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Some non-linear diophantine approximations
_ oy
R. C. BakEr and J. GasrAr (London)

Totroduction. Throughout the paper, k denotes a positive integer,
¢ an arbitrary positive number, and C(k, &) & positive number depending
at most on k and &, not necessarily the same at each occurrence, similarly
for O(k), C(e). |la|| denotes the distance between o and the nearest integer.
We write K = 257,

In 1948 Heilbronn proved the following deep and important theorem
[11]. |

TEEOREM 1. For any N = 1 and any rsal 8 there is an integer @ satis-

Jying

1<as< N and o) < G(s) N7+,

Heilbronn’s result is analogous to Dirichlet’s theorem (Lemma 3,
below) in that the degree of approximation and the constant are inde-
pendent of 8, ¥. We can rephrase it as

min |6z < G(s) N71**e.
Il N
The method of [117 has been applied by several authors. Thus Danicic
[6] and Davenport [10] proved independently:
THEOREM 2. :

min [je¥] < Ok, &) N-VE+® (N >1,0 real);
LN . )

(N=1, 6 real).

and Davenport [10] proved _ :
THROREM 3. For any polynomial f of degree & without constant term,

min {f(@)] < Ok, o) N-VEE-DT (¥ >1).
1<

Davenport’s paper forme a very good introduction to Heilbronn’s
method and to this paper in particular. _

Simnltaneons diophantine approximations of this kind have also
been studied. In [18], [16] Liu (improving a result of Danicie [6], [7])
proved the following '
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THEOREM 4.

min max {622, [0:0%]) < O() N~V
I N

and if k=3

min max (0,0, [|6,8%]) < (%, &) NHEEHD+2
I<eaN

{(N=1,6,0; real),
Along similar lines Cook [4] pmved
THEROREM 5. If fi, f, are quadratic polynomials without constant term,

min max [|f;(@)] < C(e) N~V (N = 1).
Isipac NV 1=1,2

Cook also proved results for r quadratic polynomials, v = 3, 4,
([3], [4]). All the above theorems depend on Weyl's estimates f01 ex-
ponential sums. Using the method of Vinogradov, Cook [3] proved

THEOREM 6. For k=12,

min |82 < C(e, k)N %+°

1z N

(N=1, 0 real)

where
m{u\’}(?ﬂ-“ )10g{12 E—=1) ]NSkzlogk

Cook hag also apphed Vinogradov’s estimates to obtain r%sults‘ for ¢
polynomials of degres k& ([3], [81). Other results on Heilbronn’s method
include two beautiful papers on guadratic forms by Danicie ([7], [9])
and results on additive forms of degree % ([2], [16]}; see also [14] where
Lin slightly sharpens Theorem 1.

In this paper we consider simultaneous approximations to monomials

of different degrees, min max(0,«%), ..., |8,8%]) where (throughout
15N
(the paper) 1< a, < ... < a,< k are integers. More generally, we prove

an analogue of Mmkowski’s theorem :
TrEOREM 7. Let 0 <oy <1, i =1, ...,
be real. There is an integer & such that

10} << my

See [1] for Minkowski’s convex body thecrem, which implies The-
orem 7. We prove the following result.

TEroREM 8. Lét 0 <o <1 (i =1,..., k),

by ooy N78 Let 6y, ...y O

1<e<V, (1<i<E).

1.1 N een = Ok, e) N7UHETS,
- Let 0 be real. Then there is an integer © such that
1.2) 1<a<N, W<y (G=1,..,k.
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=1

TEmommy 9. Let 0 <n;<1 (i =1, 2),
(1.3) 7ins = O (=) N1,
Let 6., 0, be real. Then there is an infeger & such that
(1.4) 1<e<N, [6efi<n (i=1,2).
Taking 7y = ... = m_; = N~ in Theorem 8, we recover Theorem 2.
If the %’ are all equal we obtain from Theorems 8 and 9

(1.5} min max |02 < C(k, &) N-UEk+s,

IesN  Istisk

min max (16,2, [18,2%) < O(e) N1+
1<V

(1.6)

(N >1,0,, 8, real). These represent great improvements on Theorem &

in particular cases. {1.6) is a special case of
TEEOREM 10. Let 1< a4y <
min max [[fe%]} < Ok,
I<a<N I<i<r
(61, ..., 0, real, N =1), where
2Fr ((r—1)27 4+ 1), 1<r<4,
ok—4(85 +2(r—B)(r+4)}, r>=5.

