(6™): K] = d for some positive power m of 6. ‘

Let 9 be.a root of the irreducible polynomial 42 —2+1 over the field
of rational numbers §. We show that 8 provides a counterexample to the
above conjecture. We observe that an element of odd degree m over @
has multinomial degree 1 if and only if its minimal polynomial over @
has the form o™ — a. For a proof see {1]. Hence 6 has degree 3 and multi-
nomial degree 2 over Q. Moreover, every positive power of § has degree

8 =[Q(07): Q1.

Multipiying ?®-wz4-1 by appropriitely chosen polynomials of degree
2 and 4 we obtain the following additional multinomialz of length 2 satis-

“fied by 6: '

o* ot -1 = (o' -2 L1+ x 1),
&2 —1 = (ot - —2—1),
@ 2001 = (&8 — o+ 1) (@' +o® -+ o +1).
Thus § satisties four multinomials of length 2 with exponent vectors

(1,3), (4,6), (5, 7), and (4, T), respectively. Hence 6 does provide the desired
counterexample. '
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1. Ag it is well-known, the L-zeros play an important role in the
digtribution of primes in arithmetic progressions and hence many
great problems of the analytical number theory depend on the zeros
of L-functions. :

After the investigations of Gronwall [7] and Titchmarsh [19] zerofree
regions were given for ZI-functions belonging to complex characters.
Page [12] proved in 1934 the following theorem:

For a real zero 1 — ¢ of an L-funcfion belonging to a real primitive
character modulo D

1
VDlog*D

{1.1) is an easy conzequence of the lower hound

(1.1) §»

™
VD’

which we can get.from Dirichlet’s class number-formula and of the fact

(1.2) L) =

1
Lol
logD =~ 77

(1.3) (o) = O{logtp) for 1—

which we can prove egduily by partial summation.
Thus by the mean wvalue theorem of differential caleulus there is
a &, 0<{i<gy,
: La L
(14 % = I {1 — &) == O(log2D).
In 1935 Siegel [16] proved
{1.5) - I{1) > C(e)D™* for an arbitrary s> 0,

where C(e) is an ineffective constant depending one.



