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1. Ag it is well-known, the L-zeros play an important role in the
digtribution of primes in arithmetic progressions and hence many
great problems of the analytical number theory depend on the zeros
of L-functions. :

After the investigations of Gronwall [7] and Titchmarsh [19] zerofree
regions were given for ZI-functions belonging to complex characters.
Page [12] proved in 1934 the following theorem:

For a real zero 1 — ¢ of an L-funcfion belonging to a real primitive
character modulo D

1
VDlog*D

{1.1) is an easy conzequence of the lower hound

(1.1) §»

™
VD’

which we can get.from Dirichlet’s class number-formula and of the fact

(1.2) L) =

1
Lol
logD =~ 77

(1.3) (o) = O{logtp) for 1—

which we can prove egduily by partial summation.
Thus by the mean wvalue theorem of differential caleulus there is
a &, 0<{i<gy,
: La L
(14 % = I {1 — &) == O(log2D).
In 1935 Siegel [16] proved
{1.5) - I{1) > C(e)D™* for an arbitrary s> 0,

where C(e) is an ineffective constant depending one.
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Siegel’s lower bound {1.5) together with (1.3) gives, as Walfisz [21]
observed, a better estimate for the 1 § real zero, namely with a ('(g)
ineffective constant depending on e

(1.6) 8> (") D,

The real zeros 1—¢ with §< 1/log.D we shall call Siegel-zeros.

As-the ineffectiveness of the Sisgél-zeros canses a lot of difficalties
in the analytical number theory, it is natural to try to improve (1.1
in an effective way. To improve effectively (1.2) is very difficult. After
the results of Baker [17, [2], [3], and Stark [17], [18], [3] we know only
that for the class nnmber 2 ( — D) of the imaginary guadratic field @ (V jln))

(1.7) R(—D)z=3, it D> D,
where I, is an effective absolute constant.
Thas
‘ 3= o
(1.8 L=, # DzD,.
VD :
D .
(In the case y(n) = - D >0, the claggs-number formula gives
, N
log D
{1.9) L{l)» —=}
VD

TPo improve (1.3) regp. (L.4) in the fwll generality would be also
very difficuls, if possible. But Dcwenpmt [58] pwved in 1966, that in the
case of

oo
(1.10). L{1) = 0(10%:13) .
A\ VD
one has
(1
(Li1) —g—) = 0(loglog D).

This result gives-together.with (1.2)

1

(1.12) B —
: flogIOWD

in any ca.be, bec&u,se if (1.10) does not hold, then (1 12) follows directly
from (1.4} :

Besides, we must mention & paper of Haneke [9], from the year 1973,
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where he asserts in the case of (1.10)

(1.13) ( =0 (1),
ie.
(1.14) 8y —

But his very complicated proof is 111001rect since in the last of his 23
Lemmas, estimating the sum

{1+ x(p)
3t

p?
he neglests those primes for which

x(p) =90, ie plD.

If we correct this, Haneke’s paper gives only (1. 11) and (1.12), i.e. the
results of Davenport (proved in another way).

On the other hand Bateman and Grosswald meuntion in a paper [4]
written in 1962 an unpublished result of J. B. Rosser, aceording to which

6
=D’

In 1963 Grosswald [B] mentioned the joint unpublished result of
himgelf and Bateman, which way escentially (1.15), and without formu-
lating any theorem, he referred in connection with the question to a mimeo-
araphed work of J. B. Rosser [15], that perhaps confaing the proof of
(1.15)(Y). Davenport and Haneke in their papers [5] and [9] also did not
mention . these results.

In this paper we shall prove the following theorems. All the results
of this paper will be effective.

TweoreM 1. Lei y be o real non-pmalmpal character module D, for
which

(1.15) 5>

(1.16)

Then for the Siegel-zero 1 — & of L(s) {which exists by the theorem of Hecke

[11]) with the notation g{n) = D x(d)
din

L) 1 gm) .
~ Z T?H(1+E)( i _0(1))-

(L17) L) ;

neD¥ »D

(1) In a lettor of 8th July 1874 to Prof. J. B. Roager I ihquired after his
results, but I did nof get any answer until now (6. 3, 1875).
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(The sign ~ replaces a factor 1-+0(1).)
Theorem 1 improves a result of Fluck [6], proved. by Ebterma,nnb
methed, that if
<1
then
L)y ——-.
) > log D
Tt also improves o result of Haneke [9], according to which if (1.16)
holds, then

(1.18)

This assertion was proved by us in part I of this series [13] with

205 .28

(1.19) 5

and now Theorem 1 gives

s T3] o)

n|lD

(1.20)

which is, as we ghall see from Theorem 2, in some sense the best possible
result. (It shows that not only the proof of (1.13) in Haneke’s paper,
but also the assertion (1.13) is false.)