We prove Theorems 8 and 9 in § 3 and Theorem 10 in §4. In §§5
and 6 we use Hua's improvement [12] of Vinogradov’s method to improve
Theorem 6, inequality (1.5) and Theorem 10 for large k.

In the remainder of the paper, e(z) denotes ™. Until further notice,

by F < & we mean G > 0, |[F| < 0{k, e)¢. In proving any theorem we
may assume (without making it explicit) that s < &(k), N is an integer

o< a. <k, then

8) N_lf'“k,r""

u’k,r =

- and N > C(e; k). b denotes an integer > 0 depending on %, noti necess-

arily the same at each occurrence.

We should like to thank our friend and teacher Dr A. J. Jories,
who initiated ns into Heilbronn’s method and constamtly encouraged
our work.

2. Heilbronn’s method. We state a mimber of lemmas of analytic
number theory. :

Imama 1. Let 0 < A < § and let a be a positive integer. There exists
o real function (2), of period 1, such that

pla) =0 *for >4,
W(z) = 2 ey e{me), o =4, G = O
and
(2.1) lap! < C{a)min (4 m 1A, mzl
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Thus
(2.2) D lanl < C(a)

m

Proof. This is & special case of Lemma 12 of Chapter I of [17].

Leuwa 2. Let fu(o) = 025+ 0, T4 . 4 0p @ be o polynomial
with real coefficients. Let m be an mtegrer =1 am(l Tt

)

Suppose |6 —ag| < g7* for some integers g =1, a, where (a, ¢) = 1. Then

JorHz1,
o HN#®
3 Vst < (Exy (=t v +1) 7+ groga)).
m=1 .
If k=1, gz=2H then
H
(2.4) _ Z!S(m)i < qlogg.
M=l
Prooi. By Satz 266 of [13],
. k=1 1
I8 (myE ¢ WK1 yE-R+d2 Y min (N, e
‘ ‘ o [ 81}
But
" kyk-1 1 EN%-1 1
in (¥, —— @ N i o
m—*z Z mm( ’ llm”6|')<(HN) 2; - (N’ nwen)

‘because # = mw has < (HN)? solutions m for any #. Now we can complete
the proof using well-known techniques; see for example Lemma 8a of
Chapter I of [17]. For the second part,

" H H
Dstm) < 3 mbl 7 < |,
& m=1 me=1 l€m<g/2

Since (a,q) =1, the integers k = am (mod ¢), 0

. : <k < g ave distinet
and not zero (1< m < ¢), 5o for 1<m < ¢/2,

lm6l = I mag™+ 2 (gl < 1)
_ Hkgﬂ ﬂ“ s, ik, g—%)
g q '
3 imopt <« 3 bt < glogg.
Tsm<glz 1<k=g/2 i
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TeMMA 3. Tet 8 be a real number and Q = 1. There are indegers a, ¢
such that (¢, ) =1, 1 < g < Q ond

0—ag i < g '@

Proof. This is a special case of Theorem 7. .
The pext lemma containg the essence of Heilbronn’s method. An
simprovement on Dirichlet’s theorem’, (2.6), {2.7), is ‘purehased’ by
2 ‘Heilbronn hypothesis’, as we call the hypothesis of Lemma 4 about
the abgenee of an integral solution.
TmvmMa 4. Let Ay, ..., A, be positive real numbers and 05, ..., 8, any

veal numbers. Suppose there is no integral solution of the inequalities
1<a<N, [H6<N™% (j=1,...,7).