Using Theorem 1 we can prove- .

ToeorEM 2. If —D <0 is o fundaomenial discriminent for which
the -inequality

' log.D
{1.21 M—D) < —r—n
t.21) ( )\‘zloglogl)

holds, then. for the greatest real zevo 1— 68 of L(s, ¥), where g(n) = ( _D)’

7
the relation ,
. (1 2
(1.22) W%l ~ 1;; (1 + i),
oD r

i.¢. Coa ,
(1.95) 61}(1)1 __ 6l(—D)

e

) 1]
holds
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As In the most critical case (1.21) we almost exactly know the place .
of the zero, using the deep inequality (1.7) it is easy to prove the following
effective improvement of Davenport’s inequality (1.12).(and also of
J. B. Rogser’s unpublished (?) result (1.15)).

TEROREM 3. For the greatest veal zero 1— 3§ of am Tr-function belonging
to o real primitive character modulo D, the inequality

12—o(1)
VD

holds (%),

As an L-function belonging to an imprimitive character modulo D
has the same zero as an other I-function belonging to a primitive character
with a modulus D* < D, Theorem 3 remains frue for imprimitive charac-
ters too.

‘We shall prove one more theorem as follows:

TumoreM 4. If for the real nown-principal character y(mod IH

(1.28) L1, <

1
log*D’

(%) Professor Bchinzel, as referea of the paper, kindly made the following remark
thereby improving the result of Theorem 3:

Theorem 3 is true in the following sharper form: For the greatest real zero 1— 6
of an L-function belonging to a real (primifive) character modulo D,

16 1
1y 6;;(———————.5) & D> Dye)
. . : /“ﬁ (]
where Dy(e) iz effectively computbable.
As one can easily see the proof of Theorem 3 is valid for the sharpened inoqualify

(1) except for the negative fundamental diseriminants —D of the form

(2) —D = —4dpg, —8pg, — 187, ~2Ir (f,q,r primes) -
with , :
3 M—-Dy=4
and
: 1 1 ew
@ . (e D[ > 142 <o .
P q 16

However, an effective hound for D satistying (2), (3), (4), follows from Theorem 2 of
the paper of A. Baker-A. Schinzel On the least integers represenied by genera of binary
quadratic forms, Acta Arith. 18 (1971), pp. 187-144. Indeed, the four genera of quad-
ratic forms with discriminant — D satisfying. (2) and {3) represent numbers

L% p2; 1,3,5 16 or 1,87 21,

respectively and hy (4)-we have p < 32/ns< 1)3"3 for D= Dy (z), so that thc assump-
tions of Theorem 2, lc are fulfilled. - :
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Jhen
14+ z(p log DloglogD \2
26 ! 3,
(1.26) (4, ; ) < 7 %)

Il - @
€3I, plogD

The thecrem asgerts that any upper bound for I (1, y) which is sharper
than (1.25) implies a non-trivial upper bound for

31 1+ x(p)
., :
pcD?
i.e. shows that for the most primes p < D%, x(p) = —1. ‘
From (1.26) with some modifieation easily follows a result of W.
. Haneke [10], proved by him in a rather complicated and deep analifical
way (using e.g. the Heilbronn—Deuring phenomenon).

TaworEM {Haneke). If an L-function belonging fvo o real charascter

2(modD) has an 1— 5§ Siegel-zero with

- \log2D

[_ glog Dioglog D2

.(1.27)

then, for all

. {1.28) X = exp ,

log
i o8 dlog D

the inequality

T -+ d(log® X + log3.D) (M)
€ slog D

peX

agy S IR o (B’E_lllﬂgi?%ﬂ 2

holds.

This theorem was proved by Haneke fo improve & theorem. of
P. Turan [20] in the case of (1.27).
We shall use Theorem 4 to prove

Temores 5. If for the real non-principal character x(mod_D)

{1.50) L, )<

bl

1
log2D

(3} p always denotes throughout this paper a prime. )
{*) The exponent 2 on the right sido is missing by a misprint in the original paper,
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then for the Siegel-zero 1 — 8 of L(s) (which exists by the theorem of Hecke
(113

(1.31)

L) log DloglogD =
5 1 '

log ———
8 5L (1)logD

This theorem shows that any sharper upper bpund for L(1, y) than
(1.30) implies an improvement of Page’s result (1.4), [12], Le. of the almost
trivial upper bound

L(1)
g

D7 go from (1.31) we have

= 0(log® D).
I eg. Z{1) <
b7 1 :

(1) < (;loglogl)) .

2. Now we turn to the proofs. In our paper y will denote a real non-
principal character modulo D, L(s) the corresponding IL-series, g(n)

= Dx{d)

d|h
Proof of Theorem 1. First we prove the easy

> 4V Dlog* D
]/ Vﬁlongogw

Lumia 1. For en avbilrary o=

.ff(ﬂ') = L' (1)+ (logz + &) L{1) + 5

?

nesx
where o denotes Euler’s cmzsmnt # denoles a real number with an absclule
value not exceeding 1, possibly d@ff@mnt in various appearances throughout
this paper.

Proof. We shall nse that

Zw = logu —]—c—l—ﬁ‘—

mIu

et z denote 3 number — to be chosen later — for which 1 <2< . Then

, gln) O zld) 1
@1y YEE= = 2nt 2
nw d=ge merfd d=<z g<dse
. o x(d} % }
COD —,; P hog o+
| ) idlogd 20
s S St
B 2 d<z .
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Making use of Pélya’s inequality

b
| Y (@] < ¥DlogD,
d=a
considering that
B logd 1 Y 1
. d’ da ' a Lm

mex/d

are monotonically decreasing in d, and applying Abel’s inequality, we get

A

¥(d) 1 5V Dlog D

4 d 3z
i
‘ >‘1 z(d)logd - 5V Dlog Dlogz
[.._.J d - 3z ’
51/1710g1)logm _

| 25 2

me/d

3z

Now seft z = I/l/ﬁlogDIng-m (s x}. Then

g(n) VSﬂI/JﬁagD(logmeﬁ—c)'
2 Z S‘l (loga+e) L{1) + 3, -+

nET

r'ay+

Sﬁi/ﬂl'ogl)logz 50VDlog Dlogas
+ 2 + +
z 3z &

= I/(1) 4 (loga +¢) I(1) +58 l/—_u_*w_]/JD log Dloga
If
L) =
W O(IogD)
then from Lemma 1 we get
(2.3) g(” L'(1)-+o(1).
11,<D‘

Next we shall use the following observation. Let

(2.4) Ay = {u< D5 plu—sglp) =4} for j=-1,0,1,
(2.5) B =F<Dr =b-m,bed,, med_},
1 if =1
(2.6) Celm) =177 "=
. 0, if . m £
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Then an arbitrary # < D* can be written as n = ar = abm, where r<R,
aed,, bedy, meA_;. This gives

o) 9w =]l +xzm+
. #ir

=d{a)h(m) (=0).

+1°(p)) = gla)g(r) = gla)g(B)g(m)

Hence

| (n) (@) 1 1\t
ey D 5TE 2N 2wt 20T

12 ql2
nhH? 2 q 2
g g B

Next we assert ‘ _ ]
Limnrwra 2. For an erbitrary Twith 0 < 7 < 1 there exisis a e, 0 <, <1,

sueh that for all
3¥ Dlog D
D
T
the relation

(2.9) _Zg"g"@’ = (Or* %)L(l~r) +%m’1}(1) +2m*@Vm3V51°gD

n T
kv ]

holds.
This is Lemma 0 of [14] with the only change thafu in the proof the

trivial _ estimate
| S <D

a=a
murt be replaced by Polya’s nequality
12 wld |<<5Vﬁ10gD
d=q

Making uge of the inequality L(1) = = /I/D mentioned above, setting
v = § and £ = D? and multiplying (2.9) by 2~ we get

6 S
S (ay, 20 yao)/ BYPRED.

w \e] -6 8D
n<DE

L(1) YT SlogD- D\ (1)
E) LWD ¢
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Bince by the theorem of Hecke [11] we have

{2
it follows
n\®_ 1 1 i 1
(2.11) 12(—3?) 2§=-—ﬁ§”2 AToE D =W=1—0(1). ¢

Thus as g(n) =

L(1) g(n) {n 9 g(n)
e 2 _) (1)) Z T
n<D? D2
The assertion of Theorem 1 follows from (2.3), (2.8) and (2.12).