Then there is a §, 1< j< 1 such that either

(2.5) Byt - +A) 2 1—c(GE;+3)  (E; =297
or there is an integer g =1, such thai

{2.6) g < NEjhyteee Hig) e By +2)

{2.7) lg6,)| & =%~ HE e sty

Proof. Let ;(2) be as in Lemma 1 with 4 = {N 7% a = [1/e]+1

{i =1,...,7. By hypothesis,
N
S Twita8) =0
=1 =l
or
(2.8) =Tl i) o 2* Gy amrT(mT) =0

where 3™ denotes a summation over all nonzero integral yectors

M = (Mg »emy M)}

and
. :
T(mi) = D' e(my 029+ ... +mybe¥)  A<I<7)
x=1 )
From (2.8), )
Fi-Urooth) ¢ 2* [aml amrT(m')].

Summing over the " with m,| > N4** we have by (2.1), (2:2),

2 o - TP N < N <1
.m!>N11+a .
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and similarly for |m,|> N'1*% ete. Thus {unless 1 —(A-+ ... +4,) <,
which we may ignore as it would end the proof),

N1yt ty) 42(” [ty + v+ T, T (7],

where Y™ is a sum over |my] < N%F° (§ =1, ...,7), m" 0, and using
(2.1},

¥ < Y71y,

Clearly there is 2 j,1<{j<r, such that
() i
N < E [T (m)].
'mj#D

This completes the first stage of the lemma. Now, if ¢; > 1, we use.the
Weyl estimate (2.3). By Holder’s inequality,

(2.9) WK g Nl A0 N0 |1 50y Ky
. mj;&(l . . . .

& NEALbens FAd0 = Tjhe NKJ’_];HJ'-J-.NKF“J' NG=i+he p. ‘
: - (¥ +qlogg)

for any integer g1 such that

o 1
71 €9
(@ integer, (e, q) =1, ¢ < Q). We take @ = N* where u = aj--uK;#(Zﬁ—
o FA)HA;—be; b is u large integer depending on %; and choose such
% ¢ using Lemma 3.

‘We may assume that (2.0) is false. Thus

(2.10) <

-

N.Kj(7.1+...+lj+jz)NKf—1-i-ﬂ < NBi—
and (2.9) yields

a;—1+44, +e
NG E bt =K+ (N —

+‘1) (¥ --qlogg)
_Naj+i_j+s )
< T + ¥Nu- 1400 g 1 glogg.

It b = jK;+2, the term glogyg is negligible. Since (2.5) is false, the ferm
NG—1H+e Jogq is negligible, and we deduce that (2.6) holds. Finally, (2.10)
implies (2.7). '
It @; = 1, we have instead of (2.9),
’ ' A'Tj,l+s
N o< 3 Timy.

mj‘ﬂl

icm
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We let ¢ be an integer, 1 << ¢<.Q = N'%. such that (2.16} holds with
j=1. If ¢ = 2N"" Lemma 2 gives

N < qlogq

which is absurd. So ¢ < 284, [lg 6, < ¥~ which implies (2.6) and (2.7).

This completes the proof of the lemma.

3. Proofs of Theorems 8 and 9
Proof of Theorem §. Suppose there is no solution of the simul-
taneous inequalities (1.2). We apply Lemma 4 withy = k, a; = 4, N4 =,
8, = 8 (1< j < k). We shall show that
(3.1) O H L P =l bs
for a suitable b. This can he Testated as
Ty M N—{l—b*_z)ﬂ.f

go with (3.1) we will have proved the theorem.

In Lemma 5, we may assame (2.5) is false sinee if it held the proof
would be complete. Thus for some §,1 < j < k, we have an integer ¢ =1
snch that '

g <€ NSGrt e (. 971

so that ¢ < N; and
nq 6“ < _N—_j_;'j'I'Kj(Al‘]"-~+3j)+a(jKj+2} .

Thus for 1<i<sk,
g0l < g“ Hlg )] <€ Nt Hi=I—dyroe
where b = i(jE;+2). By the ‘Heilbronn hypothesis’ we have for some i,

NE At it T S,

-and
i K (4 S Ao A
A { ‘+. el —= +—=21—(b+1)s.
M J ] :
If ¢ = 4, (3.1) holds since ij*I SELET A< k) i<y,

and again (3.1) holds. This completes the proof.
All the proofs in this paper use the principle of this cne. The Heil-
bronn hypothesis has already been used to purchase an improvement

- on Dirichlet’s theorem: now we use it again to show this improvement

cannot be too great, and thus A, + ... +1, must exceed some positive
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bound. This deduetion yields the contrapositive form of the theorem:
it the Heilbronn hypothesis is satisfied, the box [0, 71X ... %[0, 2]
has small volume.