0, from (2.10) and (2.11) we get

(2.12)

3. Now for the proof of Theorem 2 if is sufficient to prove that if (1.21)
iy fulfilled then
g(%

(3.1) EAUINY ( )
nsh? 21D

I is easy to show (see Davenport [5], Hilfssatz 1, and Haneke [91,
Hilfssatz 14) thai

(3.2) 2 1< h(—D).
. n<yDj2
_ Dln~ry(p)=1
Hence if x(p) =1, then
. VD
Ph( .D)+1; g
ie.,
et .
I/E)N_D)Jrl 1 logD -
3.3 > (— > Wi_

(3.2) implies also that the number of primes, for which » < VD, /2 and
%(p) =1 does not exceed h({—D). Thus the assumption

(—Dy< 8D
2loglog D
‘gives together with (3.3)

1 e JomD
By D —<a(-De FIF
xp)=1
P<V D2 . .
]'Og'D 43—10210317 - 2 o (1)

~ 2loglog D loglogD
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On the other ha-nd, applying Lemma 1 with @ = DJ4 and o = I¥,
we geb

(3.5)

y, ':"L")Hg v g.(:ﬂ) = L{1Ylog (4D +O(]/]/_—10g D ) o(1).
VDjz<p<D? Drsnept

#(p)=1 -

Thu.s from (3.4) and (3

(.6) | 2 % = o(1).

f<D?
x(p)=1

Applying the definitions (2.4), {2.5), (2.

(3.1) 1< z g(a) H (1~,L%+;’2

.0) follows

6), from (3.6), we get

+o

a<D?
aed x(p) 1
1
o e B Ry
i )
x(p)=1 P z(p)=1 »
2
2 M 2} = = .
SGXP( ) p) e 1+o0(1)
:ch(p)=1

Now, making use of g(n)>= 0, from {3.7), we get

(3.8) Zﬁgﬂ _ Z g(r) O g m)

n<D? re D2 aspzfr
) relR
¥ r
= N o)~ S0,
9‘<D2 r<p?
relR ref

Ag for an r = ¢l*eR (u(g) # 0) by (2.7)
. (r) = 1, i gD,
9 =10, # gtD.
Considering that if r¢ R then by (3.3)
log D
2h(—D)+2

1

rzgexp( ) —10g1)—->oo,
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we geb
gir} 1 1
3.9 Z - - 2 1
(3-9) A ~—'§ q _ ¥
2 1(1-:‘3 {1)) H(1+1)n2
== — -—0 ~ — .
qln 1 6 i ? 6
Hay=E0

(3.8) and {(3.9) prove (3.1) and so we finished the proof of Theorem 2.
* If we take into account the error term our proof gives the result

Bh(— 1
TP Ll e e
™ H (1 +—)1/1_) _
D P
4. Next we tura to the proof of Theorem 3. If
log3 D
(1) » —2
VD
then (1.24) follows from Page’s result (1.4) [12]
I :
—((Sl = ((log*D).
It
' loglog Dy? logtD
(loglog D) < L) <« 08

Vb VD
then (1.24) follows either from Davenport’s result (1.12) [5]
L{1)

= O (loglog.D)

or from onr Theorem 5 (which of course we shall prove independently
of Theorem 8) which in this case gives

(1
~—(§—l = 0((loglog D).
If
: (loglog.D)®
_ VD
then y{n) = (—D/n), where D > 0, s0 by Theorem 2
5 6h(—D1)
o n
i H (1+-)]/1)
2B » :
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Thus for the proof of Theorem 3 it is sufficient to prove

h(—-D)
(4.1) fD) = — = >2-0(1).
[]6+3)

Let » (D) denote the number of different prime divisors of D, If »(D) < 2,
then the results of Baker [17-[3], and Stark [17], [18], [3] give that for
D= D, (effective constant)

hM(—D)=3
80 (4.1) holds sinee in case of »(D} < 2 for the fundamental diseriminant
—D<0
1 3
I (1 +_—) < (L +o(n).
P 2
Bl
If »(D) = 3, making use of
(D)= 2P
we gef
FD)>
Ty
“H 2

olF2)

Thus for proving (4.1) it is sufficient to prove

141 1 -
K(D)—_-H( T lp)gz(lJro(l)).

2
21D

(4.2).

If v(D)‘ =3, then ag —.D is a fundamental discriminant

H(D) < 25— = L +o(L)
If »(D) = 4, then
24862
ED)<TTIT — e

This proves Theorem 3. c
If we do not use the result 2(— D) = 3 (for D > Dy) we get f(D) =1,
and so :
6—o(l)

0=
/D

6 — Acta Arithmetica XXXIL2
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5. Proof of Theorem 4 Af first we prove the
Luanis 3. For e non-principel reel character yx (modD) (z 1500)
for any 4, 2 << A < IF ond with the nofation

. R 1
(6.1) ‘ = a
A<11<D2 jj
: Ap)eE~-1
the inequality
aleg D
1 ( alogd ) log 4

. 1
(5-2) L) > 215e 5 \Slog D

holds.
Proof. Iet us consider all the intervals of the form

(4277, 4%

fori =1,

2, ..., m, where m is defined by
0=A4"" <D AT = (2.
As here 47" = (" < D%, we have
g slog.D .
log A

i for which

2

P

Then there exigts an 7 <<

1 o
_2__
poom
<ps42‘
#(m)E—
It we raise the two sides of this ineguality te the power 271 then

on the lef$ side we shall get numbers of the form n~*

am—1

w=]]n

=1

AT < p < AT yip) # —1)

with & mulmphelty < 2™, o 'we have (since a < m)

el " log'.D
y 1> 1 (iz >(a z N alog A *io
ot M T \m ) om 8logD[
© plno(n)e 1 ‘
Considering that if for all p prime factors of » z(p) ¢ —1, then
g(n) = 1, and that for an arbitrary m, g(m) > 0, we get
: ' : gD
(5.3) M> alogdis *Togd
: n Slog_D

C<n<c0?

icm
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-
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But our Lemma 1 asserts for # > ¥ Dlog2D

" g{n) ,  Doo
Z ( = L' (1)4+(oga+e) (1) -+ 5% I/M .
z

H
D

__ Applying this with # = 0, and 2 = (*, we have as D*
vD-L(1) = T

<0< DY

n 4
(5.4) 2 _g(i = logO-L(l)_}_lOﬁ]/w
C<ngo? 4 D
20l0gD
< 4logD-T{1) + Dosi < 5logD-1(1).

(5.4) and (5.3) together gives (5.2).
To prove Theorem 4 we need a result of Mertens, that for z = 3

1
(5.5) : E?gloglogm—{—B,

=

where B ig an absolute congtant.
Let A be defined by

8log Dloglog D
i
blogD-L(1)

(= 8)
log

and let us assume that the assertion of Theorem 4 (i.e. {1.26)) is not true but

(5.7) exp (Z M) = 65+ og? 4 .
?
: pD*
Then
1
(6.8) 2 ERAVIRN 2loglogA +2B+2.
S : p<D? ?

From (5.8) and (5.5} it follows that A < D? and

1
(5.9) : by 1rue) .,
: _ A;‘}E'Dﬂ P
and so o
Cl _ 1
(5.10) . g == ! 1> 8
- : . A<pt? P IOgA

Z(m)=E—1,
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Now using Lemma 3 from {5.2) we have’

8log D
= S 7 lblog4d
(5.11) 510gD-L(1)>(10gD) e,
Slog D 1
(5,;2) . WlogA loglogD > logﬁﬁlogD'L(l)

which contradicts to (5.6) and so the Theorem 4 is proved.

6. Proof of Theorem 5. As for an arbitrary «, , gluv) < g(u)d(v),

and
glo) = [J{r+zp)) i ml@) #0,
: Plg’
considering
> d{m?) 21\ ( 1)
= —— i+ —=|< @) =01
Z m? (Z ’nﬁ) H Tpt @) @
m=1 n=1 » .
we have :
gon) _ 0 9l9) amy) N 90)
< = — L 2
(6.1) _22 S 2y ;2 < %2 :
neb Mo DR p@# -
1 1
QH(H_M)@XP(ZJM_),
. p‘.(_Dz .p J:IQDE -p
Now Theorem 1 and Theorem 4 give that in case of
1
<
L) log®D

_ for the Siegel-zero 1— 8 of T(s) (which exists by the theorem of Hecke [11])
(1.31) holds, ie.,

i -, 2 (1) logDloglogD \*
n<D? ————
108 S 1) Tos D

Added in proof. Professor 'W. Haneke informed me in the mean time that
hiz proof for (I.14) can be completed in a relatively easy way (see D. 275).
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