Proof of Theorem 9. Suppose there is no solution of the simulta-
neous inequalities (1.4). As above we have only to show that

(3.2) 83,20, 1—be

where 7; = N~% (§ =1,2). We apply Lemma 4 with 7 =2, a, =1,
ag = 2. If § = 1, we may assume {2.5) false. There is thus an integer g 1
such that .

g < NUP gy < T

By Theorem 1 there is an integer z, 1 < #<x ¥'"*, such that
||zﬂg262[| < NRrihgtes
Sinee 2 < N and |=zq8| € N ~h=¢ the Heilbronn hypothegis gives
le®q® 0,1 = N~
10 that :
_ﬁ%‘ﬂ“%}q‘l“ie = —2
which implies {3.2). . ' _ .
Tf j == 2, we may assume (2.5) false. There is thus an integer g =1
. &uch thaf
. g < Nﬂ(;_1+12)+55’ -HQ 92“ < N—2+211+2ﬂ3+ﬁe_
By Lemms 3 there is an integer z < N*~*(r+%)=" guch that |
leg 6y} < NHHE T,

Bince 2¢ < ¥ and

122 0,04 << 2 lg O] < NP MWwti=te y—didipthpthe _ Fr—ipwte,
. we must have
- legbyli=> Nh
- g0 that
—1+2(4h+24)+8= —4

which implies {3.2). This completes the proof.

4., Proof of Theorem 10. We need a “recursive” lemma.
Lemuma 5. Let ay, (B2 1,7 = 1,..., k) be positive integers defined

recursively by
{4.1)

My =257 Uy, = MaX (U, +(r—1)2°2, gy -1 ‘l"f"zk_l)
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4if r> 1. Then .
- :l2k~f((r—1)2*+1), r=1,2,3,4;
S 28465 +2(r—B){r+4)), r=3
< 4 are left to the reader. Now
-2, uk_1’4—i—5-2""'1)
— max (2%74(3-2% 4+1) +-16 - 257, 2575 - 49 1 80-2%7F)
= max(130-27%, 129-2%5) = 65-2F*.
Now suppose k=6 and the result known for all » < &, for all 4. Then
Uy, = max (2465 4+ 2(h—6) (A +3)) +(h —1)2°7%,
25-5(65 +2(h—6)(h+3))+R-257").

Proof. The cases r <

Upey = MBX (g, 42"

The first of this pair is seen to be larger, and is
25=4(65 +2 (h—B)(h+4)).

Thiz completes the proof

Proof of Theorem 10. We call the thecrem ‘case (k,r)’. Case (k 1)
is Theorem 2, or Lemma 3. Assume case (j, ) is known for1<<h<i<tk
and that the cases (k,1),...,(k,#—1) are known (v>1). We deduce
case (k,r); this will obviously prove the theorem. '

We use the definition of u;, given by (4.1} wherever convenient.

Suppose there are no integer solutions of the inequalities

1<o< N, maxj%0i<N?

. 1<
where 1> 0. We shall deduce that

{4.2 : Az
(4.2) s

which will complefe the proof. By Lemma 4 (with A =2,1<j<h)
there exists , 1 < j < r, such that either

(4.3) JE > 1—e(iE;+38)  (H; =2%7)
or there iy an integer ¢ > 1 such that
' g < NIEMGED,

bl < Nt ORy VD,

(4.4)
(4.5)

Since jE;<r2"

1 Uy, We may assume (4.3) false. There are two
cases to consider. : :
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(a) j =7. By the case (k~1,r—1) there is an integer 2, 1<z
< N-rEd-rErt8) ooy that

- ~1
(1_"Er‘—“”S(TKT+3))“Ic—1,r-1+a

(4.6) max ehighib) < N

Tigr—1
{(since 1 ay < ... < @,y < k—1). Now zg=< &, and by (4.4), (4.5},

g 0,01 < 2% g% ig b, < N* < N7+
where

= (1 —rK, 1)+ (g, — 1YrH A— e+ {rH,—1)i—a,e = —d—a.e.

Thus, by (4.6) and the Heilbronn hypothesis, we must have
(=K A— e (r K+ ) Ut p + 262 —1
or
;u(r-Kr‘!’ Mk—l,r—l) > l—bs

which implies {(4.2). _ _ _

(b} j<<r—1. By the case. (k,r—1) there is an infeger =», 1<z
 NUIEA=E 3 qyeh that '

—(—FR AT rbe
(4.7) max [Bq46,) <« N M1 tbe

Iy
k1S

Now 29 < N,‘and by (4.4), (4.5},
%™ 61 < 2% g By]) < N < N7
where
v = a;(L —jE ) Faj K — A—a;— a8 = — A—aye.
Thus, by (4.7) and the Heilbronn hypothesis, we must have
— (1=K iy, + b+ ez —2
or
AIE 4y n) = 1—be
which implies {4.2). This completes the proof of Theorem 10.
5. The amnalogue of Lemma 4 using Hua’s estimates. For the rest
of the paper, £>2. We begin with Hua’s estimate of an exponential

sum, which corresponds to Weyls estimate (2.3), and iz much sharper
for large %. In the next lemma, < depends on k,¢ and &',

Lenwa 6. Make ofl the hypotheses of Lemma 2. Suppose further that p

48 awn integer, 1 < p < N, and that the number of solutions in integers of

Bf =yt e A<h<E-1,1<2,5<0)
(5_1) : . < P-{eip}k(k-—]].-}d'

icm
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for some &' > 0, where t is a positive integer. Then
H
(5.2) 1S (m)
m=1
4 & Arat—1 HN S ik
< (HNW:HpY+9p" N Y +1)(14-pFqlogq) +HY|-

In particular, the estimates (5.1) and henee (5.2) hold if

1 1
§ = 1k —1) (1w——~—) +e, 1= [%k(k—1)+

l(k—ul)] ;
h—-1

9 +1

where 1 8 any positive integer.

Proof. The second assertion of the lemma iz Hua’s ‘mean value
theorem’ (Theorem 1 of [12] with s replaced by 2¢ and % replaced by
%—13=1). The first assertion follows by slightly adapting the argument
of Theorem 4 of [12]. Imitating the argument up to [12], {B6) with no
significant change (but writing ¥, », k for P, p;, k+1)

IS (m) !ﬂ < -,péf +_p“‘_“'t(N‘“_‘-’_fp‘u""ik(k“l)'{‘ﬁ')pi(k_l){k_z) »®
kN

X (N- Zm‘m(p"‘l,

¥=1

N i'z:—].)'
uwmtfen)Jr v,

s0 using the faet that # = mY¥ has < (NH) solutions m,

" KNI

1
ai ‘ 4 Eprdi—1,.0°"+1~F% z k—lj +H‘ k—l)
S s < g2 VT (z;mm(p_ o)

. ENH _
< P45H+(NH)BN4i—IPB +lvk((T +1)(pk_l+qlogq)+ﬂpk 1)

by the same argument thab leads to (2.3), namely Lemma 8a of [17].
This completes the proof of Lemma 6.

Naturally we can prove an analogue of Lemma 4 using (5.2) instead
of (2.3). For simplicity we assume 4 =... = A, = 4. We ruppose that -
with every j < r such that a;>1 is associated an integer Zj > 1 and write

1 V4 L (E—1)
a,,ml) T [%“j(“j"‘l)-{-’—z—“]‘f'l;

3, = ya;(a;—1) (1—

but 8, = 0, 44, =1 it @, = 1. We shall always have §; < 1. The constant
implied by < is now allowed to depend on I; (1 << r) as well a8 k, &
Where there iz no ambiguity we drop the indices from l;; 6; and ;. The
integer b used in awkward multiplies of £ can also depend on k. ‘
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Leywa 7. Let 64, ...,

_ 8, be real. Suppose there is mo integer solution
of the inequalities

1<a<N, |#%6] <N
Then thers exists 4, 1< j < v, such that either
1-3§
5.3 i»>——————b
(5.3) Taitr—1—0

or there is an integer g = 1 such thai
(5‘4) Q, < Nd+l(4fj'—6j)+ba,

—aj+d+ﬂ(4t+aj~1—d—%}+bg ,

(5.5) lgbyll < ¥

In ol the inequalities, & = &;, t =1,
Proof. The first stage of Lemma 4 can be repeated and so for some

B 1gi<y,
¥ < Yoy
mj-éﬂ

{5.6)
Ifa; =1we either have A > 1 — 4z (which implies (5.3)), or (b.4) and (5.5),
exactly as in Lemma 4. If a; > 1, we apply Holder’s inequality:

NH g FiO+au-1) Zﬁ)lT (

‘m-J-;&ﬂ

md) A,
Now let Q = N* where

(8.7) @ = Oy 8~ jA (4t+a,-»1—a—%) —be

and choose a, g (1=
Lemma 6,

g @, (a,q) =1) so that {2.10) holds. Then by

14448

(5.8) F¥ < N@i-De9 (p“N‘+2*+pd+-N“—l (( +1) x

X (1 - pt i glog g) +N ““)).

In iorder that p* N4 H0G+0: ghall be negligible, we .choose p
= FN?" —(+11; then p>>1, unless 4> 1/j—3s which may be excluded
as it implies (5.3). Thus from {5.8)

_1+]i+a +N1+8+ Nl+z+slogq glogg
paj-—l

Nl—(4’4—1)(%+l)_,p—6—a < .
. Pa,--l

We may assurne that (5.8) is false. Thus, if b. ig suitably defined in (5.8),
the terms N*+* and N'+**+*logq-p'~% are negligible; and with a suitable b

icm

Non-linear diophaniine approzimations 337

in (B.7), the term glogg-p*~% ig neg]igible. Thus
‘ q < N&!{il—}—bapﬁ-}-s

which is (5.4); while {2.10) implies (5.5).
To complete this section we deduce from Lemma 7 the following
improvement of Theorem 6.

THEOREM 11. Let 0 be real. Then for k > 3,
min |62 < C(B)N""% (N =1)
1pa iV
where
ol = 2k%logk
logk—1
Proof. We suppose that there are no integer solutions of
ey << N°* (4> 0).
with r =1, o, =k, 0; = 8, and

1= [logg (k—1)+1(;glogk]+1

8 < 1flogk,

(logk?+loglogk) ~ 4kElogk:

1Ka< N,

“We apply Lemma 7

s0 that

and

A4 (1) {21+ 1K) + 4 < (k—1)2(2Tog 32 + 2loglog k) -+ §h( k-§-3)+2.

We assume first that (5.3) is alse and (5.4) and (5.5) held. Then

llg® 6ll <

and ¢ < N, so by the Heilbronn hypothesm,
— k4 k84 A k(41 +1—8)—2)+bs = 1

@ gt <« N i RB A h{ 41— 0)~2 )+ be

or
Az= 1—8 —be
T 4t+k—1 :
- Tven if (5.3) holds instead, we can always eom_zlude that
1—8 1—(logk)™*
lzp——— —be ;
4+kF—1 (k—1)3(2log § k*+-2loglogk) + 3 k(k+5) +1
1—{logk)™* '

= o2 (logk2-+loglogk)

and the theorem is proved. -
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6. An improvement of Theorem 10 for large k. Weo begln with the
special case when the 8 are equal

TeroreEM 12. For k=

. min max ﬁﬁm"l|< ClE)N—™®
1<o<N I<ick

(0 veal, N =1)

where .
o 2k3logk

- logk2+ loglogk).
W= fogh 1 ogk*+loglogk)

Proof. Suppose there are no integer solutions of

max |0l < N

157l

Ig€eg N,

where 2> 0. We apply Lemma 7 with » =k, a; =j, 0, = 6 (1
and

<i<H

. [log%k(j—l)—i— loglogk]
=

log |1 = )

so that i; satisfies the same estimate as before, and

8 1 ij—1)[1 1 )Ij << ]
y ===} <jeew
Suppose first that (5.3) is false and (5.4) and (5.5) hold. Then for 1 < 4 < k,

g 0l << ¢~ g O] < N —I+R+AsI-ak+7 =)
and ¢ < ¥. Thus, by the Heilbronn hypothesis,

—j+kSFA((48—8)jh+j—d)+e = — 1,

or ) ]
1—k14
Ath—Sk+j—1

Even if (5.3) holds instead, we can always conclude that

1—kj~18 1—(logk)™!
k(4 +k—1) " k(at+k—1) 7 ¢

and the theorem is proved.

‘When the 6’s are general real numbers, we discard some of the minor |

savings of Theorem 10 in order to simplify the calculation.

THEOREM 13. For k=3, t,..., 8, real,

(6.1) min max 2% 6,] <
IKe N 1<isr

O (k) N o

iom
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wjlef'_'ﬁ
Wy, = % g 1+ (r+2)(r—1) K*(logk* + loglog k).

Prooi. Define v, = 03" in the notation of Theorem 11. Let ¢ 2
and Iet us assume that for some v, ; > 0 we have

(6.2) min  max fabip] < O (k)M ke
1M IsCisSr—1
(P17 s real, M21, 1< b < ... <b,_, <k integers).

Now suppose there js no integral solution of

1o N, max|e%6]<<N

bi<r
We apply Lemma 7 with

. [ log (4 ka;(a;,—1)logk)
=

1
—Tlogl1 —
Og( “j—l)

] +1< (b—1)(logik®+loglogk) +1

80 that
< 1
™ Tlogk
41, < 2(k —1)2log 1 k3 -+ 2%2loglogh + 1k (k4 3)+2 (J=1y...,1)
Assume first that (5.3) is false, and (5.4) and (5.5) hold. Let (for a suitable b)

(6.3) p=1—8—A(4—5+1)jbe;

then x> 0 and by (6.2) there is an integer 2, 1 < z< N* such that
max 2% g% 0] < N—H%r-1;
1islr
5
and ,
% 0% 0,1 < 2% lig b, < N
. where

v = pag+(ay—1) (64 A(4t] — &) — a;+ 6+jﬂ.(4t+a,j-_~43- w6)+be< —h-s

if b is suitably chosen in (6.3). Now q.e:<N 50 by the Heilbronn hy-
potheszs,
au'/'vk,r—i L Ate
or _
14

Az T
(40 —0+1)j+vg,,

—bs.

3 — Acta Arithmetica XXXL4
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‘Bven if (5.3) holds instead we can always conclude that

146 ]
T
and 8o
(6.4) : min max|® ;)| < O (k)N s
. 1o N Iiagr
where

z : 2
Vper == (’U;g,f—ﬁ” (41+k fl)r) (1 + kloghk ) )

Thus {6.4) iz true for » =1,..., % Now
where v, = o5,

(r=2)

Ve < ¥y

% = (0o} (1+f)

(a = 2k3(logk®+loglogk), 8 = 2/(klogk). By induction,

2, = (1B N a1+ AT < (L4 fF(ou-+ afbr(r+ 1) — 1))

2 . |
< @x] (logk )(crgl-i— (7 +2)(r—1) 5 (Qogk* +loglog k).

Since v, < v, < y,,, the theorem is proved.

COROLLARY.

) o
min  max [l5° 0, < C(f) N—C-%)aElogk
1€<rL VN 1<i<h i

(N =1, 8; real) where g—~0 as k—-oc. o
Finally we observe that in Theorem 9, ;7; can be replaced by #,%j.
. To see this suppose 4, > 0, 4, > 0, 4, +42, < 1 —8s. There is an integer g,
LK NTE, gy < T
and an integer z,
1<z NHFe, [PPBI< () N o g N5

Now

#=z<WN, [OI<N™ and |Bbl<slgb | F 1A y-u,

This method wag pointed out to us by Dr. R. J. Cook.

icm
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